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Abstract

This work is concerned with codes, graphs and their links. Graph based codes have recently become very
prominent in both information theory literature and practical applications. While most research has centered
around their performance under iterative decoding, another line of study has focused on more combinato-
rial aspects such as their weight distribution. This is the angle we explore in the first part of this thesis,
investigating the trade-off between rate and relative distance. More precisely, we show, using a probabilistic
argument, that there exist graph-based codes approaching the asymptotic Gilbert-Varshamov bound, and that
are encodable in time O(n1+ε) for any ε > 0, where n is the block length.

The second part is concerned with more practical issues, more specifically the erasure channel. Although
the codes mentioned above have been shown to perform very well in this setting, this nonetheless requires
their lengths to be quite large. When short blocks are required, certain algebraic constructions become viable
solutions. In particular Reed-Solomon (RS-) codes are used in a wide range of applications. However, there do
not appear to be any practical uses of the more general Algebraic-Geometric (AG-) codes, despite numerous
advantages. We explore in this work the use of very short AG-codes for transmissions over the erasure channel.
We present their advantages over RS-codes in terms of the encoder/decoder running times, and evaluate the
drawbacks by designing an efficient algorithm for computing the error probabilities of AG-codes. The work
was done as part of an industrial collaboration with specific transmission problems in mind, and we include
some practical data to illustrate the theoretical improvements.

Graphs and codes can be related in different ways, and a graph being a good expander often yields a code
with certain desirable properties. In the third part we deal with graph products and their expansion properties.
Just as the derandomized squaring operation essentially takes the square of a graph and removes some edges
according to a second graph, we introduce the derandomized tensoring operation which removes edges from
the tensor product of two graphs according to a third graph. We obtain a bound on the expansion of the
product in terms of the expansions of the constituent graphs. We also apply the same ideas to a code product,
leading to the derandomized code concatenation operation and its analysis.

Keywords: Repeat-Accumulate code, Gilbert-Varshamov bound, Reed-Solomon code, Algebraic-Geometric
code, erasure channel, expander graph, derandomized squaring, derandomized tensoring, code concatenation.
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Résumé

Ce travail concerne les codes, les graphes et leurs liens. Les constructions de codes à partir de graphes ont
récemment pris beaucoup d’importance, tant dans les publications de théorie de l’information que dans les
applications pratiques. Alors que la recherche s’est majoritairement centrée sur leur performance dans le
décodage itératif, une autre direction s’est plutôt focalisée sur des aspects plus combinatoires, tels que leur
distribution de poids. C’est cette approche que nous explorons dans la première partie de cette thèse, en
étudiant le compromis entre rendement et distance minimale. Plus précisément, nous montrons, suite à un
argument probabiliste, qu’il existe de tels codes approchant la borne asymptotique de Gilbert-Varshamov, et
pour lesquels il existe un algorithme d’encodage avec temps de parcours O(n1+ε) pour tout ε > 0, où n
représente la longueur de bloc.

La seconde partie concerne des problèmes plus pratiques, plus spécifiquement le canal à effacement. Bien
que les codes mentionnés ci-dessus aient de très bonnes performances dans ce cadre, leur longueur doit
néanmoins être assez grande. Lorsque des blocs courts sont nécessaires, certaines constructions algébriques
deviennent des solutions viables. En particulier, les codes de Reed-Solomon (RS) sont utilisés dans une grande
panoplie d’applications. Il n’y a cependant apparemment aucune utilisation pratique des codes Algébriques-
Géométriques (AG) pourtant plus généraux, et ceci en dépit de nombreux avantages. Nous explorons dans ce
travail l’utilisation de codes AG très courts pour la transmission sur le canal à effacement. Nous présentons
leurs avantages sur les codes RS, en termes des temps de parcours de l’encodeur et du décodeur, puis évaluons
leurs inconvénients en concevant un algorithme efficace pour calculer les probabilités d’erreur des codes AG.
Ce travail a été réalisé dans le cadre d’une collaboration industrielle, motivé par des problèmes de transmission
spécifiques, et nous incluons également des données pratiques pour illustrer les gains théoriques.

Il existe plusieurs façons d’établir la relation entre les codes et les graphes, et un graphe qui est un bon
expanseur mène souvent à un code avec certaines propriétés souhaitables. Dans la troisième partie nous
nous intéressons aux produits de graphes et leurs propriétés d’expansion. Tout comme l’opération du carré
dérandomisé prend le carré d’un graphe et lui retire des arêtes selon un deuxième graphe, nous introduisons le
produit tensoriel dérandomisé, qui enlève des arêtes du produit tensoriel de deux graphes selon un troisième
graphe. Nous obtenons une borne sur l’expansion du produit en fonction de l’expansion des graphes utilisés.
Nous adaptons également ces idées à un produit de codes, menant ainsi à la concaténation de codes dérandomisée
et son analyse.

Mots-clés: Code Repeat-Accumulate, borne de Gilbert-Varshamov, code de Reed-Solomon, code Algébrique-
Géométrique, canal à effacement, graphe expanseur, carré dérandomisé, produit tensoriel dérandomisé, con-
caténation de code.
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Chapter 1

Introduction

The aim of coding theory is to provide methods of transmitting information in a reliable way over unreliable
communication channels. Data sent through these channels may get corrupted, and the role of coding theory
is to pre-process the sent data in such a way that it can be recovered from the corrupted data received. The
pre-processing is referred to as encoding, while the recovery is referred to as decoding.

Encoding involves adding redundant information to the message before it is sent. This means that more
information must be transmitted than would be on a reliable channel. How much redundancy is needed
depends on how “bad” the channel is, i.e., how much corruption it adds. This leads to the natural question
of what is the smallest amount of redundancy we can get away with for a given channel. The answer was
given in Shannon’s 1948 paper “A mathematical theory of communication”, which laid down the basis for all
digital communication. However, although his proof guarantees the existence of coding schemes that achieve
the limits given in the paper, it gives no clue as to how such codes can be constructed.

It has henceforth been a major aim of coding theory to construct codes whose structural properties ensure
reliable transmission, using as little redundancy as possible. We will consider only block codes, in which
data is divided into pieces which are processed independently. The length of a code describes how much
data is sent in each block. The minimum distance of a code can be important in assessing its error correction
ability, in the sense that it being large guarantees a minimum adeptness to correct errors. The rate measures
how much real information a block contains. These last two parameters pull against each other (improving
one tends to worsen the other), and it is a fundamental problem in coding theory to find the best trade-off
between the two. Another important issue to consider is the complexity of the code, referring to the running
times of the encoding and decoding algorithms. Even when codes are studied only as combinatorial objects
it is an interesting property to possess efficient algorithms, and it becomes essential in the context of data
transmission.

Different tools have been developed to construct such codes. One major tool is algebraic, whereby known
results from often rather abstract fields have been applied to obtain codes that can be proved to meet certain
requirements. Although mathematically pleasing, there are aspects of these more traditional codes that can
be improved upon. Graph theory is another such tool, whereby graphs with certain desirable properties can
lead to codes with very effective decoding algorithms that work particularly well on common transmission
channels.

Low Density Parity Check (LDPC-) codes are graph-based constructions that have attracted a lot of attention
in recent years, due to their impressive performance under iterative decoding. Although first invented in 1963
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by Gallager, they were later independently rediscovered in different flavors by Tanner [83], MacKay [48],
Luby et al. [47]. They were shown to contain sequences that approach the capacity of a given symmetric
channel, with very fast encoding and decoding algorithms. A different research direction has been the study
of more combinatorial properties such as the weight distribution of these codes, mostly to obtain bounds on
their performance under Maximum Likelihood decoding. This is the aspect we will consider in the first part of
this work. More precisely we will construct in Chapter 3 ensembles of graph-based codes that approach the
Gilbert-Varshamov (GV-) bound with high probability, and that can be encoded in near linear time (essentially
O(n1+ε) for any ε > 0).

The second part of our work involves more practical applications. While the graph-based codes like those
mentioned above do indeed have excellent performance, this is conditioned on their lengths being reasonably
large. There are however applications requiring very short blocks for which algebraic codes have distinct ad-
vantages. The most ubiquitous are Reed-Solomon (RS-) codes, which are widely used in diverse applications.
On the other hand, practical uses of the more general Algebraic-Geometric (AG-) codes are almost non-
existent. This is despite the fact that AG-codes have remarkable properties in that they enable the construc-
tion of codes with excellent rate/distance trade-off (in some cases beating the asymptotic Gilbert-Varshamov
bound).

RS-codes have the drawback that their length is bounded by the size of the field on which they are constructed.
This means first of all RS-codes cannot be studied asymptotically, but even for finite lengths, long codes
require large fields. AG-codes do not have this restriction, an advantage that can be interpreted in two different
ways. The most straightforward is that for a given field size one can construct longer codes, so that bigger
pieces of data can be protected in each block. On the other hand, for a given n, an AG-code of length n will
require a smaller field than an RS-code, which in turn means that the encoding and decoding algorithms can
be made to run faster. This second interpretation becomes very relevant for applications that require short
blocks (i.e., anything that needs to be decoded in real time). Furthermore, this is exactly the situation in which
these algebraic codes can still outperform graph-based codes.

We explore in Chapter 4 the use of very short AG-codes for transmissions over the erasure channel. We
present their advantages over RS-codes in terms of encoder/decoder running time, and also quantify their
drawbacks by developing an efficient algorithm to compute the error probabilities of the short AG-codes we
consider. The contents of this chapter were motivated by existing practical needs, and we use a specific
transmission problem to obtain some data illustrating the theoretical speed-ups. The work was done in collab-
oration with the company Digital Fountain and the codes presented are being used in some of their commercial
products. It is interesting that although AG-codes are best known for their asymptotic properties, it is for these
very short lengths that they appear to offer the best prospects for practical exploitation.

The third part of our work deals with the topic of expander graphs. Graphs and codes can be related in
different ways. With the LDPC codes mentioned above the link was provided by the Tanner graph of the
code. A different relationship can be established by taking an [n, k]-code with generator matrix G, and
looking at the Cayley graph of Fk

2 with respect to the columns of G. In both cases, the graph being a good
expander guarantees that the corresponding code will be good.

We will be concerned in the last two chapters with graph products and their expansion properties. Rozenman
and Vadhan introduced a modified version of the graph squaring product called derandomized squaring [65].
This led to a graph of smaller degree, at the cost of slightly worse expansion. We extend these ideas to another
graph product (the tensor product) and a code product (code concatenation). After introducing expander
graphs and some useful tools in Chapter 5, we describe and analyze our products in Chapter 6. More
precisely we obtain a bound on the expansion of the derandomized tensor product (measured by the second

2



eigenvalue), as a function of the second eigenvalues of the constituent graphs.
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Chapter 2

Coding Theory Background

2.1 Introduction

In this chapter we review the basic notions of coding theory that will be used in subsequent chapters. We give
the standard definitions from the area of block codes before presenting the Gilbert-Varshamov bound which
features prominently in Chapter 3.

2.2 Error Correcting Codes

All the following material can be found in standard textbooks (for example [89][51][41]), and will therefore
not be expanded upon.

Definition 2.1. We have:

• An (n,M) block code C over an alphabet Σ is a subset of Σn of size M . n is referred to as the length of the
code. All our codes will be block-codes, and we refer to them simply as codes.

• An [n, k] linear code C over a finite field Fq is a subspace of Fn
q of dimension k. n and k are respectively

referred to as the length and dimension of the linear code.

In this work we will deal exclusively with linear codes, so we assume from now on that all codes are linear.
An [n, k]-code over Fq can also be referred to as an [n, k]q-code.

Definition 2.2. Let C be an [n, k]q-code.

• The rate of C is defined as R(C) = k
n .

• A matrix G ∈ Fk×n
q whose rows form a basis of C is called a generator matrix for C.

• A matrix H ∈ F
(n−k)×n
q for which C = rker(H) is called a parity check matrix for C (rker(H) denotes the

right kernel of H).

Notice that if G is a generator matrix and H a parity check matrix for C then

C =
{
Gu
∣∣ u ∈ Fk

q

}
=
{
c ∈ Fn

q

∣∣ Hc = 0
}
.

4



Definition 2.3. Let C be an [n, k]q-code.

• The hamming weight of a vector x ∈ Fn
q is the number of non-zero components in x:

wgt(x) =
∣∣∣{i | xi �= 0

}∣∣∣.
The hamming weight of a vector will simply be referred to as its weight.

• The hamming distance between two vectors x, y ∈ Fn
q is the number of components in which they differ:

d(x, y) = wgt(x− y).

• The zero codeword is the zero vector in Fn
q . It is always an element of the code.

• The ball around x ∈ Fn
q of radius r is defined as

Br(x) =
{
y ∈ Fn

q

∣∣ d(x, y) ≤ r
}
.

• The minimum distance of C is defined as

dmin(C) = min
{
d(x, y) | x, y ∈ C, x �= y)

}
.

Since we are assuming C to be linear, dmin(C) is also equal to the smallest hamming weight of a non-zero
codeword.

• The relative distance of C is defined as

δ(C) =
dmin(C)

n
.

• The weight distribution of C is the histogram of the weights of all the codewords. More formally it consists
of the integers A0, . . . , An where Ai is the number of codewords of weight i.

An [n, k]q-code of minimum distance d can also be referred to as an [n, k, d]q-code.

Although codes are interesting combinatorial objects in themselves, to study them in the context of reliable
data transmission it is important to consider the encoding and decoding procedures.

Definition 2.4. Let C be an [n, k]q-code. An encoding function is an injective map

E : Fk
q ↪→ Fn

q

with Im(E) = C.

A Family of codes is a sequence of codes of increasing length. Because we often do not know beforehand
the length of the code we will need, it will be convenient and elegant to construct families in which all codes
have a set of desired properties. Furthermore, we will be interested in asymptotic properties of codes, which
require us to work with families.

Definition 2.5. A family of codes over Fq is a sequence {Ci}i∈N∗ , where Ci is an [ni, ki, di]q code, and

lim
i→∞

ni = ∞.

The rate R and relative distance δ of the family are defined as

R = lim
i→∞

ki

ni
and δ = lim

i→∞
di

ni
,

if these limits exist (and are said to be undefined otherwise).
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2.3 The Gilbert-Varshamov Bound

The rate and minimum distance are fundamental parameters of a code. In the context of data transmission it is
desirable to have both large minimum distance and large rate. A big minimum distance often means that more
corruption in the transmission can be overcome, whereas a code of larger rate will require less redundant bits
and therefore less bandwidth in the transmission. However these two parameters pull against each other, in
the sense that increasing one of them tends to decrease the other one. This leads to the natural question of
finding the best possible trade-off between the two.

One of the fundamental problems of coding theory is to compute the following function:

Aq(n, d) = max
{
k
∣∣ there exists an [n, k, d]q-code

}
. (2.1)

This is a difficult problem, and for each field size q, the values of Aq(n, d) are known only for small n and d.
There are however many upper and lower bounds on Aq(n, d) (see for example chapter 5 of [89]).

Another major question in coding theory concerns the asymptotic version of this problem, namely determining
for which pairs R, δ ∈ [0, 1] there exist families of codes of rate R and relative distance δ. Formally we define
an asymptotic version of (2.1)

αq(δ) = lim sup
n→∞

Aq(n, �nδ	)
n

, (2.2)

and are concerned with evaluating this function. αq(δ) is not known for any values of δ other than 0 and 1, but
again there are many upper and lower bounds. In particular, the Gilbert-Varshamov bound described below
will be important to us.

We will need the following function:

Definition 2.6. The q-ary entropy function hq : [0, q−1
q ]→ [0, 1] defined as

hq(x) =

{
0 if x = 0

−x logq

(
x

q−1

)
− (1− x

)
logq

(
1− x

)
if 0 < x ≤ q−1

q .

Theorem 2.7. The asymptotic Gilbert-Varshamov bound.
For any δ < q−1

q , we have
αq(δ) ≥ 1− hq(δ). (2.3)

Proof: This is a standard result. See for example [89], Theorem 5.1.9.

Notice that this is equivalent to saying that given a field Fq, for any δ < q−1
q and R < 1− h(δ) there exists a

family of codes with rate R and relative distance ≥ δ.

In the next chapter we will be interested in the bound (2.3) of Theorem 2.7 for the binary case (q = 2). Al-
though its proof is very simple, it has been conjectured that this bound is tight for q = 2. Perhaps surprisingly,
almost all families of binary codes approach this bound asymptotically. It is however an open problem to find
explicit constructions that do so.
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Chapter 3

Repeat-Accumulate Codes that Approach
the Gilbert-Varshamov Bound

3.1 Introduction

Graph based codes have attracted a lot of attention in recent years. For the most part, their renaissance has
been due to the fact that they allow for fast encoding and decoding algorithms with which suitably designed
codes approach the capacity of a given memoryless symmetric channel [48] [75] [35] [58] [21] [46] [62].

A different line of research has concentrated on the weight distribution of graph based codes (see, e.g., [42]).
Mostly, these results are used to obtain bounds on the performance of the Maximum-Likelihood decoder for
the codes in question. In this chapter, we study a special class of graph based codes and show that they contain
sequences which approach the Gilbert-Varshamov (GV) bound. This bound says that for any δ < 1/2 and
any R < 1 − h(δ), there is a family of codes with relative distance ≥ δ and rate R (where h is the binary
entropy function).

The codes that we concentrate on are the Repeat-Accumulate Codes [22]. These have generator matrices of
the form G = M · A, where M is a matrix in which the columns are constructed independently at random
to have approximately the same weight W , and A is the accumulator matrix, i.e., the upper triangular matrix
having ones on and above the main diagonal. We will show, using a probabilistic argument, that there exist
codes from this class that approach the Gilbert-Varshamov bound, if W is not too small. More precisely, if n
and k denote the block length and the dimension of the code respectively, then we show that for any y > 0,
if W = θ

(
ky
)

then for any δ < nh−1(1 − R) the probability that a code chosen from this ensemble has
minimum distance ≤ nδ converges to zero as n tends to infinity.

One of the applications of this result is that there are codes that approach the Gilbert-Varshamov bound and
have fast encoding algorithms. This result in itself is not new, (see, e.g., Section 11.1 of [89]) but the derivation
is interesting and the fact that the codes are Repeat-Accumulate codes with a simple combinatorial structure
may suggest that there are asymptotically very good explicit Repeat-Accumulate codes.

After establishing some background we describe the construction and show that the corresponding codes
approach the GV-bound with high probability. This is essentially done in two parts. We first obtain an
expression for the probability that δ < nh−1(1−R), and then show that this expression converges to zero as
n tends to infinity. The second part is unfortunately rather technical, but can be broken up into different cases
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which we treat separately.

3.2 Background

3.2.1 Ensembles of Codes

This chapter deals with codes constructed using a random component, so we start by formalizing this concept.
An ensemble E of codes is a finite set of codes with a probability distribution assigning non-zero probabilities
to the codes. Choosing a code from E is equivalent to sampling from this distribution. We also suppose that
all codes in a given ensemble have the same length (called the length of the ensemble). When we refer to the
probability that an ensemble E has a certain property, we mean the probability that a code sampled from E

has this property. So, for example,
Pr
[
E has rate ≥ R

]
refers to the probability that a code sampled from E has rate at least R. Likewise if we say that the ensemble
E has a certain property we mean that all codes in E have this property.

Recall that a family of codes is a sequence C1,C2, . . ., where Ci is an [ni, ki, di]q code, and

lim
i→∞

ni = ∞.

The rate R and relative distance δ of the family are defined as

R = lim
i→∞

ki

ni
, and δ = lim

i→∞
di

ni
,

if these limits exist (and are undefined otherwise).

We can also have families of ensembles E1, E2, . . ., where Ei has length ni and

lim
i→∞

ni = ∞.

The family is said to have a certain property P with high probability if

lim
i→∞

Pr

[
Ei has property P

]
= 1.

3.2.2 Standard Bounds for the Binomial Function

We start by recalling the definition of the binary entropy function:

Definition 3.1. The binary entropy function h : [0, 1
2 ] → [0, 1] is defined as

h(x) =

{
0 if x = 0
−x · log2(x)− (1− x) · log2(1− x) otherwise.
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Unless specified otherwise, all logarithms in this chapter will have base 2, so log(x) = log2(x). The following
standard results will be used throughout the chapter:

Theorem 3.2. Let h denote the binary entropy function. For any n ∈ N and λ ∈ R with 0 ≤ λ ≤ 1
2 , we have:

�λn�∑
i=0

(
n

i

)
≤ 2nh(λ), (3.1)

and

lim
n→∞

log
(∑λn

i=0

(n
i

))
n

= h(λ). (3.2)

Proof: See [89], Theorem 1.4.5.

When a, b ∈ R≥0, we will use the following notational convention:

b∑
i=a

f(i) =

�b�∑
i=�a	

f(i).

3.3 Random Codes and the Gilbert-Varshamov Bound

Uniformly random binary linear codes are produced by picking the entries of a k × n generator matrix uni-
formly at random. More formally, for any n ∈ N∗ and 0 < R < 1, we call Crand(n,R) the ensemble of
uniformly random binary linear codes of length n and of design rate R. The procedure of sampling from this
ensemble can be described by the following algorithm:

Algorithm: UNIFORM-RANDOM-LINEAR(n,R)
1: Set k ← �nR�
2: Choose a matrix G uniformly at random from Fk×n

2 .
3: Let C← {u ·G | u ∈ Fk

2} be the code whose generator matrix is G.
4: return C.

Notice that this is equivalent to picking each entry of G independently and uniformly from F2. A code in
Crand(n,R) will have length n, but its rate will not necessarily be R (for example G could be the zero matrix
with probability 2−kn). R is referred to as the design rate of the ensemble.

When we speak of “random codes” without further specification we actually mean “uniformly random codes”.
We will sometimes abuse notation by referring to the family of ensembles{

Crand(n,R)
}

n∈N∗

simply as Crand(n,R).

We recall the asymptotic Gilbert-Varshamov bound for binary codes:
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Theorem 3.3. The asymptotic Gilbert-Varshamov (GV) bound.
For any δ < 1

2 and R < 1− h(δ), there exists a family of binary codes with rate R and relative distance ≥ δ.

Notice that this is not saying we can find families with (δ,R) on the R = 1−h(δ) curve, but arbitrarily close
to it. It turns out that random binary codes (the family of ensembles {Crand(n,R)}n∈N∗ ) approach this bound
with high probability:

Theorem 3.4. For any δ < 1
2 and R < 1 − h(δ), if k = �nR� then Crand(n,R) is an [n, k,≥ nδ]-code with

high probability.

Proof: Let C be a code sampled from Crand(n,R), and let dmin be the minimum distance of C. We will show
that the probability that there is a non-zero codeword in the closed ball B(0, nδ) converges to zero as n gets
large. This will imply first of all that dmin ≥ nδ (with high probability), and secondly that the kernel of the
generator matrix G of C consists only of the zero vector, and therefore that G has full rank, which means that
C has dimension k (with high probability). Let

ε1 = 1− h(δ) −R.

Since R < 1− h(δ), we have ε1 > 0. Now the volume of B(0, nδ) is

Vol(nδ, n) =

�nδ�∑
i=0

(
n

i

)
.

From (3.1) of Theorem 3.2, we have

Vol(nδ, n) ≤ 2n·h
( �nδ�

n

)
≤ 2n·h(δ).

For a fixed non-zero message vector u ∈ Fk
2, the corresponding codeword c = uG is uniformly distributed

over Fn
2 . So the probability that c is in B(0, nδ) is

P = Pr

[
c ∈ B(0, nδ)

]
=

Vol(nδ, n)

2n
≤ 2n·(h(δ)−1).

Recall that k was defined as k = �nR�. Now let ε2 = k − nR, so that 0 ≤ ε2 < 1. We have k = nR + ε2.
By making n large enough we can ensure that ε2

n is as small as we like. In particular there is an N for which

n ≥ N =⇒ ε2

n
≤ ε1

2
. (3.3)
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Since there are 2k message vectors, by the union bound we can deduce that if n ≥ N then

Pr

[
∃c ∈ C : c �= 0 and c ∈ B(0, nδ)

]
≤ 2k · P

≤ 2k · 2n·(h(δ)−1)

= 2nR+ε2 · 2n·(h(δ)−1)

= 2n·(R+h(δ)+ε2/n−1)

≤ 2n·(R+h(δ)+ε1/2−1) (using (3.3))

= 2−
ε1
2
·n (since ε1 = 1− h(δ) −R).

We can therefore deduce that with high probability, B(0, nδ) does not contain a non-zero codeword.

We see in this proof of Theorem 3.4 that Crand(n,R) approaches the GV bound with a probability that con-
verges to 1 exponentially fast as n tends to infinity.

3.4 RA Codes that Approach the GV Bound

3.4.1 Code Construction

Our idea is to construct a code in which the distances between successive columns of the k×n generator matrix
G are approximately the same. We construct each column of G by taking the previous column, picking W
components uniformly at random with repetition from {1, . . . , k}, and each time flipping the corresponding
bit. Notice that the distance between successive columns could be less than W if a component got picked
more than once (though this happens with very low probability). Ensuring that the distance is exactly W
would require the flipped components to be picked without repetition, which makes the analysis substantially
more complicated.

We will show instead that picking them with repetition suffices to obtain families that approach the GV-bound.
Indeed, asymptotically the probability of getting any repetitions converges to zero. We start by expressing this
construction as a Repeat-Accumulate (RA) code.

The accumulator matrix is a square matrix with ones on and above the diagonal, and zeros everywhere else:

Definition 3.5. The n× n accumulator matrix An is defined as

(
An

)
ij

=

{
1 if i ≤ j
0 otherwise

(3.4)

When the dimensions are clear from the context we will write A instead of An.

Definition 3.6. For any n ∈ N∗, 0 < y < 1 and 0 < R < 1, we call CRA(n,R, y) the ensemble whose
sampling procedure is the following:
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Algorithm: GOOD-RA(n,R, y)
1: Initialize a k × n matrix M to the all zero matrix
2: Set k ← �nR�
3: for j = 1, . . . , n do
4: for a = 1, . . . , �ky	 do
5: pick i ∈ {1, . . . , k} uniformly at random
6: Set Mij ←Mij XOR 1
7: end for
8: end for
9: Let G← M ·An

10: Let C← {u ·G | u ∈ Fk
2} be the code whose generator matrix is G.

11: return C.

Informally, we construct a random matrix M as follows: each column is constructed independently by picking
�ky	 entries from {1, . . . , k} uniformly at random with repetition (and k = �nR�). Each component picked
an even number of times is set to 0, each component picked an odd number of times is set to 1. This matrix
M is then multiplied by the accumulator matrix to obtain the generator matrix of our code.

Note that for i = 2, . . . , n, column i of M is the difference between columns i − 1 and i of G, and so the
weights of the columns of M represent the distances between successive columns of G.

The expected number of ones in M is at most n · ky = O(n1+y) (assuming the rate k/n is constant). So
multiplication by M can be done in sub-quadratic time. If u ∈ Fk

2 is a message vector, the encoding process
(i.e., computing the codeword c = u ·G) can be decomposed into two stages:

1. Compute v = u ·M . This requires O(n1+y) operations.

2. Compute c = v · A. This requires O(n) operations.

So the whole encoding process is sub-quadratic O(n1+y).

As above, we will abuse notation by referring to the family of ensembles{
CRA(n,R, y)

}
n∈N∗

simply as CRA(n,R, y).

Our aim is to show that CRA(n,R, y) approaches the asymptotic Gilbert-Varshamov bound. More formally
we want to show that for any δ < 1

2 and R < 1 − h(δ), a code chosen from CRA(n,R, y) will be an
[n, nR,≥ nδ]-code with high probability (with a probability that converges to 1 as n tends to infinity).

3.4.2 Input/Output Weight Distribution

Our goal in this section is to get an expression upper bounding the probability

Pr

[
dmin
(
CRA(n,R, y)

) ≤ nδ

]
(3.5)
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as a function of n,R, y and δ (see Theorem 3.14). We will then use this in the next section to show that when
R < 1 − h(δ) this probability will converge to zero as n tends to infinity. Our approach to obtaining this
upper bound is to compute the Input/Output weight distribution of the generator matrix of CRA(n,R, y).

Suppose we have values n ∈ N∗, 0 < R < 1 and 0 < y < 1. Set k = �nR�. We consider the following
experiment:

1. Sample a code (along with its k × n generator matrix G = MA) from CRA(n,R, y).

2. Sample a message vector u uniformly at random from Fk
2 .

3. Compute v = uM .

4. Compute c = vA (so c = uMA = uG is the encoding of u).

To each u ∈ Fk
2 there corresponds a distribution Dv on v. We now make two observations. Firstly, the

distribution is the same for all u’s of a given weight, i.e., if wgt(u) = wgt(u′) then Du = Du′ . Secondly,
for a fixed u ∈ Fk

2 the probabilities are the same for two v’s of a given weight (since each component of v is
independent of the others), so if wgt(v) = wgt(v′) then PrDu(v) = PrDu(v′).

Definition 3.7. We define the k × n matrix M as follows:

Mw� = Pr

[
wgt(uM) = 	

∣∣∣∣ wgt(u) = w

]
. (3.6)

Notice that the probability in (3.6) involves two different sources of randomness: On the one hand the random
construction of M (described in Definition 3.6), and on the other hand the choice of the message vector u
(picked uniformly at random).

Definition 3.8. We define the n× n matrix A as follows:

A�d = Pr

[
wgt(vA) = d

∣∣∣∣ wgt(v) = 	

]
. (3.7)

Because the matrix A is not random, the probability in (3.7) has a single source of randomness, namely the
choice of v. We call M and A the input/output weight distributions (IOWD) of the matrices M and A.

Lemma 3.9. Let C be a code sampled from CRA(n,R, y), and let k = �nR�. Then

Pr

[
dmin(C) ≤ nδ

]
≤

nδ∑
d=1

k∑
w=1

(
k

w

)
·

n∑
�=1

Mw� ·A�d. (3.8)

Proof: If we let G be the generator matrix of C, then G is a random matrix whose IOWD is the k × n matrix
B defined as

Bwd = Pr

[
wgt(uG) = d

∣∣∣∣ wgt(u) = w

]
.

As in (3.6), there are two sources of randomness for this probability: the construction of G (sampling from
the ensemble), and the uniform choice of u. For the rest of this proof we suppose that we have a vector u
chosen uniformly at random from Fk

2, and we let

v = uM, and c = vA, (3.9)
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so that c = uG is the codeword obtained from u. We have:

Bwd =

n∑
�=0

Pr

[
wgt(v) = 	

∣∣∣∣ wgt(u) = w

]
· Pr

[
wgt(c) = d

∣∣∣∣ wgt(v) = 	

]
,

which using Definitions 3.7 and 3.8 leads to

Bwd =
n∑

�=0

Mw� ·A�d.

Let Wd be the probability that a codeword picked uniformly at random has weight d. This is equal to the
probability that a message vector u picked uniformly from Fk

2 gets encoded to a codeword of weight d, which
gives us

Wd =

k∑
w=0

(k
w

)
2k

· Bwd =
1

2k

k∑
w=0

(
k

w

) n∑
�=0

Mw� · A�d. (3.10)

So since there are at most 2k codewords in C, by the union bound the probability that there exists a codeword
of weight d is at most 2k ·Wd:

Pr

[
∃c ∈ C : wgt(c) = d

]
≤

k∑
w=0

(
k

w

) n∑
�=0

Mw� · A�d. (3.11)

Since

Pr

[
dmin(C) ≤ nδ

]
≤

nδ∑
d=1

P

[
∃c ∈ C : wgt(c) = d

]
, (3.12)

we obtain

Pr

[
dmin(C) ≤ nδ

]
≤

nδ∑
d=1

k∑
w=0

(
k

w

)
·

n∑
�=0

Mw� ·A�d. (3.13)

Because all the terms are non-negative, this inequality still holds if we start the sums at w = 1 and 	 = 1:

Pr

[
dmin(C) ≤ nδ

]
≤

nδ∑
d=1

k∑
w=1

(
k

w

)
·

n∑
�=1

Mw� ·A�d, (3.14)

which is the required result.

So to get the bound on (3.5) we are looking for, we need expressions for Mw� and A�d. The IOWD of the
accumulator matrix is given in [22] without proof, so we include a proof below.

Theorem 3.10.

A�d =

( n−d
��/2�

)( d−1
��/2	−1

)
(n

�

) . (3.15)

Proof: We would like to count how many vectors v ∈ Fn
2 of weight 	 have the property that c = v · A has

weight d. Let s1 < . . . < s� ∈ {1, . . . , n} be the 	 indices such that vsi = 1. For convenience we also define
s0 = 1. For all j = 0, . . . , 	− 1 we define Sj = {sj , . . . , sj+1 − 1}, and S� = {s�, . . . , n}. Notice that S0 is
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the only set that may be empty, all other sets will contain at least one element. S0, . . . , S� form a partition of
{1, . . . , n}. We call Sj an even set when j is even (including j = 0), and an odd set otherwise.

If 	 is even then there are 	/2 + 1 even sets, and 	/2 odd sets. If 	 is odd, there are (	 + 1)/2 even sets, and
(	 + 1)/2 odd sets. So in both cases there are �	/2	+ 1 even sets, and �	/2� odd sets.

By looking closely at the accumulator matrix, we can see that:

ci =

{
0 if i ∈ Sj where Sj is an even set
1 if i ∈ Sj where Sj is an odd set.

Observe that by deciding on the size of each set Sj we are uniquely determining the values s1, . . . , s�, and
therefore the vector v. So to count how many vectors v lead to c having weight d we need to count how many
ways we can construct S0, . . . , S� such that the odd sets contain a total of d elements, and the even sets a total
of (n − d) elements.

Our problem is now reduced to one of balls and bins: we need to place d ones (balls) into �	/2� odd sets
(bins), and (n− d) zeros into �	/2	+ 1 even sets. We recall that in general for a ≥ b there are

(a−1
b−1

)
ways of

placing a balls into b bins in such a way that no bin is empty (we write out the a elements one after the other
and pick (b− 1) dividing lines in between two elements).

The number of ways of putting the (n − d) zeros into the �	/2	 + 1 even sets is
( n−d
��/2�

)
(we have (n − d)

instead of (n− d− 1) because we also allow S0 to be empty). Likewise, the number of ways of putting the d
ones into the �	/2� odd sets is

(
d−1

��/2	−1

)
.

So the total number of ways of placing the ones and zeros into these sets is(
n− d

�	/2	
)
·
(

d− 1

�	/2� − 1

)
, (3.16)

and this is therefore the number of vectors v of weight 	 that lead to a codeword c of weight d. Since the total
number of vectors v of weight 	 is

(n
�

)
, the result follows.

Theorem 3.11.

Mw� =

(
n

	

)
· (Pw

)� ·(1− Pw

)n−�

, (3.17)

where Pw denotes the probability that a fixed entry of v is equal to 1, given that the weight of u is w:

Pw =
1

2
− 1

2
·
(

1− 2w

k

)�ky�
, where k = �nR� . (3.18)

Proof: Let u ∈ Fk
2 be a message vector of weight w. First note that a fixed entry vi of v depends only on

u and column i of M , which is generated independently of all other columns. vi = 0 if and only if among
the �ky	 components chosen from {1, . . . , k} to construct column i, an even number are in supp(u). So the
distribution on the possible values of v depends on wgt(u), but not on u itself (all u’s of weight w lead to the
same distribution).

Each time a component is chosen, it will hit supp(u) with probability w
k . So
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Pr

[
vi = 0

]
=
∑�ky�/2

i=0

(�ky�
2i

) · (w
k

)2i · (1− w
k

)�ky�−2i

= 1
2

[(
(1− w

k ) + w
k

)�ky�
+

(
(1− w

k )− w
k

)�ky�
]

= 1
2 + 1

2

(
1− 2w

k

)�ky�
.

We therefore see from the definition of Pw in (3.18) that

Pw = 1− Pr

[
vi = 0

]
= Pr

[
vi = 1

]
. (3.19)

Since the components vi are independent, constructing v = (v1, . . . , vn) consists of n Bernoulli trials, where
vi = 1 with probability Pw, so (3.17) follows.

Now the binomial function
(
a
b

)
is a map (·

·
)

: N× N → N.

We extend it to be defined over all non negative real numbers:(·
·
)

: R≥0 × R≥0 → R≥0.

This is done using the gamma function (which is an extension of the factorial function to real numbers), the
details are given in Appendix A. This extension has all the expected properties, in particular the following
bound on

(a
b

)
still holds:

Proposition 3.12. For any a, b ∈ R with 1 ≤ b ≤ a we have(
a

b

)
≤ 2a·h(b/a).

Proof: See Appendix A.

We also have the following proposition:

Proposition 3.13. For any n, 	 ∈ N∗, 0 < δ < 1
2 with 1 ≤ 	 ≤ 2nδ, letting δ = 1− δ we have

nδ∑
d=1

(
n− d

�	/2	
)(

d− 1

�	/2� − 1

)
≤ nδ ·

(
nδ

	/2

)(
nδ

	/2

)
. (3.20)

Proof: See Appendix A.

Throughout we will set δ = 1− δ. We are now ready to compute the bound we set out to find at the beginning
of this section:
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Theorem 3.14. If C is a code sampled from the ensemble CRA(n,R, y), then

Pr

[
dmin(C) ≤ nδ

]
≤ nδ ·

nR∑
w=1

2nδ∑
�=1

s(n,w)︷ ︸︸ ︷(
nR

w

)
·

f(n,�,w)︷ ︸︸ ︷
P �

w ·
(
1− Pw

)n−� ·

g(n,�)︷ ︸︸ ︷(
nδ

	/2

)(
nδ

	/2

)
, (3.21)

where

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)�(nR)y�
. (3.22)

Proof: Let dmin = dmin(C). We saw in Lemma 3.9 that

Pr

[
dmin ≤ nδ

]
≤

nδ∑
d=1

nR∑
w=1

(
nR

w

)
·

n∑
�=1

Mw� · A�d.

Now plugging in the expressions we computed in Theorems 3.10 and 3.11 for A�d and Mw� (and moving the
sums around), we obtain

Pr

[
dmin ≤ nδ

]
≤ nδ ·

nR∑
w=1

n∑
�=1

(
nR

w

)
· P �

w ·
(
1− Pw

)n−� ·
nδ∑

d=1

(
n− d

�	/2	
)(

d− 1

�	/2� − 1

)
, (3.23)

where Pw is defined in (3.18). Therefore applying Proposition 3.13 leads to:

Pr

[
dmin ≤ nδ

]
≤ nδ ·

nR∑
w=1

n∑
�=1

(
nR

w

)
· P �

w ·
(
1− Pw

)n−� ·
(

nδ

	/2

)(
nδ

	/2

)
.

Finally notice that since
	

2
> nδ =⇒

(
nδ

	/2

)
= 0,

in our sum we only need to consider values of 	 up to 2nδ, and therefore the required result (3.21) follows.

3.4.3 Proof Outline

Our aim is to show that CRA(n,R, y) approaches the Gilbert-Varshamov bound as n tends to infinity. So if
we let h denote the binary entropy function, then we want to show that when R < 1 − h(δ), the probability
in (3.21) tends to 0 as n tends to infinity. Indeed, in this case (3.21) is an upper bound on the probability that
the GV-bound is not achieved.

Let

m(n, 	, w) =

s(n,w)︷ ︸︸ ︷(
nR

w

)
·

f(n,�,w)︷ ︸︸ ︷
P �

w ·
(
1− Pw

)n−� ·

g(n,�)︷ ︸︸ ︷(
nδ

	/2

)(
nδ

	/2

)
be the term inside the double sum in (3.21). Our goal is to prove the following theorem:
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Theorem 3.15. Suppose we are given 0 < R, 0 < y < 1 and 0 < δ < 1
2 with R < 1− h(δ). Then there are

N, τ > 0 (depending only on R, δ and y) for which

n ≥ N =⇒ ∀	 = 1, . . . , �2nδ	 ,∀w = 1, . . . , �nR	 : m(n, 	, w) ≤ exp
(− τ · ny

)
. (3.24)

From this theorem we deduce that each term m(n, 	, w) in the double sum (3.21) is superpolynomially small
in n, and since there is only a polynomial number of terms, the whole sum will converge to 0 as n tends to
infinity.

Outline of the Proof: The proof of Theorem 3.15 below is very long and technical. m(n, 	, w) is a compli-
cated expression, and which ones of its terms dominate for large n depends on the sizes of 	 and w relative to
n. To measure these we define

α =
	

n
, γ =

w

n1−y
. (3.25)

Notice that for the values of 	 and w that interest us we have α ∈ [ 1
n , 2δ] and γ ∈ [ 1

n1−y , R · ny]. We will

show that there are constants Â, Γ̂� and Γ̂u (depending only on R, δ and y) that enable us to divide the proof
into four cases:

• Case 1: γ ≥ Γ̂u, and any α. For each n large enough this will cover all pairs (	, w) with 	 = 1, . . . , �2δn	
and w =

⌈
Γ̂u · n1−y

⌉
, . . . , �nR	.

• Case 2: γ ≤ Γ̂�, α ≤ Â. For each n large enough this will cover all pairs (	, w) with 	 = 1, . . . ,
⌊
Ân
⌋

and w = 1, . . . ,
⌊
Γ̂� · n1−y

⌋
.

• Case 3: γ ≤ Γ̂�, α ≥ Â. For each n large enough this will cover all pairs (	, w) with 	 =
⌈
Ân
⌉

, . . . , �2δn	
and w = 1, . . . ,

⌊
Γ̂� · n1−y

⌋
.

• Case 4: Γ̂� ≤ γ ≤ Γ̂u, and any α. For each n large enough this will cover all pairs (	, w) with

	 = 1, . . . , �2δn	 and w =
⌈
Γ̂u · n1−y

⌉
, . . . ,

⌊
Γ̂� · n1−y

⌋
.

The following diagram illustrates the splitting of the problem into our four cases:

0

case 1case 4

case 2

case 3

γRnyΓ̂uΓ̂�

α

2δ

Â

0
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3.4.4 Case 1: Large γ, Any α.

Outline: Recall that we view the encoding as a two stage process. Given a codeword u ∈ Fk
2 we first

compute v = u · M , and then the codeword c = v · A. The idea in Case 1 is that as γ gets large, Pw =
1
2 − 1

2 ·
(
1 − 2w

nR

)(nR)y

will get close to 1
2 . Recall that Pw represents the probability that a fixed entry vi of

v is equal to 1, see (3.19). So Pw being close to 1
2 means that v is close to being a (uniform) random vector.

Since the codeword can be expressed as c = v ·A and A is bijective, this means that c is also close to being a
(uniform) random vector. So as γ gets large our code resembles a uniform random code, we therefore proceed
in a similar way to the proof of Theorem 3.4.

The next lemma formalizes the idea that Pw gets close to 1
2 when γ gets large.

Lemma 3.16. For any ε1 > 0, there are N1,Γ1 with

N ≥ N1, γ ≥ Γ1 =⇒
∣∣∣∣Pw − 1

2

∣∣∣∣ ≤ ε1. (3.26)

Proof: See Appendix C.

Lemma 3.17. For any ε5 > 0, there are N5,Γ5 with

n ≥ N5, γ ≥ Γ5 =⇒ (
Pw

)� · (1− Pw

)n−� ≤ 2−n(1−ε5).

Proof: From Lemma 3.16 we see that for any ε1, if n and γ are large enough then

(
Pw

)� · (1− Pw

)n−� ≤
(

1

2
+ ε1

)n

. (3.27)

So given ε5, by choosing ε1 so that 1
2 + ε1 = 2ε5−1, the right hand side of (3.27) becomes 2−n(1−ε5) and so

the result follows.

Recall that δ is defined as δ = 1− δ.

Lemma 3.18. ∀n ∈ N∗, δ < 1
2 , 	 = 0, . . . , �2nδ	 :

δ · h
(

	

2nδ

)
+ δ · h

(
	

2nδ

)
≤ h(δ). (3.28)

Proof: First note that the derivative of the binary entropy function h is

d

dx
h(x) = log2

(1

x
− 1
)
. (3.29)

Let
q(x) = δ · h

(x

δ

)
+ δ · h

(x

δ

)
. (3.30)
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We want to upper bound the function q(x) over the range 0 ≤ x ≤ δ (identifying x with �
2n ). We have

d

dx
q(x) = log2

( δ

x
− 1
)

+ log2

( δ

x
− 1
)

= log2

(δδ

x2
− δ + δ

x
+ 1
)
, (3.31)

so that
d

dx
q(x) = 0 ⇐⇒ δδ

x2
− 1

x
+ 1 = 1 ⇐⇒ x = δδ. (3.32)

It can then easily be checked that x = δδ is a maximum for q(x). Therefore

q(x) ≤ q(δδ) = δ · h(δ) + δ · h(δ) = h(δ), (3.33)

where the last equality follows from the fact that h(δ) = h(δ).

Let us summarize the situation so far. We want to show that for any R and δ < 1 − h(R), the following
expression (see (3.21))

nδ ·
nR∑

w=1

n∑
�=1

s(n,w)︷ ︸︸ ︷(
nR

w

)
·

f(n,�,w)︷ ︸︸ ︷
P �

w ·
(
1− Pw

)n−� ·

g(n,�)︷ ︸︸ ︷(
nδ

	/2

)(
nδ

	/2

)
,

tends to zero as n tends to infinity. Our approach is to show that each term inside the double sum is super-
polynomially small in n, and so since there are only a polynomial number of terms, the whole sum will go to
zero as n tends to infinity. We defined

m(n, 	, w) = s(n,w) · f(n, 	, w) · g(n, 	), (3.34)

to be the expression inside the double sum.

Proposition 3.19. There are N6,Γ6, τ6 > 0 with

n ≥ N6, γ ≥ Γ6 =⇒ m(n, 	, w) ≤ exp(−τ6 · ny). (3.35)

Proof: Using the inequality
(a

b

) ≤ 2a·h(b/a) (see Proposition 3.12), we obtain:

s(n,w) =

(
nR

w

)
≤ 2nR·h( w

nR
), (3.36)

and by Lemma 3.18

g(n, 	) =

(
nδ

	/2

)(
nδ

	/2

)
≤ 2

n
(
δ·h( �

2nδ
)+δ·h( �

2nδ
)
)
≤ 2n·h(δ). (3.37)

We also know from Lemma 3.17 that for any ε5 > 0, there are N5,Γ5 with

n ≥ N5, γ ≥ Γ5 =⇒ f(n, 	, w) ≤ 2−n(1−ε5). (3.38)

Since m(n, 	, w) is the product of s(n,w), f(n, 	, w) and g(n, 	) (see (3.34)), combining (3.36), (3.37) and
(3.38), we see that for any ε5 > 0, there are N5,Γ5 with

n ≥ N5, γ ≥ Γ5 =⇒ m(n, 	, w) ≤ 2nR·h( w
nR

)−n(1−ε5)+n·h(δ) ≤ 2−n
[
1−h(δ)−R−ε5

]
. (3.39)
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Setting ε5 = 1
2 ·
(
1− h(δ) −R

)
, we see that

m(n, 	, w) ≤ exp
(− τ6 · n

)
,

where τ6 = 1
2 ·
(
1− h(δ) −R

) · ln(2). Furthermore since R < 1− h(δ), we have τ6 > 0.

It is clear that −τ6 · n ≤ −τ6 · ny (since τ6 > 0 and 0 < y < 1). So we have actually shown a stronger
statement than the required result. We set N6 = N5 and Γ6 = Γ5 to complete the proof.

The value of Γ6 is what we will use for our constant Γ̂u:

Definition 3.20. We set Γ̂u to be some arbitrary value of Γ6 that satisfies (3.35) (such a value exists by
Proposition 3.19).

It is important to note that Γ̂u is a constant, in the sense that it depends only on R, δ and y (which we have
fixed throughout). In particular it does not depend on n. Throughout, a value x written as x̂ indicates that it
depends only on R, δ and y. All variables written this way depend only on R, δ and y, but the converse will
not be true.

This result of Case 1 is summarized in the following theorem:

Theorem 3.21. Suppose we are given 0 < R < 1 and 0 < δ < 1
2 with R < 1− h(δ). Let Γ̂u be defined as in

Definition 3.20. Then there are N6, τ6 > 0 (depending only on R, δ and y) for which

n ≥ N6 =⇒ ∀	 = 1, . . . , �2nδ	 , ∀w =
⌈
Γ̂u · n1−y

⌉
, . . . , �nR	 : m(n, 	, w) ≤ exp

(− τ6 · ny
)
.

3.4.5 Case 2: Small α, Small γ.

We recall once more the definitions of α and γ:

α =
	

n
, γ =

w

n1−y
. (3.40)

Outline: For this case we will show that there exist constants A,Γ, τ > 0 (depending only on R, δ and y) for
which for all n large enough the statement

m(n, 	, w) ≤ exp
(− τ · ny

)
holds for all 	 = 1, . . . , �A · n	 and w = 1, . . . ,

⌊
Γ · n1−y

⌋
(i.e. for all 	, w with α ≤ A and γ ≤ Γ).

We will make use of the following theorem:

Theorem 3.22. For any b, x with b ≥ 1 and 0 ≤ x ≤ 1 we have

1− x ≤
(
1− x

b

)b
. (3.41)
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Proof: See Appendix C.

We start with the following lemma:

Lemma 3.23. For all 0 < R < 1, n ∈ N∗, w = 0, . . . , nR, if nR ≥ 1 then

Pw ≤ w

(nR)1−y
. (3.42)

Proof: We start by recalling the definition of Pw (see (3.18)):

Pw =
1

2
− 1

2
·
(
1− 2w

nR

)(nR)y

=
1

2
·
(

1−
(
1− 2w/(nR)1−y

(nR)y

)(nR)y
)

.

Now setting

x =
2w

(nR)1−y
, b = (nR)y, (3.43)

from Theorem 3.22 we obtain

Pw =
1

2
·
(

1−
(
1− x

b

)b
)
≤ 1

2
·
(
1− (1− x)

)
=

w

(nR)1−y
, (3.44)

as required.

Lemma 3.24. For any a > 1, there is X > 0 with

0 < x ≤ X =⇒ e−x ≤ 1− x

a
.

Proof: The curve of e−x is convex and goes through the point (0, 1), where its derivative is −1. The line
1 − x

a also goes through (0, 1), and its derivative is − 1
a > −1. So it will intersect the curve of e−x at some

other point (x0, y0), with x0 > 0. We let X = x0.

Lemma 3.25. For any a > 1, there is Γa with

γ ≤ Γa =⇒ n ln(1− Pw) ≤ −1

a
· wny

R1−y
.

Proof: We first recall that γ is defined as

γ =
w

n1−y
, (3.45)

and

Pw =
1

2
− 1

2
·
(
1− 2w

nR

)(nR)y

≥ 1

2
− 1

2
· exp

( −2w

(nR)1−y

)
, (3.46)

since for any x ∈ R we have 1 + x ≤ exp(x). Suppose we have a fixed a > 1. Using Lemma 3.24 with
x = 2γ

R1−y (and recalling that R and y are fixed), we deduce that there is Γ > 0 for which

γ ≤ Γ =⇒ exp

(
− 2γ

R1−y

)
≤ 1− 1

a
· 2γ

R1−y
(3.47)
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We also know that ∀x ≤ 1 we have ln(1− x) ≤ −x, and so

γ ≤ Γ =⇒ n ln
(
1− Pw

) ≤ −nPw

≤ n
2

(
− 1 + exp

(
−2γ
R1−y

))
(using (3.46))

≤ n
2

(
− 1 + 1− 1

a · 2γ
R1−y

)
(using (3.47), since γ ≤ Γ)

= − 1
a · nyw

R1−y (using (3.45)).

Setting Γa = Γ then gives us the required result.

Definition 3.26. We define

â =

[
2
√

δδ +
3

4

(
1− 2

√
δδ
)]−1

. (3.48)

This choice for â will become clear later in the section. Notice that â depends only on δ. A straightforward
inspection shows that â > 1. Therefore applying Lemma 3.25 we obtain:

Corollary 3.27. Let â be defined as in (3.48). Then there is Γ̂a > 0 with

γ ≤ Γ̂a =⇒ n ln(1− Pw) ≤ −1

â
· wny

R1−y
. (3.49)

Definition 3.28. Let Γ̂a be a fixed value that satisfies (3.49).

Recall that we are trying to show that the expression

m(n, 	, w) = s(n,w) · f(n, 	, w) · g(n, 	)

from (3.21) is superpolynomially small in n. Setting m1(n, 	, w) = ln
(
m(n, 	, w)

)
, we will show that there

are constants N and τ > 0 for which n ≥ N implies that for all appropriate values of 	 and w we have:

m1(n, 	, w) ≤ −τ · ny. (3.50)

Definition 3.29. We define
s1(n,w) = ln

(
s(n,w)

)
.

f1(n, 	, w) = ln
(
f(n, 	, w)

)
.

g1(n, 	) = ln
(
g(n, 	)

)
.

Note that
m1(n, 	, w) = s1(n,w) + f1(n, 	, w) + g1(n, 	).

Propositions 3.30, 3.31 and 3.32, will provide upper bounds on s1(n,w), f1(n, 	, w) and g1(n, 	). We will
then use these to prove (3.50).
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Proposition 3.30. We can upper bound s1(n,w) in the following ways:

s1(n,w) ≤ −w ln

(
w

nR

)
− nR ln

(
1− w

nR

)
. (3.51)

s1(n,w) ≤ −w ·
ln
(

w
nR

)
− 1

ln(2)
. (3.52)

Proof:
• Using the inequality

(a
b

) ≤ 2a·h(b/a) we obtain:

s(n,w) =

(
nR

w

)
≤ 2nR·h

(
w

nR

)
= e−w ln

(
w

nR

)
+(w−nR) ln

(
1− w

nR

)
.

Note that 1− w
nR < 1, so w ln

(
1− w

nR

)
< 0. Since s1(n,w) = ln

(
s(n,w)

)
, (3.51) then follows.

• We have the following general bound on the binomial coefficients:(
a

b

)
≤
(a · e

b

)b
,

which directly leads to (3.52).

Proposition 3.31. Let â and Γ̂a be taken from Definitions 3.26 and 3.28. If γ ≤ Γ̂a and nR > 1 then

f1(n, 	, w) ≤ 	 ln

(
w

(nR)1−y

)
− wny

R1−y
· 1

â
− 	 ln

(
1− w

(nR)1−y

)
.

Proof: Recall from (3.14) that f(n, 	, w) is defined as

f(n, 	, w) =
(
Pw

)� · (1− Pw

)n−�
.

This means that
f1(n, 	, w) = 	 ln(Pw) + n ln(1− Pw)− 	 ln(1− Pw). (3.53)

Now Lemma 3.23 (which applies, since we are assuming that nR > 1) tells us that

Pw ≤ w

(nR)1−y
,

and Corollary 3.27 (which applies, since we are assuming that γ ≤ Γ̂a) tells us that

n ln(1− Pw) ≤ −1

â
· wny

R1−y
.

Combining these with (3.53) we deduce:

f1(n, 	, w) ≤ 	 ln

(
w

(nR)1−y

)
− wny

R1−y
· 1

â
− 	 ln

(
1− w

(nR)1−y

)
, (3.54)

as required.
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Proposition 3.32. We can upper bound g1(n, 	) in the following ways:

g1(n, 	) ≤ − �
2 ln

(
�

2nδ

)
− �

2 ln

(
�

2nδ

)

− nδ · ln (1− �
2nδ

) − nδ · ln (1− �
2nδ

)
.

(3.55)

g1(n, 	) ≤ �
2 ln

(
2nδ
� − 1

)
+ �

2 ln

(
2nδ
� − 1

)

− nδ · ln (1− �
2nδ

) − nδ · ln (1− �
2nδ

)
.

(3.56)

Proof: Recall the definition of g(n, 	) (see (3.14)):

g(n, 	) =

(
nδ

	/2

)
·
(

nδ

	/2

)
.

Again using the inequality
(a

b

) ≤ 2a·h(b/a) we obtain:

(nδ
�/2

) ≤ 2nδ·h
(

�
2nδ

)

≤ 2−
�
2

log2

(
�

2nδ

)
−( �

2
−nδ) log2

(
1− �

2nδ

)
,

and a similar bound for
(nδ
�/2

)
. Since g1(n, 	) = ln

(
g(n, 	)

)
, we obtain

g1(n, 	) ≤ − �
2 · ln

(
�

2nδ

)
− (nδ − �

2

) · ln(1− �
2nδ

)

− �
2 · ln

(
�

2nδ

)
− (nδ − �

2

) · ln(1− �
2nδ

)
.

(3.57)

• 1) Because ln
(
1− �

2nδ

)
< 0 and ln

(
1− �

2nδ

)
< 0, we can remove terms to obtain (3.55):

g1(n, 	) ≤ − 	

2
ln

(
	

2nδ

)
− nδ ln

(
1− 	

2nδ

)
− 	

2
ln

(
	

2nδ

)
− nδ ln

(
1− 	

2nδ

)
.

• 2) In general, for any x > 0 we have

− 	

2
· ln(x) +

	

2
· ln(1− x) =

	

2
· ln
(1− x

x

)
=

	

2
· ln
( 1

x
− 1
)
,

so applying this with x = �
2nδ and then x = �

2nδ
, (3.57) can be rewritten as (3.56).

We summarize the bounds obtained by the last three theorems in (3.58) below: Let â and Γ̂a be taken from

25



Definitions 3.26 and 3.28. If γ ≤ Γ̂a and n > 1
R then

s1(n,w) ≤

t1︷ ︸︸ ︷
−w ·

ln
(

w
nR

)
− 1

ln(2)
.

f1(n, 	, w) ≤

t2︷ ︸︸ ︷
	 ln

(
w

(nR)1−y

) t3︷ ︸︸ ︷
− wny

R1−y
· 1

â

t4︷ ︸︸ ︷
− 	 ln

(
1− w

(nR)1−y

)
.

g1(n, 	) ≤

t5︷ ︸︸ ︷
− 	

2
ln

(
	

2nδ

) t6︷ ︸︸ ︷
− 	

2
ln

(
	

2nδ

)

t7︷ ︸︸ ︷
− nδ · ln (1− 	

2nδ

) t8︷ ︸︸ ︷
− nδ · ln (1− 	

2nδ

)
.

(3.58)

Recall that
m1(n, 	, w) = s1(n,w) + f1(n, 	, w) + g1(n, 	).

So using these we obtain a bound on m1(n, 	, w) consisting in a sum of eight terms t1, . . . , t8. Let m2(n, 	, w)
be obtained by removing terms t1 and t4 from m1(n, 	, w):

m2(n, 	, w) = 	 · ln
(

w
(nR)1−y

)
− wny

R1−y · 1
â − �

2 · ln
(

�
2nδ

)
− �

2 · ln
(

�
2nδ

)

− nδ · ln (1− �
2nδ

) − nδ · ln (1− �
2nδ

)
.

(3.59)

Outline for the rest of Case 2: We will first show (Lemma 3.34) that for α, γ small enough, we have
m2(n, 	, w) = θ

( − wny
)
. We will then show (Lemma 3.35) that the remaining terms t1 and t4 are o(ny).

We then can deduce that m1(n, 	, w) = θ
(− wny

)
.

The following lemma will be useful:

Lemma 3.33. For all x, b ∈ R>0 we have

−x ln(bx) ≤ 1

be
.

Proof: See Appendix C.
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Lemma 3.34. Let â and Γ̂a be taken from Definitions 3.26 and 3.28. Then there are A7, τ7 > 0 with

α ≤ A7 =⇒ m2(n, 	, w) ≤ −τ7 · w · ny.

Proof: m2(m, 	,w) was defined in (3.59) as

m2(n, 	, w) = 	 ln

(
w

(nR)1−y

)
− wny

R1−y · 1
â − �

2 ln

(
�

2nδ

)
− �

2 ln

(
�

2nδ

)

− nδ ln

(
1− �

2nδ

)
− nδ ln

(
1− �

2nδ

)
.

(3.60)

First note that the third and fourth terms can be expressed as

− 	

2
· ln
(

	

2nδ

)
− 	

2
· ln
(

	

2nδ

)
= − 	

2
· ln
(

	2

4n2δδ

)
= −	 · ln

(
	

c1 · n
)

,

where we let c1 = 2
√

δδ. Since 0 < δ < 1
2 and δ = 1− δ (by definition), we have 0 < δδ < 1

4 , and therefore

0 < c1 < 1. (3.61)

Next, recalling that α = �
n , we can express the last two terms of (3.60) as

−nδ ln

(
1− �

2nδ

)
− nδ ln

(
1− �

2nδ

)
= − �δ

α ln

(
1− α

2δ

)
− �δ

α ln

(
1− α

2δ

)

= −	 ln

( β︷ ︸︸ ︷(
1− α

2δ

)δ/α · (1− α

2δ

)δ/α
)

.

(3.62)

Now, if we let β be defined as in (3.62) then

m2(m, 	,w) = 	 ln

(
w

(nR)1−y

)
− wny

R1−y · 1
â − 	 · ln

(
�

c1·n

)
− 	 ln

(
β
)

= −	 ln

(
(nR)1−y

w · �
c1·n · β

)
− wny

R1−y · 1
â

= ny ·
[
− �

ny ln

(
�

ny ·

b︷ ︸︸ ︷
R1−y

wc1
· β
)
− w

R1−y · 1
â

]
.

From Lemma 3.33 we know that for any x, b ∈ R>0 we have

−x ln(xb) ≤ 1

be
.
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Applying this with x = �
ny and b = R1−y

wc1
· β we obtain

m2(m, 	,w) = ny ·
[
− x ln(xb) − w

R1−y · 1
â

]

≤ ny ·
[

wc1
e·R1−y · 1

β − w
R1−y · 1

â

]

= ny ·
[

w
R1−y ·

(
c1
e · 1

β − 1
â

)]
.

(3.63)

Recall that β was defined as

β =

(
1− α

2δ

)δ/α

·
(

1− α

2δ

)δ/α

=

[ (
1− α

2δ

)2δ/α

·
(

1− α

2δ

)2δ/α ]1/2

.

In general we have

lim
x→0

(
1− x

)1/x
=

1

e
,

and so applying this to our case with x = α
2δ and then x = α

2δ
, we can deduce

lim
α→0

[ (
1− α

2δ

)2δ/α

·
(

1− α

2δ

)2δ/α ]1/2

=

[
1

e
· 1
e

]1/2

=
1

e
,

and so

lim
α→0

1

β
= e.

We can write this formally by saying that for any ε8 > 0 there is A8 > 0 for which

α ≤ A8 =⇒
∣∣∣∣ 1β − e

∣∣∣∣ ≤ ε8 =⇒ 1

β
≤ e + ε8. (3.64)

Going back to (3.63), we have

ny · w

R1−y
· c1

e
> 0, (3.65)

and therefore combining (3.65) and (3.64) we obtain

α ≤ A8 =⇒ ny · w

R1−y
· c1

e
· 1

β
≤ ny · w

R1−y
· c1

e
· (e + ε8

)
.

So using this with (3.63), we now have

α ≤ A8 =⇒ m2(n, 	, w) ≤ ny · w

R1−y
·
[
c1

e
· (e + ε8)− 1

â

]
. (3.66)

We now show that if ε8 is close enough to 0 and â close enough to 1, then the following term from (3.66)

c1

e
· (e + ε8)− 1

â
(3.67)
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is negative. Set

ε8 =
1

2
· e

c1
· (1− c1). (3.68)

Since c1 < 1 (see (3.61)), we have ε8 > 0. Next, recall (see Definition 3.26) that we had set the value of â to

â =

[
2
√

δδ +
3

4

(
1− 2

√
δδ
)]−1

=

[
c1 +

3

4

(
1− c1

)]−1

(3.69)

(and c1 = 2
√

δδ by definition). It now becomes clear why this value was chosen for â. Plugging (3.68) and
(3.69) into (3.67) we deduce that

c1
e · (e + ε8)− 1

â = c1
e ·
(

e + 1
2 · e

c1
· (1− c1)

)
−
(

c1 + 3
4

(
1− c1

))

= c1 + 1
2 · (1− c1) − c1 − 3

4

(
1− c1

)
= −1

4 · (1− c1)

< 0.

Therefore setting

τ7 = − 1

R1−y
·
[
c1

e
· (e + ε)− 1

a

]
,

we have τ7 > 0, and (3.66) leads to

α ≤ A8 =⇒ m2(n, 	, w) ≤ ny · w

R1−y
·
[
c1

e
· (e + ε8)− 1

a

]
= −τ7 · w · ny. (3.70)

Setting A7 = A8 gives us the required result.

Lemma 3.35. There are N9, A9,Γ9, τ9 > 0 with

n ≥ N9, α ≤ A9, γ ≤ Γ9 =⇒ m1(n, 	, w) ≤ −τ9 · ny. (3.71)

Proof: Recall that we had a bound on m1(n, 	, w) consisting of eight terms t1, . . . , t8, see (3.58). We then
chose six of these terms to make up m2(n, 	, w), see (3.59). In Lemma 3.34 we showed that there was some
τ7 > 0 for which

m2(n, 	, w) ≤ −τ7 · w · ny (3.72)

for α small enough. We fix τ7 so be some value that satisfies (3.72).

In this proof we will show that the two remaining terms of m1(n, 	, w) (namely t1 and t4) are dominated
by (3.72) as n gets large. More formally we will show that for each of these terms ti, given any ε there are
N,A,Γ for which

n ≥ N,α ≤ A, γ ≤ Γ =⇒ ti
τ7 · w · ny

≤ ε.

29



• 1) t1 is dominated by −τ7 · w · ny.
First recall that

t1 = −
w ln

(
w
nR

)
ln(2)

− w

ln(2)
.

So using the definition γ = w
n1−y we have

t1
τ7 · w · ny

=
1

τ7 · ln(2)
·
[
−

ln
(

w
nR

)
ny

− 1

ny

]
=

1

τ7 · ln(2)
·
[
−

ln
(

γ
Rny

)
ny

− 1

ny

]
,

which we can write as

t1
τ7 · w · ny

=
1

τ7 · ln(2)
·
[
−

ln
(

γ
R

)
ny

+
ln(ny)

ny
− 1

ny

]
. (3.73)

Recall that R and y are fixed, and that

lim
x→∞

ln(x)

x
= 0.

So setting x = ny we see that if γ is upper bounded then (3.73) will tend to zero as n gets large. Formally,
for any ε10 > 0 there are N10,Γ10 with

n ≥ N10, γ ≤ Γ10 =⇒ t1
τ7 · w · ny

< ε10. (3.74)

• 2) t4 is dominated by −τ7 · w · ny.
We start by recalling that

t4 = −	 ln
(
1− w

(nR)1−y

)
.

Using the definitions α = �
n and γ = w

n1−y we obtain

t4
τ7 · w · ny

= −
	 ln
(
1− w

(nR)1−y

)
τ7 · w · ny

= −
α · n1−y · ln

(
1− γ

R1−y

)
τ7 · w = − α

τ7
·
ln
(
1− γ

R1−y

)
γ

. (3.75)

Since ln(1−x)
x → −1 when x tends to zero, by making both α and γ small enough we can bring (3.75) as close

to zero as we need. Formally, for any ε12 > 0, there are A12,Γ12 with

α ≤ A12, γ ≤ Γ12 =⇒ t4
τ7 · w · ny

≤ ε12. (3.76)

• 3) Combining it all.
We have

m1(n, 	, w) ≤ m2(n, 	, w) + t1 + t4.

From Lemma 3.34 we know that there is A7 for which α ≤ A7 implies

m1(n, 	, w) ≤ −τ7 · w · ny + t1 + t4

= −τ7 · w · ny ·
(
1 +

t1
−τ7 · w · ny

+
t4

−τ7 · w · ny

)
.

(3.77)
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Now let ε10 = ε12 = 1
3 (in fact anything < 1

2 would do). Pick N10,Γ10 from (3.74), A12,Γ12 from (3.76).
Now set

N9 = N10,
Γ9 = min(Γ10,Γ12),
A9 = A12,
ε9 = 1/3 (= ε10 = ε12).

Combining (3.74), (3.76) and (3.77), we can deduce that if n ≥ N9, α ≤ A9, γ ≤ Γ9 then

m1(n, 	, w) ≤ −τ7 · w · ny · (1− ε9 − ε9) = −τ7 · w
3

· ny ≤ −τ7

3
· ny,

where the last inequality holds because w ≥ 1. So setting τ9 = τ7
3 gives us the required result.

Definition 3.36. Let Â be a value for A9 that satisfies (3.71) (we know that such a value exists by Lemma 3.35).

The result of Case 2 is summarized in the following theorem:

Theorem 3.37. Suppose we are given 0 < R < 1 and 0 < δ < 1
2 . Let Â be taken from Definition 3.36. Then

there are N9,Γ9, τ9 > 0 (depending only on R, δ and y) for which

n ≥ N9 =⇒ ∀	 = 1, . . . ,
⌊
Ân
⌋

, ∀w = 1, . . . ,
⌊
Γ9 · n1−y

⌋
: m(n, 	, w) ≤ exp

(− τ9 · ny
)
.

3.4.6 Case 3: Small γ, α ≥ Â.

We will make use of some of the work done in Case 2. Let â and Γ̂a be taken from Definitions 3.26 and 3.28.
We will assume throughout this section (Case 3) that γ ≤ Γ̂a. Recall from (3.25) that α and γ are defined as

α =
	

n
, γ =

w

n1−y
. (3.78)

Propositions 3.30, 3.31 and 3.32 still hold. We rewrite them below after some algebraic manipulations:

s1(n,w) ≤ n ·
[ u1︷ ︸︸ ︷
− γ

ny
· ln
(

γ

Rny

) u2︷ ︸︸ ︷
−R ln

(
1− γ

Rny

)]
.

f1(n, 	, w) ≤ n ·
[ u3︷ ︸︸ ︷

α ln
( γ

R1−y

) u4︷ ︸︸ ︷
−α ln

(
1− γ

R1−y

) u5︷ ︸︸ ︷
− γ

R1−y
· 1

a

]
.

g1(n, 	) ≤ n ·
[ u6︷ ︸︸ ︷

α

2
ln
(2δ

α
− 1
)
− δ ln

(
1− α

2δ

)
+

α

2
ln
(2δ

α
− 1
)
− δ ln

(
1− α

2δ

) ]
.

(3.79)
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Outline of Case 3: Intuitively, when Â ≤ α ≤ 1 and γ → 0, the terms in (3.79) behave as follows: u1, u2, u4

and u5 tend to zero, u6 is upper bounded by some positive value that depends on Â, and u3 → −∞. Therefore
the sum of all ui’s will tend to −∞, and so we can certainly upper bound it by −τ for some τ > 0 (any value
will do). This means that we can upper bound m1(n, 	, w) by

−τ · n,

with τ > 0. This is actually a stronger statement than is required (we need only −τ · ny).

Proposition 3.38. If α ≥ Â then there is a value ĉA ≥ 0 depending only on δ and Â for which

g1(n, 	) ≤ ĉA · n.

Proof: We know that
g1(n, 	) ≤ n · u6(α),

where

u6(α) =
α

2
ln

(
2δ

α
− 1

)
− δ ln

(
1− α

2δ

)
+

α

2
ln

(
2δ

α
− 1

)
− δ ln

(
1− α

2δ

)
.

Now because 0 < A ≤ α ≤ 2δ < 1, we study the function u6(α) over the range Iα = [Â, 2δ]. We note that
u6(α) is differentiable and therefore continuous over Iα. So u6(α) is a continuous real function over a closed
bounded interval, it is therefore bounded. In particular there exists an upper bound c2 (depending only on δ
and Â). We set ĉA = max(c2, 0) (to ensure that ĉA ≥ 0) and obtain

g1(n, 	) ≤ u6(α) · n ≤ ĉA · n.

Lemma 3.39. Let u3 = α ln( γ
R1−y ) be taken from (3.79). If α ≥ Â then for any τ14 > 0 there is Γ14 with

γ ≤ Γ14 =⇒ u3 ≤ −τ14.

Proof: First notice that if γ < R1−y then ln( γ
R1−y ) < 0. Therefore

α ≥ Â, γ < R1−y =⇒ α · ln
( γ

R1−y

)
≤ Â · ln

( γ

R1−y

)
, (3.80)

and
lim
γ→0

Â · ln
( γ

R1−y

)
= −∞.

So formally for any τ15 > 0 there is Γ15 > 0 with

γ ≤ Γ15 =⇒ Â · ln
( γ

R1−y

)
≤ −τ15. (3.81)

So we set τ15 = τ14, take some value Γ15 that satisfies (3.81). Letting Γ14 = min
(
Γ15, R

1−y
)
, and combining

this with (3.80) we obtain:

α ≥ Â, γ ≤ Γ14 =⇒ α · ln
( γ

R1−y

)
≤ Â · ln

( γ

R1−y

)
≤ −τ14,
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as required.

We will show that the terms u1, u2, u4 and u5 in (3.79) are dominated by u3 = α · ln
(

γ
R1−y

)
.

Proposition 3.40. If α ≥ Â then for any ε16 > 0 there are N16,Γ16 > 0 with

n ≥ N16, γ ≤ Γ16 =⇒ s1(n, 	) + f1(n, 	, w) ≤ n · [u3 + ε16

]
.

Proof: We know from (3.79) that

s1(n, 	) + f1(n, 	, w) ≤ n · [u1 + u2 + u3 + u4 + u5

]
. (3.82)

Recalling that
lim
x→0

x · ln(x) = 0,

we can deduce (by setting x = γ
ny ) that as γ gets small and n gets large,

u1 = − γ

ny
· ln
(

γ

Rny

)
will tend to zero. Similarly, using the fact that

lim
x→0

ln(1− x) = 0,

we can show that as γ gets small and n gets large, u2, u4 and u5 all tend to zero. So formally this means that
given any ε16 > 0, there are N16,Γ16 > 0 with

n ≥ N16, γ ≤ Γ16 =⇒ u1 + u2 + u4 + u5 ≤ ε16.

The required statement then follows immediately.

We can now combine all this to obtain the following:

Proposition 3.41. If α ≥ Â there are N21,Γ21, τ21 > 0 with

n ≥ N21, γ ≤ Γ21 =⇒ m1(n, 	, w) ≤ −τ21 · ny. (3.83)

Proof: We are supposing throughout this proof that α ≥ Â. Recall that

m1(n, 	, w) = s1(n,w) + f1(n, 	, w) + g1(n, 	).

We first set ε16 = 1
2 in Proposition 3.40, and get values N16 and Γ16 with

n ≥ N16, γ ≤ Γ16 =⇒ s1(n, 	) + f1(n, 	, w) ≤ n · [u3 +
1

2

]
. (3.84)

Next, we know from Proposition 3.38 that there is some value ĉA ≥ 0 (depending only on R and Â) with

g1(n, 	) ≤ ĉA · n. (3.85)
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We now set τ14 = ĉA + 1 in Lemma 3.39. This gives us some value Γ14 with

γ ≤ Γ14 =⇒ u3 ≤ −(ĉA + 1). (3.86)

So setting N21 = N16 and Γ21 = min(Γ14,Γ14) we combine (3.84), (3.85) and (3.86) to deduce that if α ≤ Â
then

n ≥ N21, γ ≤ Γ21 =⇒ m1(n, 	, w) ≤ s1(n,w) + f1(n, 	, w)︸ ︷︷ ︸+ g1(n, 	)︸ ︷︷ ︸
≤ n · [u3 + 1

2

]
+ n · ĉA

= n · [u3 + 1
2 + ĉA

]
≤ n · [− (ĉA + 1) + 1

2 + ĉA

]
= n · [− 1

2

]
,

so setting τ21 = 1
2 we have shown a stronger statement than the required result. Indeed because τ21 > 0 and

0 < y < 1, we have −τ21 · n ≤ −τ21 · ny.

Definition 3.42. Let Γ9 and τ9 be values that satisfy (3.71) (such values exists by Lemma 3.35), in Case 2.
Let Γ21 and τ21 be values that satisfy (3.83) (such values exist by Proposition 3.41). We define Γ̂� as

Γ̂� = min
(
Γ9,Γ21

)
.

Our three constants Â, Γ̂� and Γ̂u have now all been defined. Once more, these values depend only on R, δ
and y. Letting τ22 = min(τ9, τ21) and N22 = max(N9, N21), we summarize the result for Cases 2 and 3
below:

Theorem 3.43. Suppose we are given 0 < R < 1 and 0 < δ < 1
2 . Let Γ̂� be taken from Definition 3.42. Then

there are N22, τ22 > 0 (depending only on R, δ and y) for which

n ≥ N22 =⇒ ∀	 = 1, . . . , �2δn	 , ∀w = 1, . . . ,
⌊
Γ̂� · n1−y

⌋
: m(n, 	, w) ≤ exp

(− τ22 · ny
)
.

3.4.7 Case 4: Any α, Γ̂� ≤ γ ≤ Γ̂u.

Outline: We will first show that for n large enough we have f1(n, 	, w) + g1(n, 	) ≤ n · [v + ε], where v is
some function of α and γ, and ε can be made as small as necessary. Then, we will show that there is some
τ > 0 for which v ≤ −τ (for all values α, γ we are considering in Case 4). Finally we will show that s1(n,w)

n
tends to zero when n gets large, and therefore is dominated by f1(n, 	, w) + g1(n, 	).
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We start by giving a reminder of the definitions of α and γ:

α =
	

n
, γ =

w

n1−y
.

Recall that Pw was defined in (3.18) as follows:

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)(nR)y

.

Definition 3.44. We define β as

β = exp
(
− 2γ

R1−y

)
.

Notice that β depends on γ, and therefore on n. We are assuming in this section that Γ̂� ≤ γ ≤ Γ̂u. (Γ̂u and
Γ̂� are constants depending only on R, δ and y taken from Definitions 3.20 and 3.42). So because exp(−x) is
a decreasing function we have

B̂1︷ ︸︸ ︷
exp
(− 2Γ̂u

R1−y

) ≤ β ≤

B̂2︷ ︸︸ ︷
exp
(− 2Γ̂�

R1−y

)
. (3.87)

Furthermore notice that since 2Γ̂�
R1−y , 2Γ̂u

R1−y > 0, we have

0 < B̂1, B̂2 < 1. (3.88)

We know that for any constant c ∈ R,

lim
x→∞

(
1− c

x

)x
= exp(−c).

The following lemma essentially states that if c depends on x but is bounded then we have an equivalent
result:

Lemma 3.45. Let f : R → R be a bounded function. Then for any ε > 0 there is X with

x ≥ X =⇒ exp
(− f(x)

)− ε ≤
(
1− f(x)

x

)x
≤ exp

(− f(x)
)

+ ε.

Proof: See Appendix C.

Intuitively the fact that γ ∈ [Γ̂�, Γ̂u

]
(in Case 4) enables us to treat γ like a constant. More precisely we use

the fact that it can get neither arbitrarily large nor arbitrarily close to zero as n gets large. From Lemma 3.45
we deduce the following:

Corollary 3.46. Let β be taken from Definition 3.44. If γ ≤ Γ̂u (which we assume throughout case 4), then
for any ε > 0 there is N with

n ≥ N =⇒ 1

2
· (1− β)− ε ≤ Pw ≤ 1

2
· (1− β) + ε. (3.89)
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Proof: Recall that

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)(nR)y

=
1

2
− 1

2
·
(

1− 2γ/R1−y

(nR)y

)(nR)y

. (3.90)

So applying Lemma 3.45 with x = (nR)y and f(x) = 2γ
R1−y (γ depends on n) leads to the required result,

since β = exp
(− f(x)

)
.

Now recall that f(n, 	, w) was defined in (3.21) as

f(n, l, w) = (Pw)� · (1− Pw)n−�, (3.91)

and since f1(n, 	, w) = ln
(
f(n, 	, w)

)
we obtain

f1(n, 	, w) = 	 ln
(
Pw

)
+
(
n− 	

) · ln (1− Pw

)
. (3.92)

We now give an upper bound on f1(n, 	, w):

Proposition 3.47. For any ε23 > 0, there is N23 > 0 with

n ≥ N23 =⇒ f1(n, 	, w) ≤ n ·
[
− ln(2) + α ln

(
1− β

1 + β

)
+ ln

(
1 + β

)
+ ε23

]
. (3.93)

Proof: From Corollary 3.46 we have that for any ε23 > 0, there is N23 with

n ≥ N23 =⇒ ln(Pw) ≤ ln

(
1

2
· (1− β)

)
+ ε23, (3.94)

and

n ≥ N23 =⇒ ln(1− Pw) ≤ ln

(
1

2
· (1 + β)

)
+ ε23. (3.95)

Therefore because 	 = α · n, n ≥ N23 implies that

f1(n, l, w) = 	 ln
(
Pw

)
+
(
n− 	

) · ln (1− Pw

)
≤ 	 ·

(
ln
(

1
2(1− β)

)
+ ε23

)
+
(
n− 	

) · ln(1
2 (1 + β) + ε23

)
(using (3.94) and (3.95))

≤ n ·
[
− α ln(2) + α ln(1− β) + α · ε23

− ln(2) + ln(1 + β) + α ln(2) − α ln(1 + β) + (1− α) · ε23

]

= n ·
[
− ln(2) + α ln

(
1−β
1+β

)
+ ln

(
1 + β

)
+ ε23

]
,

as required.
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Now, we define

c =
1 + β

1− β
, (3.96)

so that the bound in (3.93) can be written as

n ≥ N23 =⇒ f1(n, 	, w) ≤ n ·
[
− ln(2) + α ln

(
1

c

)
ln

(
2c

c + 1

)
+ ε23

]
. (3.97)

Notice that because 1+x
1−x is a strictly increasing function, if 0 < B̂1 ≤ β ≤ B̂2 < 1 then

1 <

Ĉ1︷ ︸︸ ︷(
1 + B̂1

1− B̂1

)
≤ c ≤

Ĉ2︷ ︸︸ ︷(
1 + B̂2

1− B̂2

)
. (3.98)

Next, the bound on g1(n,w) from Proposition 3.32 still holds, we rewrite it below (after some algebraic
manipulations, see (3.79)):

g1(n, 	) ≤ n ·
[
α

2
ln

(
2δ

α
− 1

)
− δ ln

(
1− α

2δ

)
+

α

2
ln

(
2δ

α
− 1

)
− δ ln

(
1− α

2δ

)]
. (3.99)

We combine (3.97) and (3.99) to obtain the following definition:

Definition 3.48. Let v(α, c) be the following function:

v(α, c) = − ln(2) + α ln(1
c ) + ln( 2c

c+1)

+α
2 ln(2δ

α − 1)− δ ln(1− α
2δ ) + α

2 ln(2δ
α − 1)− δ ln(1− α

2δ
).

(3.100)

(δ is a parameter with 0 < δ < 1
2 , and δ = 1− δ).

So using this with Proposition 3.47, we see that for any ε23 > 0, there is N23 with

n ≥ N23 =⇒ f1(n, 	, w) + g1(n, 	) ≤ n · [v(α, c) + ε23

]
. (3.101)

Proposition 3.49. There is τ24 > 0 (depending only on R, δ and y) for which for any 0 < α < 1 and
Ĉ1 ≤ c ≤ Ĉ2 we have

v(α, c) ≤ −τ24.

Proof: We will proceed by carefully analyzing the function v(α, c). We divide the proof into steps:

• 1) For fixed c we find which α maximizes v(α, c).
We start by differentiating v(α, c) with respect to α. We define

v′(α, c) =
∂

∂α
v(α, c).
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This gives us

v′(α, c) = ln
(

1
c

)
+ 1

2 ln
(

2δ
α − 1

)
+ α

2

[
2δ
α − 1

]−1(− 2δ
α2

)− δ
[
1− α

2δ

]−1(− 1
2δ

)
+1

2 ln
(

2δ
α − 1

)
+ α

2

[
2δ
α − 1

]−1(− 2δ
α2

)− δ
[
1− α

2δ

]−1(− 1
2δ

)
= ln

(
1
c

)
+ 1

2 ln

(
(2δ

α − 1) · (2δ
α − 1)

)
− δ

2δ−α + δ
2δ−α − δ

2δ−α
+ δ

2δ−α

= ln
(

1
c

)
+ 1

2 ln
(

4δδ
α2 − 2

α + 1
)
.

Now,

v′(α, c) = 0 ⇐⇒ ln
(

1
c

)
+ 1

2 ln

(
4δδ
α2 − 2

α + 1

)
= 0

⇐⇒ ln

(
4δδ
α2 − 2

α + 1

)
= ln

(
c2
)

⇐⇒ 4δδ
α2 − 2

α + 1 = c2

⇐⇒ (1− c2) · α2 − 2 · α + 4δδ = 0.

We solve this quadratic equation in α to obtain

v′(α, c) = 0 ⇐⇒ α =
1±
√

1− 4δδ · (1− c2)

1− c2
=

1±
√

1 + 4δδ · (c2 − 1)

1− c2
.

Clearly we have 1+
√

1 + 4δδ · (c2 − 1) > 0 and 1− c2 < 0 (since c > 1). This means that the first solution

α1 =
1 +
√

1 + 4δδ · (c2 − 1)

1− c2
(3.102)

is negative. So since we are considering the range 0 < α < 2δ, the only extremal point we need to look at is
the other solution

α2 =
1−
√

1 + 4δδ · (c2 − 1)

1− c2
=

√
1 + 4δδ · (c2 − 1)− 1

c2 − 1
.

We write this as a function of c, so we define

u(c) =

√
1 + 4δδ · (c2 − 1)− 1

c2 − 1
. (3.103)

Now because v′(α, c) is continuous for α ∈]0, 2δ[, and

lim
α→0

v′(α, c) = ∞, lim
α→2δ

v′(α, c) = −∞,
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we can deduce that v′(α, c) > 0 when α < u(c) and v′(α, c) < 0 (otherwise α = u(c) is the only zero of
v′(α, c)). Therefore α = u(c) is a maximal point of v(α, c). So if we let

t(c) = v
(
u(c), c

)
,

then for any α, c with 0 < α < 2δ and Ĉ1 ≤ c ≤ Ĉ2, we have:

v(α, c) ≤ t(c). (3.104)

So we can achieve our goal by upper bounding t(c). We are considering values of c in the range 1 < Ĉ1 ≤
c ≤ Ĉ2 (see (3.98)). Our strategy is to show that t is strictly increasing, and that it tends to zero as c gets
large, and therefore that t(c) ≤ t(Ĉ2) < 0, so −τ24 = t(Ĉ2) will be a suitable value (see Figure 3.1).

u(c)

t(c) α

v(α, c)

c

t(c)

Ĉ2

−τ24

Figure 3.1: v(α, c) and t(c).

• 2) We show that t(c) is strictly increasing for c > 1.
First of all, using the definition of v(α, c), we have:

t(c) = v
(
u(c), c

)
= − ln(2) + u(c) ln

(
1
c

)
+ ln

(
2c

c+1

)
+u(c)

2 ln
(

2δ
u(c) − 1

)− δ ln
(
1− u(c)

2δ

)
+ u(c)

2 ln
(

2δ
u(c) − 1

)− δ ln
(
1− u(c)

2δ

)

= ln
(

c
c+1

)− δ ln
(
1− u(c)

2δ

)− δ ln
(
1− u(c)

2δ

)
+ u(c) ·

X︷ ︸︸ ︷[
ln
(1

c

)
+

1

2
ln
(( 2δ

u(c)
− 1
)( 2δ

u(c)
− 1
))]

.

We will now show that X = 0. Recall from (3.103) that u(c) was defined as

u(c) =

√
V − 1

c2 − 1
, where V = 1 + 4δδ · (c2 − 1). (3.105)
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We start with the conclusion we are trying to reach and use equivalences all along:

X = 0 ⇐⇒ ln

(
1
c

)
+ 1

2 ln

(
4δδ

u2(c)
− 2δ+2δ

u(c) + 1

)
= 0

⇐⇒ 4δδ
u2(c)

− 2
u(c) + 1 = c2

⇐⇒ 4δδ(c2−1)2

(
√

V −1)2
− 2(c2−1)√

V −1
= c2 − 1 (from (3.105))

⇐⇒ 4δδ(c2−1)

(
√

V −1)2
− 2√

V −1
= 1 (we can divide by c2 − 1 because c > 1)

⇐⇒ 4δδ(c2 − 1)− 2
√

V + 2 = (
√

V − 1)2

⇐⇒ 4δδ(c2 − 1)− 2
√

V + 2 = V − 2
√

V + 1

⇐⇒ 4δδ(c2 − 1) + 1 = V.

The last line is true from (3.105), and so since we used equivalences all along we deduce that X = 0. This
means that

t(c) = ln

(
c

c + 1

)
− δ ln

(
1− u(c)

2δ

)
− δ ln

(
1− u(c)

2δ

)
. (3.106)

We let
a = 4δδ · (c2 − 1), (3.107)

and so

a′ =
∂

∂c
a = 8δδc. (3.108)

Recalling that u(c) was defined in (3.103) as

u(c) =

√
1 + 4δδ · (c2 − 1)− 1

c2 − 1
=

√
1 + a− 1

c2 − 1
, (3.109)

we obtain:
u′(c) = ∂

∂cu(c)

=
1
2

a′√
1+a

(c2−1)−
(√

1+a−1
)
2c

(c2−1)2

= c
(c2−1)2

·
[

4δδ(c2−1)√
1+a

− 2
√

1 + a + 2

]

= c
(c2−1)2

·
[

a√
1+a

− 2
√

1 + a + 2

]

= c
(c2−1)2

·
[

1+a−1√
1+a

− 2
√

1 + a + 2

]

= c
(c2−1)2

·
(

2−√1 + a− 1√
1+a

)
.

(3.110)

40



Now, using the expression for t(c) in (3.106), we have:

t′(c) = ∂
∂ct(c)

= c+1
c

c+1−c
(c+1)2

+ δ
[
1 + u(c)

2δ

]−1 u′(c)
2δ + δ

[
1 + u(c)

2δ

]−1 u′(c)
2δ

= 1
c(c+1) + u′(c) ·

[
δ

2δ+u(c) + δ
2δ+u(c)

]

= 1
c(c+1) + u′(c) ·

[
4δδ−u(c)

4δδ−2u(c)+u(c)2

]
.

Plugging (3.109) and (3.110) into this we obtain

t′(c) =
1

c(c + 1)
+

1

c(c2 − 1)
· 3a + 4− (4 + a)

√
1 + a

a + 2− 2
√

1 + a
. (3.111)

Now,

t′(c) > 0 ⇐⇒ 1
c(c+1) + 1

c(c2−1) ·
3a+4−(4+a)

√
1+a

a+2−2
√

1+a
> 0

⇐⇒ 1
c(c2−1)

· 3a+4−(4+a)
√

1+a

a+2−2
√

1+a
> − 1

c(c+1)

⇐⇒ − c(c+1)
c(c2−1)

· 3a+4−(4+a)
√

1+a

a+2−2
√

1+a
< 1

⇐⇒ 1
c−1 · 3a+4−(4+a)

√
1+a

2
√

1+a−a−2
< 1

⇐⇒ 3a + 4− (4 + a)
√

1 + a >
(
c− 1

) · (2√1 + a− a− 2
)

⇐⇒ 3a + 4− (c− 1
) · (− a− 2

)
> (4 + a)

√
1 + a +

(
c− 1

)2 · 2√1 + a

⇐⇒ 2a + 2 + ca + 2c >
(
a + 2c + 2

) · √1 + a

⇐⇒ (
2a + 2 + ca + 2c

)2
>
(
a + 2c + 2

)2 · (1 + a
)

⇐⇒ 4a2 + 8a + 4ca2 + 12ca + 4 + 8c + c2a2 + 4c2a + 4c2 >(
a2 + 4ca + 4a + 4c2 + 8c + 4

) · (1 + a
)

⇐⇒ −a3 + a2
(
c2 − 1

)
> 0

⇐⇒ −a + c2 − 1 > 0

⇐⇒ c2 − 1 > 4δδ
(
c2 − 1

)
(by the definition of a in (3.107))

⇐⇒ 1 > 4δδ.
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Since δ < 1
2 it follows that 4δδ < 1, and therefore the last line is always true. Because we have used

equivalences all the way we deduce that the original statement holds, namely t′(c) > 0 for all c > 1. So t(c)
is a strictly increasing function over the range we are concerned with.

• 3) We show that t(c) tends to zero when c→∞.
First recall from (3.103) that

u(c) =

√
1 + 4δδ · (c2 − 1)− 1

c2 − 1
.

So we have
lim
c→∞u(c) = 0. (3.112)

Now

lim
c→∞ t(c) = lim

c→∞

[
ln
( c

c + 1

)
− δ ln

(
1− u(c)

2δ

)
− δ ln

(
1− u(c)

2δ

)]
.

Combining this with (3.112) we obtain

lim
c→∞ t(c) = ln(1) + lim

u→0

[
− δ ln

(
1− u

2δ

)
− δ ln

(
1− u

2δ

)]
= 0. (3.113)

• 4) Combining 2) and 3), we deduce that t(c) < 0 for any c > 1, in particular t(Ĉ2) < 0. Therefore by
setting

τ24 = −t(Ĉ2),

we can deduce that
c ≤ Ĉ2 =⇒ t(c) ≤ −τ24. (3.114)

Notice that Ĉ2 depends only on B̂2 (see (3.98)), which depends only on Γ̂� (see (3.87)), which in turn depends
only on R, δ and y. So as required, τ24 will depend only on R, δ and y.

Combining (3.114) with (3.104), for any α, c with 0 < α < 2δ and Ĉ1 < c ≤ Ĉ2, we have:

v(α, c) ≤ t(c) ≤ −τ24,

as required.

Finally we show that s1(n,w) is dominated by n, and will therefore be negligible.

Proposition 3.50. If Γ̂� ≤ γ ≤ Γ̂u, then there are τ25 > 0 and N25 with

n ≥ N25 =⇒ m1(n, 	, w) ≤ −τ25 · n.

Proof: First recall that
m1(n, 	, w) = s1(n,w) + f1(n, 	, w) + g1(n, 	).
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• 1) We show that for n large enough f1(n, 	, w) + g1(n, 	) ≤ −τ26 · n for some τ26.
Recall from (3.101) that for any ε23 > 0, there is N23 with

n ≥ N23 =⇒ f1(n, 	, w) + g1(n, 	) ≤ n · [v(α, β) + ε23

]
, (3.115)

Furthermore, Proposition 3.49 tells us that there is τ24 > 0 with

v(α, β) ≤ −τ24,

and so by setting ε23 = τ24
2 and τ26 = τ24

2 we can ensure that

n ≥ N23 =⇒ f1(n, 	, w) + g1(n, 	) ≤ −τ24

2
· n = −τ26 · n.

• 2) We show that s1(n,w) is dominated by −τ26 · n.
We know from Lemma 3.30 that

s1(n, 	) ≤ −w ln

(
w

nR

)
− nR ln

(
1− w

nR

)
. (3.116)

Since γ = w
n1−y , this means that

s1(n, 	)

n
≤ − γ

ny
ln

(
1

R
· γ

ny

)
− R ln

(
1− 1

R
· γ

ny

)
. (3.117)

Now because γ ≤ Γ̂u, γ
ny tends to zero as n gets large. So because

lim
x→0

x ln(x) = lim
x→0

ln(1− x) = 0,

we can deduce that s1(n,�)
n tends to zero as n gets large. So formally for any ε29 > 0 there is N29 with

n ≥ N29 =⇒
∣∣∣∣s1(n, 	, w)

−τ26 · n
∣∣∣∣ ≤ ε29. (3.118)

3) We put all this together.
We need to be a little careful about using (3.118) to make sure the inequalities are in the right direction.
(3.118) tells us that

n ≥ N29 =⇒ −ε29 ≤ s1(n, 	, w)

−τ26 · n ,

and since −τ26 · n < 0, this leads to

n ≥ N29 =⇒ (− τ26 · n
) · s1(n, 	, w)

−τ26 · n ≤ (− τ26 · n
) · (− ε29

)
. (3.119)
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Setting ε29 = 1
2 we obtain

n ≥ N29 =⇒ s1(n,w) + f1(n, 	, w) + g1(n, 	) ≤ s1(n,w) − τ26 · n

= −τ26 · n ·
(
1 + s1(m,w)

−τ26·n
)

≤ −τ26 · n ·
(
1− ε29

)
(using (3.119))

= − τ26
2 · n (since ε29 = 1

2 ),

and therefore setting N25 = N29, and τ25 = τ26
2 gives us the required result.

Once more this is a stronger result than was required, since we just needed to show that m1(n, 	, w) ≤ τ25 ·ny.
We summarize the result for Case 4 below:

Theorem 3.51. Suppose we are given 0 < R < 1 and 0 < δ < 1
2 . Let Γ̂� and Γ̂u be taken from Defini-

tions 3.42 and 3.20. Then there are N25, τ25 > 0 (depending only on R, δ and y) for which

n ≥ N25 =⇒ ∀	 = 1, . . . , n, ∀w =
⌈
Γ̂� · n1−y

⌉
, . . . ,

⌊
Γ̂� · n1−y

⌋
: m(n, 	, w) ≤ exp

(− τ25 · ny
)
.

3.4.8 Conclusion

Now that we have covered all four cases presented in subsection 3.4.3, we can deduce the result we had set
out to prove, namely Theorem 3.15, which we restate below:

Theorem 3.15. Suppose we are given 0 < R, 0 < y < 1 and 0 < δ < 1
2 with R < 1− h(δ). Then there are

N, τ > 0 (depending only on R, δ and y) for which

n ≥ N =⇒ ∀	 = 1, . . . , �2nδ	 ,∀w = 1, . . . , �nR	 : m(n, 	, w) ≤ exp
(− τ · ny

)
. (3.120)

We can now complete the proof that our family of codes approaches the Gilbert-Varshamov bound with high
probability. From Theorem 3.14 we know that

Pr

[
dmin(C) ≤ nδ

]
≤ nδ ·

nR∑
w=1

2nδ∑
�=1

m(n, 	, w).

Theorem 3.15 then tells us that if R < 1− h(δ) then there are N, τ > 0 for which N ≥ n implies that

Pr

[
dmin(C) ≤ nδ

]
≤ nδ ·

nR∑
w=1

2nδ∑
�=1

exp
(− τ · ny

) ≤ (
2δ2R

) · n3 · exp
(− τ · ny

)
.

So clearly we have

lim
n→∞ Pr

[
dmin(C) ≤ nδ

]
= 0.
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It would be interesting to determine the smallest column weight of M for which the resulting family still
approaches the GV-bound. Our construction above had a column weight of O(ny), and we see that this value
appears in the bound (3.120):

n ≥ N =⇒ ∀	 = 1, . . . , �2nδ	 ,∀w = 1, . . . , �nR	 : m(n, 	, w) ≤ exp
(− τ · ny

)
.

This leads to the question of whether a similar analysis on a construction using some other weight W would
yield the modified bound

n ≥ N =⇒ ∀	 = 1, . . . , �2nδ	 ,∀w = 1, . . . , �nR	 : m(n, 	, w) ≤ exp
(− τ ·W ).

If this were the case when W = log(n)·f(n), where f(n) is any function for which f(n)→∞when n →∞,
then the corresponding family would approach the GV-bound, and be encodable in time O

(
n log(n)f(n)

)
.
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Chapter 4

Short Algebraic-Geometric Codes for
Transmission over the Erasure Channel

4.1 Introduction

Algebraic-Geometric (AG) codes are arguably the most powerful class of algebraic codes in existence. They
contain the Reed-Solomon (RS) codes as a subclass, but unlike RS-codes, they allow for the construction
of arbitrarily long codes over a fixed alphabet, with asymptotically good performance. In fact it was shown
[87] that for a square q ≥ 49 it is possible to construct infinite families of AG-codes over Fq that beat the
asymptotic Gilbert-Varshamov bound.

Despite their excellent properties, and despite the algorithmic advances regarding their encoding and decod-
ing, there are very few practical uses of AG-codes, whereas RS-codes have been and are being used in many
applications. One possible reason is that RS-codes are better understood, and have somewhat better hardware
implementations.

Nevertheless, AG-codes are better than RS-codes since they allow the construction of much longer codes
over the same alphabet, while enabling a similarly structured encoding and decoding process. This advantage
can be interpreted in different ways. The straightforward interpretation is that larger pieces of data can be
protected using the same field operations as RS-codes. A different interpretation is that if a piece of data is
to be protected using a code of some given length n, then an AG-code allows this to be done with a smaller
finite field, which in turn means that the encoding and decoding algorithms will run faster.

The latter interpretation could be a major insight into a practical exploitation of AG-codes. The reason is that
in many applications the size of the data to be encoded is constrained by outer applications, such as those
that do not allow an unreasonably long delay. Moreover, because practical implementations of encoding and
decoding algorithms for AG-codes scale quadratically with the block-length, having an AG-code of large
block-length may be unfeasible in many situations. However, for applications requiring very short blocks
(such as video streaming), AG-codes can be made to run very fast.

This chapter is concerned with illustrating and quantifying the performance of very short AG-codes over the
Erasure Channel, and more specifically of comparing them to RS-codes. A number of codes have been sug-
gested to protect the data in this transmission model, the most prominent of which are Tornado codes [46],
RA-codes [22], LT-codes [45], and Raptor codes [76]. While these have been shown to have excellent perfor-

46



mance on the Erasure Channel, the lengths of the codes need to be reasonably large. When very short blocks
are required, AG and RS-codes become competitve solutions.

We compare the performances of AG and RS-codes for block lengths up to 64. The smaller field size enables
faster encoding and decoding, but the drawback is an increased error probability due to the larger minimum
distance. We measure this by developing an efficient algorithm to compute these exact error probabilities.

Finally, this work has been motivated by practical needs, which leads us to focus on a specific transmission
problem. We obtain some practical data to illustrate the speed-ups predicted in theory. The work was done
in collaboration with the company Digital Fountain and the codes presented are being used in some of their
commercial products. This is, as far as we know, the first practical use of AG-codes.

4.2 The Erasure Channel

We will be concerned in this chapter with transmissions over the Q-ary erasure channel. Informally, an
alphabet element sent over this channel is either received intact (with some probability 1−p) or lost completely
(with probability p). In the latter case it it said to have been erased.

Definition 4.1. The Q-ary erasure channel over an alphabet Σ of size Q has input set Σ, output set Σ ∪ {?}
(where ? means erasure) and transition matrix M = (Mij)i∈Σ,j∈Σ∪{E}, where

Mij =

⎧⎨
⎩

p if j = ?
1− p if j = i
0 otherwise.

(4.1)

Decoding a linear code over this channel is particularly simple. Given a generator matrix, decoding can be
reduced to solving a system of linear equations. If G denotes the k × n generator matrix, u a message vector
and c the corresponding codeword then we know that

uG = c. (4.2)

Given only G and c, recovering u amounts to solving a system of n linear equations in k variables. Each
erasure removes one component of c. In other words it removes one equation (corresponding to one column
of G). If I ⊆ [n] denotes the set of indices of the positions that are not erased (we call these intact), then
decoding reduces to solving the system of equations

uG′ = c′ (4.3)

where G′ is the k × |I| submatrix of G consisting of those columns whose indices are in I , and c′ is the
subvector of c containing the indices in I . We say that the decoding succeeds if this submatrix G′ has rank k
(i.e. we can solve the system), and fails otherwise. It is clear that if |I| < k then the decoding will always fail.

Proposition 4.2. If a codeword of an [n, k, d]Q-code is transmitted over the Q-ary erasure channel, and
≥ n− d + 1 positions are intact (equivalently ≤ d− 1 position are erased), then the decoding will succeed.

Proof: Clearly the system (4.3) has at least one solution (namely the actual message vector u). So we need
to show that this solution is unique. If there was another solution v ∈ Fk

Q then the codeword vG ∈ Fn
Q would

have the same entries as c at the positions in I (and |I| = n− d + 1). Therefore

d(vG, c) ≤ n− (n − d + 1) = d− 1, (4.4)

47



leading to a contradiction (since vG and c are both codewords).

Although very simple the Q-ary erasure channel has been very relevant, in large part due to the Internet. Data
is divided into packets to which are appended checksums. At the receiver side packets are either assumed to be
intact or simply discarded. The latter can happen for various reasons, for example if the checksum verification
fails, or the packet might simply not arrive if a router runs out of buffer memory somewhere along the way.

4.3 Algebraic-Geometric Codes

In this section we describe the construction and properties of AG-codes. We start by looking at RS-codes,
which are in fact special cases of AG-codes.

4.3.1 Reed-Solomon Codes

Throughout this chapter Fq will denote the finite field of size q. We first note that there is a bijection between
Fk

q and the set of polynomials in Fq[x] of degree < k:

Definition 4.3. For u = (u1, . . . uk) ∈ Fk
q we define the corresponding polynomial

fu(x) =

k−1∑
i=0

ui+1 · xi. (4.5)

We will define Reed-Solomon codes through their encoding map.

Definition 4.4. Let Fq be a finite field, let k ≤ n ≤ q, and let α1, . . . , αn be distinct elements of Fq. The
[n, k]q Reed-Solomon (RS) code corresponding to these field elements has encoding map ϕ : Fk

q → Fn
q with

ϕ
(
u) =

(
fu(α1), . . . , fu(αn)

)
. (4.6)

So RS-codes are obtained by evaluating polynomials of bounded degrees at field elements. The Singleton
bound states that for any [n, k, d]-code

d ≤ n− k + 1, (4.7)

and codes for which we have equality in (4.7) are said to be maximum distance separable (MDS). This is the
case for RS-codes:

Theorem 4.5. Reed-Solomon codes are MDS.

Proof: See for example [82].

This means that over the erasure channel k intact (non-erased) elements are sufficient to guarantee successful
decoding (the code can recover from d− 1 = n− k erasures). Since k intact elements are also necessary (or
else there is not enough information), MDS codes are sometimes also called optimal.
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4.3.2 Algebraic-Geometric Codes

AG-codes are a natural generalization of RS-codes. For a full introduction to AG-codes, see [60] or [81].
We will assume knowledge of elementary algebraic geometry, which can be found in [70][72][81]. RS-codes
are constructed by evaluating polynomials of bounded degree at certain field elements. As explained in the
introduction, their big drawback is the fact that the length is bounded by the field size (since the polynomials
must be evaluated at distinct elements), so long codes require large fields. The most obvious way around this
would be to evaluate multivariate polynomials at points of Fm

q , this is the principle of Reed-Muller codes (so
RS-codes would be the special case m = 1). However, while this does indeed increase the length, it also
incurs a large cost in the decrease of the minimum distance.

There is a more efficient way of improving the length. Instead of evaluating all multivariate polynomials up
to a certain degree at randomly chosen elements of Fm

q , we evaluate certain functions at well chosen points of
this space. These well chosen points are the elements of an algebraic curve, and the functions will be taken
from some linear space of this curve.

Definition 4.6. Let X be a smooth nonsingular curve of genus g over Fq, let P1, . . . , Pn, Q be n+1 distinct Fq-
rational points of X, let α < n be a positive integer, let L(αQ) be the linear space of the divisor αQ. A (one-
point) Algebraic-Geometric (AG) code C is obtained as the image of the evaluation map ϕ : L(αQ) → Fn

q

with
ϕ(f) =

(
f(P1), . . . , f(Pn)

)
. (4.8)

We will denote such a code by C[X, (P1, . . . , Pn), αQ]. The genus of the code refers to the genus of the
underlying curve.

Explicitly constructing these codes (for example by finding a generator matrix) is somewhat more difficult
than RS-codes. We essentially need to know the points on the curve X, and a basis of the Fq-space L(αQ).
Fortunately, this can be computed using the algorithm of Heß from [31].

The resulting dimension and minimum distance are described in the following proposition [72]:

Proposition 4.7. Let C be an AG-code defined as above. Then C is an [n, k, d]-code with

k ≥ α + 1− g (4.9)

d ≥ n− α. (4.10)

Furthermore if 2g − 2 < α then we have equality in (4.9).

Proof: We will start by showing that the evaluation map ϕ defined in (4.8) is injective. Suppose there is some
f ∈ L(αQ) with ϕ(f) = 0. This means that for all i ∈ [n]

f(Pi) = 0, (4.11)

and therefore that f has at least n zeros. But since f ∈ L(αQ) it has only one pole of degree α, and so
because α < n, we must have f = 0 (f must have as many zeros as poles). So ϕ is injective, and therefore
k = dim(αQ). Now the Theorem of Riemann [72] tells us that

dim(αQ) ≥ deg(αQ) + 1− g = α + 1− g, (4.12)

with equality if 2g − 2 < α. So (4.9) follows immediately.
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Next, suppose there is a non-zero codeword of weight < n − α. This means that there is f ∈ L(αQ) which
has at least α + 1 zeros. However once again f must have as many zeros as poles, so cannot have more than
α zeros, so we must have f = 0. We deduce that all non-zero codewords have weight at least n − α, from
which (4.10) follows.

We will assume for the rest of this chapter that 2g − 2 < α < n. We can deduce from Proposition 4.7 that

n− k + 1− g ≤ d ≤ n− k + 1, (4.13)

where the second inequality follows from the Singleton bound. So the genus g represents the “gap” to the
Singleton bound, and it is therefore desirable to choose a curve whose genus is as small as possible.

In Definition 4.6, constructing a code of length n required n + 1 distinct points on the curve X, which means
that X needs to have at least n + 1 points. It turns out that over a given field, a curve must have large genus
to have many points. We therefore have a trade-off between the length of the code (we would like X to have
many points) and its distance (we would like X to have a small genus). For a given field size q, the maximum
number of points on a curve over Fq of genus g is denoted Nq(g), and a curve over Fq of genus g having
Nq(g) points is called a maximal curve.

4.4 The Specific Codes

We will be concerned only with very short codes (with lengths up to 64). As explained in the introduction, the
work in this chapter was motivated by certain practical needs, and for this reason we use only finite fields in
the form F2� , where 	 is a power of 2. Indeed it has been established that working with such fields yields very
large practical advantages (essentially due to the representation of field elements by bytes rather than uneven
fractions thereof). Were we to use RS-codes, we could work over F16 for length of up to 16, then over F256

for lengths between 17 and 64. However with AG-codes we can use F16 for any length. The cost of doing
this is that we need to use a curve with more points, and therefore with higher genus, which decreases the
minimum distance.

Since a larger genus means a smaller minimum distance (see (4.13)), for a given length n we would like to
use a curve with genus as small as possible. This means taking the smallest g for which N16(g) ≥ n + 1 (see
Section 4.3.2), and then using a maximal curve of genus g. Determining Nq and finding maximal curves is
a well studied problem, partly motivated by the construction of good AG-codes. The best known upper and
lower bounds on Nq(g) for many values of q and g are regularly updated in [88]. The following table (see [88]
[67] [68] [69] [55] [66]) gives the value of N16(g) (or the best known bounds), and a corresponding maximal
curve:
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g N16(g) maximal curve
1 25 x2 + x = y3 + y
2 33 x5 = y2 + y
3 38 x2y4 + x2y = ωx3 + 1
4 45 y2 + xy + x2 + y3 + xy3 + x2y2+

x3y + x4 + x3y2 + x4y + x5 = 0
5 ∈ [49, 53] −
6 65 x5 = y4 + y

Table 4.1: Maximal curves over F16 for genera 1 to 6.

(for the genus 3 curve, ω denotes a third root of unity in F16). We will not use a genus 5 curve, partly because
is it not known whether the best known curves are maximal, and mainly because we make only a small gain
in length compared to the genus 4 curve.

For a given n, we choose the curve of smallest genus with which we can construct a code of length n:

n which curve
n ≤ 16 Reed-Solomon (g = 0)

17 ≤ n ≤ 24 g = 1
25 ≤ n ≤ 32 g = 2
33 ≤ n ≤ 37 g = 3
38 ≤ n ≤ 44 g = 4
45 ≤ n ≤ 64 g = 6

Table 4.2: Curves used in our application.

We will see in section 4.6 that the encoding technique we use requires on average only half as many basic
operations for codes over F16 as for codes over F256 (which would be the standard method for these sorts of
lengths). On top of these theoretical advantages, a smaller field also means that in practical implementations
more machine dependent optimizations are possible.

As seen in the previous section, the price we pay for this speed-up is a decrease in the minimum distance of
the code (by an additive factor of g), which in turn means that for a fixed erasure channel the probability of
unsuccessful decoding (referred to as the error probability) will increase. To quantify this we derive in the
next section an efficient algorithm for computing the exact error probabilities.

4.5 Computing the Error Probabilities

Recall that we are considering transmission over the Q-ary erasure channel, in which each alphabet element
is either received intact (with probability 1 − p) or lost completely (with probability p). So for a given code
C, we transmit n elements, some of which might get erased. Let I ⊆ [n] denote the indices of the elements
that are not erased (we call these intact).

We say that I is good if we can recover our codeword from the elements in I , and bad otherwise. So if G
is the generator matrix of our code then I is good if and only if the k × |I| submatrix of G constructed by
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taking only the columns with indices in I has full rank. So clearly all sets I with |I| < k are bad. Likewise,
as seen in section 4.3, an AG-code of genus g has minimum distance at least n− k + 1− g. So all sets I with
|I| ≥ k + g are good (in particular with RS-codes, of genus 0, all sets of size ≥ k are good).

Definition 4.8. For a given [n, k]-code C, we define Br to be the number of bad subsets of size r.

Notice that Br depends only on the code C. Since there are in total
(n

r

)
subsets I ⊆ [n] of size r (i.e., the

number of erasure patterns), the fraction of subsets of size r that are bad is Br/
(n

r

)
. Furthermore for a fixed

number of erasures n− r, all erasure patterns are equally likely, so we obtain the following proposition:

Proposition 4.9. The error probability with an [n, k] AG-code over the Q-ary erasure channel with erasure
probability p is given by

n∑
r=0

Br(n
r

) · P [ |I| = r
]

=

n∑
r=0

Br · (1− p)r · pn−r. (4.14)

With an RS-code (genus 0), I is bad if and only if |I| < k, so we have

Br =

{ (n
r

)
if r < k

0 otherwise .

We can therefore deduce:

Corollary 4.10. The error probability with an [n, k] RS-code over the Q-ary erasure channel with erasure
probability p is given by

k−1∑
r=0

(
n

r

)
· (1− p)r · pn−r.

With AG-codes of genus greater than 0, the situation is more complicated. As above, decoding will fail
whenever |I| < k, but on top of that it will also sometimes fail when k ≤ |I| ≤ k + g − 1 (see Figure 4.1
below). So we need to determine how often it fails in these cases, i.e., to find the values of Br.

Number of intact indices

kk−1 n

can never decode can sometimes decode can always decode

0 k+g−1 k+g

Figure 4.1: The overhead of an AG-code of genus g.

4.5.1 Reduction to an Abelian Group Problem

We will show that for an AG-code, the problem of determining the number of bad subsets of a given size
reduces to an abelian group problem.
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Definition 4.11. Let G be a finite abelian group. Suppose we have two subsets S, T ⊆ G, and an integer r.
We denote by θ(G,S, T, r) the number of r-subsets W ⊆ S for which∑

w∈W

w ∈ T.

Now we suppose throughout that we have fixed AG-code C
[
X, (P1, . . . , Pn), αQ

]
.

We denote by D(X) the divisor group of X, and by D0(X) its subgroup consisting in the divisors of degree
0. Recalling that the principal divisors Prin(X) form a subgroup of D0(X), Pic(X) (the Picard group) and
Pic0(X) are defined as

Pic(X) = D(X)/Prin(X), and Pic0(X) = D0(X)/Prin(X). (4.15)

Definition 4.12. For a divisor D ∈ D(X), we will denote by D the image of the divisor
(
D− deg(D) ·Q) in

Pic0(X).

Note that since D − deg(D) · Q has degree 0, its image modulo Prin(X) is indeed in the group Pic0(X).
The following Theorem establishes the link between our problem of determining error probabilities, and the
function θ from Definition 4.11:

Theorem 4.13. Suppose we have an AG-code C
[
X, (P1, . . . , Pn), αQ

]
. The number of bad subsets I ⊆ [n]

with |I| = r is given by
θ
(
Pic0(X), S, T, r

)
,

where S = {P1, . . . , Pn}, and T =
{−D

∣∣ D is a positive divisor of degree α− r
}

.

Proof: Let I be a subset of [n] of size r. Let K be the function field of X. We have:

I is bad ⇐⇒ there is a codeword that is zero at all entries i ∈ I

⇐⇒ ∃f ∈ L(αQ) : f(Pi) = 0 ∀i ∈ I

⇐⇒ ∃f ∈ K : (f) ≥ (∑
i∈I Pi

)− αQ

⇐⇒ ∃f ∈ K,D ∈ D(X) : D ≥ 0, (f) =
(∑

i∈I Pi

)− αQ + D.

⇐⇒ ∃f ∈ K,D ∈ D(X) : D ≥ 0, (f) =
(∑

i∈I(Pi −Q)
)

+ D − (α− r) ·Q.

Notice that since deg
(
(f)
)

= 0, any D that satisfies the last line will have degree α− r. Now if we take the
projection onto Pic0(X), then we get:

I is bad ⇐⇒ ∃f ∈ K,D ∈ D(X) : D ≥ 0, and (f) =
(∑

i∈I Pi

)
+ D

⇐⇒ ∃D ∈ D(X) : D ≥ 0, and 0 =
(∑

i∈I Pi

)
+ D

⇐⇒ ∃D ∈ D(X) : D ≥ 0, and
∑

i∈I Pi = −D

⇐⇒ ∑
i∈I Pi ∈ T,
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where T =
{−D

∣∣ D ∈ D(X) and D ≥ 0
}

.

Once more, the only candidates for D that can verify this property must have degree α− r.

4.5.2 The Group Algebra C[G]

We now look at how to compute θ
(
G,S, T, r

)
. The brute force approach would be to consider all

(n
r

)
r-subsets

W of S and count how many of them have the property that
∑

w∈W w ∈ T . This would require (r − 1) · (nr)
group operations in G, and

(n
r

)
tests of whether an element g ∈ G belongs to T (namely

∑
w∈W w). So this

is exponential in n = |G| if r is a constant fraction of n, which makes the method highly impractical.

A better approach is to consider the group algebra C[G].

Definition 4.14. Let G =
({g1, . . . , gm},+

)
be a finite abelian group and let C denote the field of complex

numbers. The group algebra C[G] is a vector space over C of dimension m with basis elements [g1], . . . , [gm].
There is a product on the basis elements C[G]

[gi] · [gj ] = [gi + gj ],

that extends naturally to the whole vector space. C[G] forms a ring under this product and the standard vector
space addition.

Let w ∈ C[G]. We can write w as an m-components vector (in basis
{
[g1], . . . , [gm]

}
):

w =

⎛
⎜⎝ c1

...
cm

⎞
⎟⎠ =

m∑
j=1

cj · [gj ].

We then call cj ∈ C the jth component of w. Notice that while addition in C[G] is done component by
component, multiplication is more complicated:( m∑

i=1

ai[gi]

)( m∑
j=1

bj [gj ]

)
=

m∑
�=1

( ∑
i,j|gi+gj=g�

aibj

)
[g�].

So multiplying two elements of C[G] requires m2 multiplications and m · (m− 1) additions in C.

We will now look at elements of the polynomial ring C[G][x] (polynomials whose coefficients are in C[G]).

Definition 4.15. Let G = {g1, . . . , gm} be a finite abelian group, and let S ⊆ G. We define the polynomial
pS(x) ∈ C[G][x] as follows:

pS(x) =
∏
gi∈S

(
x + [gi]

)
.

Note that pS(x) has degree |S|. This polynomial will be of great interest to us because it is closely linked to
θ(G,S, T, r), as established by the following theorem:
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Theorem 4.16. Let G = {g1, . . . , gm} be a finite abelian group and let S be a subset of G, with |S| = n. Let
v0, . . . , vn ∈ C[G] be the coefficients of pS(x), so that

pS(x) =

n∑
i=0

vi · xi.

For each i = 0, . . . , n, let aij ∈ C be the jth component of vi:

vi =

m∑
j=1

aij · [gj ] ∈ C[G].

Then for any T ⊆ G, r = 0, . . . , n we have

θ
(
G,S, T, r

)
=
∑

j|gj∈T

a(n−r)j .

So Theorem 4.16 is saying that the ith coefficient vi ∈ C[G] of pS(x) holds all the information we need about
(n− i)-subsets of S. Its jth component aij is a positive integer and represents the number of (n− i)-subsets
of S whose elements sum up to gj in G.

Proof: The elementary symmetric polynomials [92] in n variables are defined as

σi(x1, . . . , xn) =
∑

W⊆[n],|W |=n−i

∏
�∈W

x�, for i = 0, . . . , n. (4.16)

They have the property that for any a1, . . . , an:
n∏

i=1

(x + ai) =

n∑
i=0

σi(a1, . . . , an) · xi. (4.17)

Since pS(x) is in the same form as the left hand side of (4.17), its coefficients vi can be written as

vi = σi

(
[g1], . . . , [gn]

)
=

∑
W⊆[n],|W |=n−i

∏
�∈W

[g�] =
∑

W⊆[n],|W |=n−i

[∑
�∈W

g�

]
, (4.18)

from which the result follows.

Example 4.17. It is perhaps more intuitive to see why this theorem holds with small examples. If n = 3 and
S = {g1, g2, g3} then it can easily be checked that

pS(x) = x3 +
(
[g1] + [g2] + [g3]

) · x2 +
(
[g1 + g2] + [g1 + g3] + [g2 + g3]

) · x +
(
[g1 + g2 + g3]

)
. (4.19)

Now S has three 1-subsets ({g1}, {g1} and {g3}), which all appear in the coefficient of x2. Likewise S has
three 2-subsets ({g1, g2}, {g1, g3} and {g2, g3}), which all appear in the coefficient of x (more precisely the
sum of whose elements all appear). Finally, S has of course a single 3-subset {g1, g2, g3}, the sum of whose
elements appears in the constant coefficient.

Recall that our aim is to determine Br, the number of bad subsets of size r for r = k, . . . , k + g − 1. From
Theorem 4.13 we know that this can be reduced to computing

θr = θ
(
G,S, T, r

)
, (4.20)

where G = Pic0(X), and S, T ⊆ G (see Theorem 4.13). Now Theorem 4.16 tells us that we can determine θr

for any r from pS(x) ∈ C[G][x]. Our next step is to efficiently compute this polynomial.
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4.5.3 Efficiently Computing the Polynomial pS(x)

Throughout we suppose that |G| = m and |S| = n. Computing pS(x) requires n·(n−1)
2 multiplications in C[G]

(and the same number of additions in C[G]). While adding two vectors u, v ∈ C[G] is done component-wise
(and so requires m additions in C), multiplying u and v is more complicated and requires m2 multiplications
and m · (m− 1) additions in C.

However, using Fast Fourier Transforms (FFT) [17], two vectors in C[G] can be multiplied much faster.
Multiplication in the algebra A = C[G] = (Cm, ·) is slow (namely O(m2) operations in C), while in the
algebra B = (Cm, ∗) (where ∗ denotes component-wise multiplication), we can multiply two elements using
only m multiplications in C. The algebras A and B can be linked through Discrete Fourier Transforms (DFT).

Definition 4.18. Given a cyclic group C�, the corresponding DFT matrix D� ∈ C�×� is defined as

(D�)ij = ω(i−1)(j−1), (4.21)

where ω = e
2iπ
� is a primitive 	th root unity in C.

It can easily be checked that D� is invertible, with

(D−1
� )ij =

1

	
· ω−(i−1)(j−1). (4.22)

Proposition 4.19. Let G = C�1 × . . . × C�k
be an abelian group with |G| = m. Let A = C[G] =

(
Cm, ·)

and B =
(
Cm, ∗), where ∗ denotes component-wise multiplication. Let DG be the m×m matrix defined as

follows:
DG = D�1 ⊗ . . . ⊗D�k

. (4.23)

Then there are bases of A and B for which the mapping ϕ : A→ B given by

ϕ(u) = DG · u (4.24)

is a C-algebra isomorphism.

Directly computing ϕ(u) would require O(m2) operations in C. However we can make use of (4.23), and
successively multiply appropriate subvectors of u by each D�i

, which will require only O
(∑k

i=1 	2
i

)
opera-

tions.

Note: This can actually be further reduced to O
(∑k

i=1 	i log(	i)
)

operations using Fast Fourier Transforms
(see for example [17], Chapter 13), but will not be necessary for the codes in which we are interested.

Corollary 4.20. Let G = C�1 × . . . × C�k
be an abelian group of size m. Let A and B be the two algebras

as above. Then the DFT ϕ : A → B can be computed using
∑k

i=1 	2
i multiplications and

∑k
i=1 	i(	i − 1)

additions in C, i.e. a total of
k∑

i=1

3	2
i − 	i = O

( k∑
i=1

	2
i

)
(4.25)

operations in C.
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So we can compute the polynomial

pS(x) =

n∏
i=1

(
x + [gi]

)
(4.26)

by first using the Fourier transforms hi = ϕ
(
[gi]
)

to obtain the polynomial p̂S(x) ∈ B[x] defined as

p̂S(x) =
n∏

i=1

(
x + hi

)
=

n∑
i=0

wi · xi, (4.27)

and then taking the inverse transforms vi = ϕ−1(wi) to get the coefficients of pS(x) =
∑n

i=0 vi · xi. The
algorithm is given below in pseudo-code:

Algorithm 4.1: COMPUTE pS(x)
Input: An abelian group G, and a subset S = {g1, . . . , gn} ⊆ G.
Output: The coefficients (v0, . . . , vn) of the polynomial pS(x) =

∏n
i=1

(
x + [gi]

)
1: for d = 1 to n do
2: compute hd ← ϕ(gd)
3: for i = 1 to m do
4: wd[i] ← 1
5: for j = 1 to d− 1 do
6: wd−j[i] ← wd−j[i] · hd[i] + wd−j−1[i]
7: end for
8: w0[i] ← hd[i]
9: end for

10: end for
11: for k = 0 to n− 1 do
12: compute vk ← ϕ−1(wk)
13: end for
14: return (v0, . . . , vn−1, 1)

To evaluate the running time of this algorithm we first let t =
∑

i 	
2
i be the number of operations required for

the DFTs (see Proposition 4.19). We decompose the operations as follows:

1. n DFTs (line 2). This requires O(nt) operations in C.

2. O(mn2) multiplications in C (line 6).

3. O(mn2) additions in C (line 6).

4. n inverse DFTs (line 12). This requires O(nt) operations in C.

This gives us a total of O(mn2 + nt) operations in C.
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4.5.4 The Final Algorithm

We can now combine all the work above to obtain the following algorithm for computing the error probabilities
of our codes:

Algorithm 4.2: ERROR PROBABILITY OF AN AG-CODE

Input: An AG-code C
[
X, (P1, . . . , Pn), αQ

]
, and a channel erasure probability p.

Output: The probability of a decoding failure
1: g ← genus(X)
2: k ← α + 1− g
3: G ← Pic0(X)
4: S ← {P1, . . . , Pn}
5: compute the coefficients v0, . . . , vn ∈ C[G] of pS(x) (where vi =

∑m
j=1 aij · [gj ])

6: for r = k to k + g do
7: T ← {−D

∣∣ D is a positive divisor of degree α− r
}

.
8: Br ←

∑
j|gj∈T a(n−r)j

9: end for
10: return

∑k−1
r=0

(
n
r

) · pn−r · (1− p)r +
∑k+g

r=k Br · pn−r · (1− p)r

Notes: • In step 3 we use the software package Magma [19] to compute Pic0(X).

• Computing T (step 7) can be done for example by brute force search since there is only a finite
number of positive divisors of degree α− r in D(X) (we can enumerate the prime divisors of degrees at most
α− r, and look at all appropriate combinations).

• pS(x) only needs to be computed once to obtain the error probabilities for codes of length n of all
dimensions k (since P1, . . . , Pn stay the same in the construction, only α changes). Furthermore, assuming
that for each n the set of points Pi we use for our codes of length n is contained in the set we use for our codes
of length n + 1, then we can construct the pS(x) of degree n + 1 from that of degree n (see the algorithm for
generating PS(x)).

4.5.5 The Error Probabilities for our Specific Codes

The Pic0(X) groups of the curves in which we are interested (see Table 4.1) are given in Table 4.3 below,
along with the corresponding value of t =

∑
i 	

2
i . These were computed with the Magma software package

[19].

Genus G = Pic0(X) m = |G| t

1 C5 × C5 25 50
2 C5 × C5 ×C5 × C5 525 100
3 (C3)

3 × (C8)
3 13, 824 219

4 (C3)
4 × (C8)

4 331, 776 292
6 (C5)

12 244, 140, 625 300

Table 4.3: Pic0 groups of our curves
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We implemented in C++ the algorithm above on these groups to obtain the appropriate error probabilities
for all codes that interest us. To assess their impact, we note that in practice for a given message of size k
(i.e. a given code dimension), a target error probability PT is set, and the length (equivalently the overhead)
is chosen to be the smallest value for which the actual error probability stays below PT . So the cost of the
speed-up obtained by AG-codes over RS-codes can be measured by how much extra overhead is required to
obtain a certain target error probability PT (or equivalently how much smaller the rate of the code needs to
be).

Below are some graphs giving the required overhead for different channel erasure probabilities p and target
error probabilities PT . We use RS-codes over F256, and AG-codes over F16, each time choosing the code with
the smallest genus enabling us to achieve the required length.
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Figure 4.2: Required length to achieve a target error probability of PT = 10−3 on a channel with erasure
probability p = 0.1.

The graph below presents the same data as Figure 4.2, but in terms of rate rather than length.
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Figure 4.3: Required rate to achieve a target error probability of PT = 10−3 on a channel with erasure
probability p = 0.1.
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Figure 4.4: Required length when PT = 10−6 and p = 0.01.
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Figure 4.5: Required length when PT = 10−9 and p = 0.01.

We observe that the AG-code does not require us to transmit many more elements than the RS-code in order
to achieve the target error probability, and in fact in most cases requires the same amount. So in this sense
we can argue that the drawback of higher error probabilities is not a large one. As explained earlier, we were
motivated by specific transmission problems and the parameters in the graphs above are chosen to reflect
these.

4.6 Interleaved Vector-Matrix Multiplication

Since we are considering applications of AG-codes, we will also present some implementation properties
quantifying the theoretical speed-ups that smaller fields enable. The aim of this section is to describe the
interleaving technique of [10]. This makes the encoding and decoding processes for F2�-codes faster, by
making use of the fact that computers can perform many bit operations in a single cycle. This parallelism is
utilized to encode many message vectors concurrently.

It is important to note that this does not improve the complexity (i.e. the asymptotic behavior), but does
nonetheless make things faster for the lengths in which we are interested.

4.6.1 The Regular Representation

The aim in this subsection is to reduce additions and multiplications in F2� to additions and multiplications
of binary vectors and matrices. Throughout we let q = 2�. First recall that Fq is a vector space of dimension
	 over F2. Throughout this section we fix an arbitrary basis V = {v1, . . . , v�} of Fq over F2. V establishes a
canonical bijection between Fq and F�

2:

Definition 4.21. Given a basis V of Fq over F2, we let σ : Fq → F�
2 be the bijection defined as follows: If

γ =
∑�

i=1 ai · vi then
σ(γ) = (a1, . . . , a�). (4.28)
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Notice that σ is additive with respect to component-wise addition in F2. So addition in Fq is reduced to adding
binary vectors. To deal with multiplication in Fq we can also express field elements as 	× 	 matrices:

Definition 4.22. Given a basis V of Fq over F2, we let τ : Fq → F�×�
2 be the mapping defined as follows:

τ(γ) =

⎛
⎜⎝ σ(v1 · γ)

...
σ(v� · γ)

⎞
⎟⎠ . (4.29)

It can then easily be checked that this reduces multiplications in Fq to binary vector-matrix multiplications,
i.e., the following proposition holds:

Proposition 4.23. For any γ, μ ∈ Fq we have

σ(γ · μ) = τ(γ) · σ(μ). (4.30)

4.6.2 Interleaving

We are studying the problem of transmitting a file over a packet network modeled as an erasure channel.
We suppose that the packet size L is fixed (so L bit packets correspond to the Q-ary erasure channel with
Q = 2L). The most obvious way to send a file over such a channel is to use an [n, k]Q-code (so that each
packet can be identified with a field element). Therefore a file consisting of k packets would be identified with
a message vector and encoded to a codeword of n packets, which would then be transmitted. This is however
highly impractical for large Q since performing the additions and multiplications in FQ becomes extremely
slow.

Instead we use a smaller field Fq and interleave many codewords within the packets. More precisely, suppose
that q = 2� and Q = 2L and also suppose for simplicity that 	 divides L, with L = b	. We then use an
[n, k]q-code C.

One packet consists of L = b	 bits. We can arrange these in a b × 	 matrix, each row of which can be
interpreted as an element of Fq (using the bijection σ defined above):

1 packet ←→

⎛
⎜⎝ g11 . . . g1�

...
...

gb1 . . . gb�

⎞
⎟⎠ ∈ Fb×�

2

σ︷︸︸︷←→

⎛
⎜⎝ γ1

...
γb

⎞
⎟⎠ ∈ Fb

q. (4.31)

Now k packets can be concatenated, leading to the following interpretation:

k packets ←→M ∈ Fb×k�
2

σ︷︸︸︷←→ M ∈ Fb×k
q (4.32)

(each packet corresponds to a column of M ). M is the “binary version” of M , obtained by replacing each
entry γ by σ(γ). Throughout this section, for any matrix P over Fq we will write its binary version as P (the
two can be linked either through σ or τ ).

We compute the encoding by interpreting each row of M as a message vector for our code C, which will
get post-multiplied by G to obtain a codeword. So the encoding of the b message vectors in M consists of
computing the b× n matrix C with

C = M ·G, (4.33)
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so each row of C is a codeword. This matrix multiplication could be done with standard finite field arithmetic,
but the idea in [10] is to perform this as a multiplication of binary matrices.

The data to be encoded is given binary form (i.e. as M ). Rather than converting it to elements of Fq (to M )
which we would then multiply by the generator matrix G ∈ Fk×n

q , instead we store G in its binary form G
and then perform the binary multiplication.

We construct G ∈ Fk�×n�
2 by replacing each entry γ of G ∈ Fk×n

q with the 	 × 	 matrix τ(γ). We then

compute the matrix C ∈ Fb×n�
2 as follows:

C = M ·G. (4.34)

Just as M was identified with k packets, we interpret C as n packets which can then be transmitted. Likewise,
just as b message vectors were interleaved into the k packets of M , b codewords are interleaved into the n
packets of C . Notice that the link between the Fq-matrix and its binary version is established through σ for
M and C , and through τ for G.

Multiplying binary matrices can be done by XOR’ing entire columns. The key point for practical applications
is that many bits can be XOR’ed in a single CPU cycle (how many depends on how big the registers of the
specific machine are). So while this does not improve the asymptotic running time (the number of bits that
can be XOR’ed in a single operation is of course constant), it can nonetheless make things much faster for a
fixed set of parameters. We will refer to one such column (i.e. an element of Fb

2) as a symbol.

The algorithm can be described as follows:

Algorithm 4.3: BINARY MULTIPLY BY XOR’ING COLUMNS

Input: A binary b× k	 matrix M , a binary k	× n	 matrix G.
Output: C = M ·G.

1: Set C to the b× n	 zero matrix
2: for i = 1, . . . , k	 do
3: for j = 1, . . . , n	 do
4: if (Gij = 1) then
5:

(
Column j of C

)← ( Column j of C
)

XOR
(

Column i of M
)

6: end if
7: end for
8: end for
9: return C .

The number of XORs of symbols (i.e. columns) that needs to be performed is equal to the number of ones in
G.

So the interleaving technique for multiplying two matrices over Fq involves interpreting them in their binary
forms, which can then be multiplied using Algorithm 4.3 by XOR’ing symbols.

To summarize the encoding process:

1. The generator matrix is stored in its binary form G ∈ Fk�×n�
q .

2. We interpret our k packets (consisting of kL = kb	 bits) as a matrix M ∈ Fb×k�
2

3. Compute C = M ·G using the algorithm above (so this is done exclusively through XORs of symbols).
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4. C ∈ Fb×n�
2 then contains the n encoded packets to be transmitted.

4.6.3 Encoding Time

We assess the running time of this algorithm in terms of the number of XORs of symbols per output symbol
produced. We assume that our code is systematic (indeed any code can be brought into systematic form [51]),
so its generator matrix G can be written as

G =
(
Ik

∣∣ A), (4.35)

where A is a k × (n − k) matrix in Fq. We let A be the binary version of A (replacing each field element γ
by the 	× 	 binary matrix τ(γ)).

The systematic packets (the first k) of course do not need to be computed, though we still count them as output
packets. We need only compute M ·A, and so the number of XORs of symbols that needs to be performed is
equal to the number of ones in the k	 × (n − k)	 matrix A (see the algorithm above). We expect about half

of its entries to be 1 which leads to an expectation of k(n−k)�2

2 XORs of symbols. Since the total number of
symbols produced is n	, the number of XORs per output symbol is

k	(n− k)

2n
. (4.36)

Notice that this is proportional to 	, so a smaller field size yields an improvement in the theoretical running
time (the field size is q = 2�).

For comparison, encoding without this XOR’ing technique would involve working with operations over Fq.

More precisely we would need to multiply the message M ∈ Fb×k
q by A ∈ F

k×(n−k)
q from (4.35). So this

would require bk(n − k) multiplications and b(k − 1)(n − k) additions over Fq.

4.6.4 Decoding Time

The decoding time depends not only on the parameters of the code, but also on how many systematic packets
were erased. The decoding process can be described as follows. Suppose that the n encoded packets were
transmitted, and that e of the systematic positions were erased. We consider the submatrix D of A whose rows
correspond to the positions of the erased systematic packets, and whose columns correspond to the positions
of the intact (non-erased) redundant packets. The decoding is successful if and only if the rank of D is e. If
so, then e columns of D are calculated such that the submatrix E of D formed by these columns is invertible,
and the corresponding intact redundant packets are marked (these e marked packets form a b × e matrix S
over Fq, or equivalently, through σ, a b× e	 binary matrix S).

We then let T denote the b × (k − e) Fq-matrix formed by the intact systematic packets. We let J be the
(k − e) × e submatrix of A whose rows correspond to the intact systematic packets, and whose columns
correspond to the marked redundant packets. We then use the interleaving technique (Algorithm 4.3) a first
time to compute TJ , and a second time to compute (S − TJ)E−1.

The decoding therefore consists of the following steps:

1. Compute E−1. We call this the equation solving step.
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2. Compute TJ . Finding T and J does not require any work since they are just submatrices of known
matrices. We multiply the matrices in their binary forms using Algorithm 4.3. We consider the b× (k−
e)	 binary version T of T (through σ), and the (k − e)	 × e	 binary version J of J (through τ ), and
compute T · J .

3. Compute the b× e	 binary matrix R = S − T · J .

4. Perform the multiplication R ·E−1 to obtain the e systematic packets that were erased.

Step 1 is done through Gaussian elimination, which requires O(e3) field operations. As a rule of thumb, if
the symbols are large, then the running time of this step is amortized over the computation of the XORs.
However, if e is large, or if the symbols are small, then this step may add significantly to the decoding time.

As for the encoding, we assess the running time of the remaining steps as the number of XORs of symbols to
produce an output symbol. The number of XORs for step 2 is equal to the number of ones in J . Again since

we expect half of the entries of this (k − e)	 × e	 matrix to be ones, we obtain a total of (k−e)e�2

2 XORs for
step 2. Step 3 involves adding two b× e	 matrices, which requires us to simply XOR the columns one by one,
leading to e	 XORs. Finally step 4 involves another matrix multiplication. We expect half of the entries of
the e	× e	 matrix E−1 to be ones, which leads us to a total of e2�2

2 XORs.

The (successful) decoder produces k packets, i.e. k	 symbols, so combining everything, we need((k − e)e	2

2
+ e	 +

e2	2

2

)
· 1

k	
=

ek	 + 2e

2k
(4.37)

XORs per output symbol, to which we must add the time taken by the equation solving step.

4.7 Implementations

As explained in the introduction, the work in this chapter was motivated by practical needs, so we include
some implementations to illustrate the speed-ups predicted in theory.

We will focus in this section on the following transmission problem: a given file of size up to 64 kB is to
be transmitted over an impaired packet network, where each packet has a payload of 1 kB. We compare the
performances of RS and AG-codes, which in both cases are implemented using the interleaving technique of
Section 4.6.

Our RS-codes are constructed over the field F256, and our AG-codes over F16. We implemented the encoding
and decoding algorithms in C (compiled with gcc, and gcc -O3 ) and ran them on an AMD Athlon MP
2400+ 2 Ghz processor with 1GB of RAM and 256 kB of cache.

4.7.1 Encoding Bit Rates

We saw in the previous section that there is a theoretical speed-up factor of 2 for the encoding. However we
found that in practice the speed-ups were in fact larger. This is true with no optimization, and the effect is
amplified even more when optimization options (gcc -O3) are set on the compiler (see the graphs below).

This could be due to many reasons, such as more efficient caching, as larger symbols are XOR’ed together,
but less often. These bit rates and ratios could of course change depending on implementation and on which
machine they are run. The results were nonetheless useful for the context in which we were interested.
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Figure 4.6: Encoding bit rates of RS and AG codes of length 64, with no optimization (gcc).
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Figure 4.7: The ratio between the encoding bit rates from Figure 4.6.
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Figure 4.8: Encoding bit rates of RS and AG codes of length 64, with gcc -O3 optimization.
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Figure 4.9: The ratio between the encoding bit rates from Figure 4.8.

4.7.2 Decoding Bit Rates

The theoretical decoding bit rates are a little more complicated. We showed in section 4.6.4 that we expected
the decoder to need

ek	 + 2e

2k
(4.38)

XORs of symbols per output symbol produced (where e is the number of erased systematic packets and the
field size is 2�), plus time taken by the equation solving step (see section 4.6.4). The latter is essentially
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O(e3), and since the smaller field size does not lead to the same improvements for this step as for the matrix
multiplications, we expect the gap between AG and RS codes to be smaller when e is large.

In our experiments we supposed a “worst-case scenario”, namely that there are n − k erasures, of which as
many as possible occur in the systematic packets. Formally this means that

e = min(n− k, k). (4.39)

We then make the erasures occur uniformly at random among the appropriate sets of packets.

The graphs below show the decoding bit rates under these conditions for AG and RS-codes.
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Figure 4.10: Decoding bit rates of RS and AG codes, with no optimization.
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Figure 4.11: The ratio between the decoding bit rates from Figure 4.10.
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We see that the ratio in Figure 4.10 is smaller when the rate gets close to 1/2. This is probably due to the
fact that these are the rates for which e is largest, and so as explained above the equation solving step takes a
bigger share of the running time which reduces the difference between the two codes.

As for the encoding bit rate, the -O3 optimization amplifies the gains that AG make over RS codes, as shown
in the graphs below:
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Figure 4.12: Decoding bit rates of RS and AG codes of length 64, with gcc -O3 optimization.
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Figure 4.13: The ratio between the decoding bit rates from Figure 4.12.

The generator matrix of an RS-code can actually be expressed as a Cauchy matrix, which means that the
equation solving step can be done faster (O(e2)). This is the principle of Cauchy Codes, see [10]. With this
improved decoding for RS-codes we obtain the following bit rates:
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Figure 4.14: Decoding bit rates of RS (faster equation solving) and AG codes, with -O3 optimization.
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Figure 4.15: The ratio between the decoding bit rates from Figure 4.14.

As expected the gains are not quite as good, but we still get improvements for all dimensions, which get quite
large when e moves aways from its maximum value.

4.8 Conclusion

For applications requiring very short blocks, AG and RS-codes become competitive solutions to protect data
against packet loss. There is a strong argument to be made that AG-codes are in many cases the preferable
option. Their key advantage is the use of smaller fields for a given length, which translates to faster encoding
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and decoding times. Furthermore, the speed-ups predicted in theory seem to actually be amplified in practice.
Although AG-codes do have higher error probabilities, we developed an algorithm to compute these and found
that in many situations the consequences are in fact minor.

We conclude by saying that although AG-codes are most famous for their asymptotic properties, it seems that
it is for very short lengths that they offer the greatest prospects for practical exploitations. The short AG-codes
presented in this chapter are being used commercially for video delivery.
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Chapter 5

Expander graphs

5.1 Introduction

Expander graphs and their constructions have been investigated since the 1970’s. Their remarkable properties
have led to applications in very diverse areas of computer science and discrete mathematics (coding theory,
network design, cryptography, complexity and others).

There are different ways to define graph expansion, all of which can be shown to be related. Intuitively, a
graph is a good expander if it is highly connected, meaning that all not-too-large sets of vertices have many
neighbors. This is clearly easier to achieve with graphs of larger degree, and the challenge is to construct good
expanders of a given constant degree. Perhaps surprisingly, it was shown [59] that a randomly chosen graph
will have these properties with high probability. Explicit constructions are however more difficult to achieve.

In this work we will mainly be concerned with the algebraic characterization called spectral expansion, which
measures the expansion of a graph by looking at its spectrum (more specifically the second largest eigenvalue).
This will enable us to use standard tools from linear algebra to study expansion properties. It also directly
governs the mixing rate of a graph, namely the speed at which a random walk on the graph will converge to
its stationary distribution.

In 1986 Alon [2] gave an upper bound on the spectral expansion that can be achieved by an infinite family of
graphs. Graphs reaching this bound are referred to as Ramanujan graphs, and were first explicitly constructed
by Margulis [54] and independently by Lubotzky, Phillips and Sarnak [44].

More recently, Reingold, Vadhan and Wigderson [61] introduced the zig-zag product, which enables an ele-
gant recursive construction. Although the resulting graphs are not Ramanujan, the construction is remarkable
in that its analysis effectively relies only on linear algebra which makes it not only easier to follow but also
somewhat more intuitive than any of the previous constructions.

The aim of this chapter is to introduce the necessary background for Chapter 6. Sections 5.2 to 5.5 will
present some preliminaries, definitions and standard results on expander graphs. In Section 5.6 we describe
some graph products and operations which will be used in the next chapter. Section 5.7 gives some results
on the spectral expansion of biregular bipartite graphs, which, although straightforward adaptations of their
non-bipartite counterparts, do not appear to feature prominently in the literature.

72



5.2 Background

Definition 5.1. We will use the following graph theory conventions:

• An undirected graph G is a pair (V,E) where V is a finite set (the set of vertices) and E ⊆ V × V is a
symmetric relation on V (the set of edges). Note that self loops are allowed.

• An undirected multigraph G is a pair (V,E) where V is a finite set (the set of vertices) and E ⊆ V × V is
a multiset (the set of edges) such that

(x, y) ∈ E =⇒ (y, x) ∈ E, with the same multiplicity.

Note that multiples edges and multiple self loops are allowed.

• The size of a graph G = (V,E) is defined as the number of vertices |V |.

• For any subset S ⊆ V of vertices, the set of neighbors of S, denoted N(S), is defined as

N(S) =
{
v ∈ V | ∃s ∈ S : (s, v) ∈ E

}
.

• The degree of a vertex is the number of incident edges (each self loop is counted as a single edge).

• A graph is said to be d-regular if all its vertices have degree d.

• A graph G = (V,E) is said to be bipartite if there are two disjoint subsets S, T ⊆ V with V = S ∪ T and
for any s1, s2 ∈ S, t1, t2 ∈ T we have

(s1, s2) /∈ E, and (t1, t2) /∈ E.

We will refer to the elements S and T as the left and right vertices.

• Let G = (V,E) be a bipartite graph with left and right vertex sets S and T . G is said to be biregular if there
are 	, r for which all left vertices have degree 	 and all right vertices have degree r.

	 and r are called the left degree and right degree respectively. Notice that

	 · |S| = r · |T |. (5.1)

• A path of length n is a sequence v0, . . . , vn of vertices, with (vi−1, vi) ∈ E for each i = 1, . . . , n.

• A cycle of length n is a path of length n in which v0 = vn.

• The distance between two vertices u, v is the length of the shortest path from u to v.

In this work we will be dealing mostly with regular undirected multigraphs. Unless otherwise stated, a graph
will refer to an undirected multigraph. We will refer to a d-regular graph of size n as an [n, d]-graph. We will
also be dealing with biregular bipartite graphs, whose properties are described in Section 5.7.
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Definition 5.2. We will also use the following linear algebra notation:

• For any n ∈ N, we define the set [n] as

[n] = {1, . . . , n}.

• A vector x ∈ Rn is a probability distribution (or probability vector) if ∀i ∈ [n] : xi ≥ 0, and

n∑
i=1

xi = 1.

• The inner product
〈·, ·〉 : Rn × Rn → R

is defined as

〈x, y〉 =
n∑

i=1

xi · yi.

• The norm of a vector x ∈ Rn is defined as

‖x‖ =
√
〈x, x〉.

• Two vectors x, y ∈ Rn are said to be orthogonal (or perpendicular), if

〈x, y〉 = 0.

We write this as x ⊥ y.

• Two vectors x, y ∈ Rn are said to be parallel if there is 0 �= β ∈ R such that

y = βx.

We write this as x ‖ y.

• A set of vectors {v1, . . . , vn} is said to be orthonormal if they are pairwise orthogonal, and ‖vi‖ = 1 for
each i = 1, . . . , n.

• x ∈ Rn is said to be an eigenvector of a matrix M ∈ Rn×n if there is an element λ ∈ R for which

Mx = λx.

λ is then called the eigenvalue of M corresponding to x.

• The set of eigenvalues of a matrix M is called its spectrum, and is denoted by Spec(M).

• A matrix is said to be stochastic if all its columns are probability vectors. It is doubly stochastic if all its
rows and all its columns are probability vectors.
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• In ∈ Rn×n denotes the n× n identity matrix.

• 1n denotes the vector in Rn whose entries are all 1.

• 1
‖
n denotes the space of vectors in Rn generated by 1n:

1‖n = {β · 1n | β ∈ R}.

• 1⊥n denotes the space of vectors in Rn that are orthogonal to 1n:

1⊥n = {v ∈ Rn | 〈v, 1n〉 = 0}.

Notice that 1
‖
n and 1⊥n have respective dimensions 1 and n − 1, and that they have only the zero vector in

common. We will use the terminology from [94] and call elements of 1
‖
n uniform and elements of 1⊥n anti-

uniform. We have
Rn = 1‖n ⊕ 1⊥n ,

which means that any vector w ∈ Rn can be uniquely decomposed as w = w‖ + w⊥ where w‖ is uniform
and w⊥ is anti-uniform.

Proposition 5.3. We have the following standard results:

• The Cauchy-Schwarz inequality: For any u, v ∈ Rn:∣∣〈u, v〉∣∣ ≤ ‖u‖ · ‖v‖. (5.2)

• The triangle inequality: For any u, v ∈ Rn:

‖u + v‖ ≤ ‖u‖+ ‖v‖. (5.3)

The adjacency matrix is a very natural way to represent a graph, and provides the link between graph theory
and linear algebra.

Definition 5.4. The adjacency matrix Adj(A) of a graph A with vertex set [n] is the n × n matrix such that
Adj(A)ij is equal to the number of edges between vertices i and j.

Notice that when A is undirected, Adj(A) is symmetric. When a graph A is regular, the normalized adjacency
matrix (defined below) will be a very important tool to represent A. In fact, we will often identify a regular
graph with its normalized adjacency matrix.

Definition 5.5. The normalized adjacency matrix of a d-regular graph A with vertex set [n] is the n×n matrix

MA =
1

d
· Adj(A). (5.4)

Notice that since Adj(A) is symmetric, so is MA. Furthermore, since each vertex has degree d we have

∀i ∈ [n] :

n∑
j=1

Adj(A)ij = d,
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and therefore for each row i
n∑

j=1

(MA)ij = 1.

Furthermore since MA is symmetric, we can deduce that it is a doubly stochastic matrix. We now give some
more properties of MA.

Theorem 5.6. Any n× n real symmetric matrix has n real eigenvalues and n orthonormal eigenvectors.

Proof: This is a standard result, see for example [7].

So in particular, since the normalized adjacency matrix of a graph is real and symmetric, it has n real eigen-
values which we write (in decreasing order) λ0 ≥ . . . ≥ λn−1, and to which correspond respectively n
eigenvectors v0, . . . vn−1 with

〈vi, vj〉 = δij .

For a graph A, when we refer to the spectrum of A we will mean the spectrum of MA.

Proposition 5.7. Let A be a regular graph and let MA be its normalized adjacency matrix. If λ0 ≥ . . . ≥
λn−1 are its (ordered) eigenvalues with corresponding orthonormal eigenvectors v0, . . . , vn−1, then

λ0 = 1 and v0 =
1n√
n

.

Furthermore, for all i = 1, . . . , n− 1 we have

|λi| ≤ 1.

Proof: This is a standard result, we take the proof from [94]. We will start by showing the second part, namely
that |λi| ≤ 1 ∀i. Let λ be any eigenvalue with corresponding eigenvector v. For any j ∈ [n], we denote by
(v)j the jth component of v. Let k ∈ [n] be an index for which |(v)k| is maximal:

|(v)k| = max
j∈[n]

|(v)j |.

Now since MA · v = λv, we have in particular that (MA · v)k = (λv)k, and therefore |(MA · v)k| = |(λv)k|.
Letting aij = Adj(A)ij , this leads to

∣∣ n∑
j=1

akj · (v)j
∣∣ = |λ| · |(v)k|,

and therefore

|λ| =

∣∣Pn
j=1 akj ·(v)j

∣∣
|(v)k |

≤
Pn

j=1 |akj |·|(v)j |
|(v)k | (by the triangle inequality)

≤ ∑n
j=1 |akj| (since |(v)j | ≤ |(v)k| for all j ∈ [n])

= 1 (since MA is doubly stochastic).
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It now just remains to be shown that 1 is an eigenvalue. This follows immediately from the fact that MA is
doubly stochastic: Taking the uniform vector 1n we see that for all i

(MA · 1n)i =

n∑
j=1

aij = 1 = (1n)i,

and therefore MA · 1n = 1n. Normalizing this eigenvector gives us

λ0 = 1, v0 =
1n√
n

.

The spectrum of a graph can tell us about its expansion properties. The second eigenvalue will be of particular
interest:

Definition 5.8. Let A be a non-bipartite graph and let λ0 ≥ . . . ≥ λn−1 be its eigenvalues. The second
eigenvalue of A is defined as

λA = max
(|λ1|, |λn−1|

)
.

So λA is the second largest eigenvalue in absolute value. Notice that from proposition 5.7, for any graph A
we have 0 ≤ λA ≤ 1. Definition 5.8 applies only to non-bipartite graphs. We will see in Section 5.7 the
corresponding definition for bipartite graphs.

Proposition 5.9. Let A be a regular graph and let λ0 ≥ . . . ≥ λn−1 be its eigenvalues. Then

• A is connected if and only if λ1 < 1.

• A is bipartite if and only if λn−1 = −1.

Proof: See for example [94].

The following characterization of the second eigenvalue of a graph will be very useful in the next chapter:

Theorem 5.10. For any non-bipartite graph A we have

λA = max
0�=x∈1⊥n

∣∣〈MA · x, x〉∣∣
〈x, x〉 .

Proof: See for example [94].
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5.3 Expander Graphs

As explained in the introduction, there are different ways of measuring graph expansion. The most intuitive
ways are combinatorial, and we start with edge expansion. For a graph A = (V,E) and a subset S ⊆ V of
vertices, we let S denote the complement of S in V , and define the edge boundary of S as the set of outgoing
edges from S:

∂S = E ∩ (S × S
)
.

Definition 5.11. A graph A = (V,E) is said to be an h-edge expander if

∀S ⊆ V : |S| ≤ |V |
2

=⇒ |∂S| ≥ h · |S|.

We also define the edge expansion parameter of A as

h(A) := min
{
h | A is an h-edge expander

}
.

So edge expansion requires that sets have many outgoing edges. This is closely related to the concept of vertex
expansion:

Definition 5.12. A graph A = (V,E) is said to be an (α, β)-vertex expander if

∀S ⊆ V : |S| ≤ α · |V | =⇒ |N(S)| ≥ β · |S|.

This is saying that any set S of vertices that is not too large “expands” into its neighborhood (i.e. N(S) ≥
β · |S|). Often α is set to 1

2 which leads to the following common definition:

Definition 5.13. A graph A = (V,E) is said to be a β-vertex expander if

∀S ⊆ V : |S| ≤ |V |
2

=⇒ |N(S)| ≥ β · |S|.

We also define
β(A) := max

{
β | A is a β-vertex expander

}
.

Expander graphs are sometimes said to be “highly connected”, referring to the fact that sets of vertices have
many neighbors. Although this definition has a clear visual interpretation (and goes well with the word
expander), it is sometimes difficult to prove results relating to the expansion of specific graphs using edge or
vertex expansion. Instead we will be mostly concerned with the following algebraic characterization of graph
expansion:

Definition 5.14. A regular graph A = (V,E) is said to be a λ-spectral expander if its second eigenvalue λA

has the property that
λA ≤ λ.

Recall from Theorem 5.7, that 0 ≤ λA ≤ 1. The value 1− λA is referred to as the spectral gap. A larger gap
means better expansion. We will refer to d-regular λ-spectral expander of size n as an [n, d, λ]-graph. When
we say that a graph is a λ-expander we mean that it is a λ-spectral expander.
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The definitions above are all essentially measuring the same thing. The relationships between them are im-
portant, in the sense that it is often easier to analyze and construct graphs based on their spectral expansion,
while some applications make direct use of their combinatorial expansion properties.

The relationship between edge and spectral expansion is captured in the following theorem [33]:

Theorem 5.15. For any [n, d, λA]-graph A we have

d(1− λA)

2
≤ h(A) ≤ d

√
2(1 − λA). (5.5)

This was proved by Dodziuk [23] and independently by Alon-Milman [6] (see [33]). We can also relate vertex
and spectral expansion as follows:

Theorem 5.16. For any [n, d, λA]-graph A we have

1− 2β(A) ≤ λA ≤
√

1− (β(A) − 1)2

d2 · (8 + 4(β(A) − 1)2)
. (5.6)

The second inequality of (5.6) was proved by Alon in [2]. The first inequality follows from the fact that
h(a) ≤ d · β(A) and Theorem 5.15.

5.4 Random Walks

The behavior of a random walk on a given graph is strongly related to its expansion properties. Although we
have at our disposal a wide range of algebraic tools to study the spectral expansion of a graph, random walks
have the advantage of having a very appealing intuition. When we look at graph products it is often convenient
to conceptualize a product of two graphs A and B in terms of how one step of a random walk on this product
is constructed from steps of walks on A and B. In our proofs we will often supplement the calculations with a
a description of what we are doing in terms of random walks. Furthermore, many of the practical applications
of expander graphs in computer science explicitly use the mixing properties of expander graphs.

Using the normalized adjacency matrix MA, we can analyze random walks in algebraic terms. When we start
with an initial distribution x0 ∈ Rn on the vertices of A, after one step of a random walk on A the distribution
will be

x1 = MA · x0.

Likewise after t steps it will be
xt = (MA)t · x0.

We will also refer to MA as the transition matrix of A.

In any connected non-bipartite d-regular graph A, taking a random walk on its vertices starting from any
initial distribution will converge to the uniform distribution 1n

n . The spectral expansion λA determines the
speed of this convergence. The better the expansion properties of A, the faster a walk will converge to the
uniform distribution. This is written more formally in the following theorem (see for example [33]):

Theorem 5.17. Let A be a non-bipartite λA-spectral expander. Starting with any initial distribution x0 ∈ Rn

on the vertices of A, the distribution xt after t steps of a random walk will satisfy:∥∥xt − 1n

n

∥∥ ≤ λt
A.
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So we can say that the distribution converges exponentially fast to the uniform distribution, with base λA.

Proof: Let λ0 ≥ . . . ≥ λn−1 be the eigenvalues of A, with corresponding normalized eigenvectors v0, . . . , vn−1.
We know from Theorem 5.6 that these eigenvectors form an orthonormal basis of Rn. We can write x0 in this
basis as

x0 =
n−1∑
i=0

αi · vi.

We have:
xt = At · x0

= At ·∑n−1
i=0 αi · vi

=
∑n−1

i=0 αi · λt
i · vi

= α0 · λt
0 · v0 +

∑n−1
i=1 αi · λt

i · vi

= α0 · v0 +
∑n−1

i=1 αi · λt
i · vi (since λ0 = 0).

(5.7)

Recall from Proposition 5.7 that v0 = 1n/
√

n. This means that

α0 = 〈x, v0〉 =

∑n
i=1 xi√

n
=

1√
n

(since x is a distribution), (5.8)

so that

α0 · v0 =
1n

n
. (5.9)

Continuing with (5.7), we have∥∥xt − 1n
n

∥∥ =
∥∥xt − α0 · v0

∥∥
=
∥∥∑n−1

i=1 αi · λt
i · vi

∥∥
=
√∑n−1

i=1 α2
i · λ2t

i (since the vi’s are orthonormal)

≤ λt
A ·
√∑n−1

i=1 α2
i

≤ λt
A · ‖x0‖

≤ λt
A (since x0 is a distribution).
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5.5 Families of Expander Graphs

As we have previously seen with codes, there are many applications of expanders in which we do not know
beforehand the size of the required graph. So just as we had worked families of codes in Chapter 3, we can
define families of graphs. It is much more convenient (and elegant) to construct families of graphs that display
the desired properties, rather than ad-hoc constructions of good graphs of different sizes. Furthermore, when
expanders are employed to show asymptotic results it often becomes necessary to work with infinite families
of graphs.

Definition 5.18. A (fixed degree) family of graphs of degree d is a sequence {Ai}i∈N, where Ai is an [ni, d]-
graph and

lim
i→∞

ni = ∞.

A family of graphs is said to be a λ-expander family if each Ai is a λ-spectral expander. A family is said to be
an expander family if it is a λ-expander family for some λ < 1. Recall that a smaller second eigenvalue means
better expansion, so it is desirable to construct λ-expander families for λ as small as possible. We have the
intuition that it is easier to construct expanders of larger degree (the “high connectivity” can be more readily
achieved with many edges), so the challenge is to build the best possible expanders of a given degree d.

The following theorem (stated in [2]) gives a lower bound on the best λ that can be achieved, and its relation-
ship to the degree.

Theorem 5.19. (Alon-Boppana). Let {Ai}i∈N be a family of graphs of degree d. Then

lim
i→∞

λ(Ai) ≥ 2
√

d− 1

d
.

This is sometimes referred to as the Alon-Boppana bound. It provided a benchmark against which one can
measure how good a given family of expander graphs is. Graphs achieving this bound are referred to as
Ramanujan graphs.

Example 5.20. For any i ∈ N∗ we define Zi as the ring of integers modulo i:

Zi = Z/iZ. (5.10)

Some examples of explicit expander family constructions:

1. Let Vi = Zi × Zi. Each vertex (x, y) ∈ Vi has the following 4 neighbors:

(x + y, y), (x− y, y), (x, x + y), (x, x− y).

Then Ai = (Vi, Ei) is an [i2, 4]-graph, and {Ai}i∈N∗ is an expander family [78].

2. Let Vi = Zi × Zi. Each vertex (x, y) ∈ Vi has the following eight neighbors:

(x + y, y), (x− y, y), (x, y + x), (x, y − x),
(x + y + 1, y), (x− y + 1, y), (x, y + x + 1), (x, y − x + 1).

(5.11)

Then Ai = (Vi, Ei) is an [i2, 8]-graph, and {Ai}i∈N∗ is an expander family [33] [78].

This was the first construction of an explicit expander family, and is due to Margulis [52] (1973). His
proof was existential in the sense that it did not provide an explicit bound on the expansion of the family.
This was obtained later by Gabber and Galil [27].
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3. Let pi denote the ith prime. We let Vi = Z×
pi

, and the edge set Ei ⊆ Vi × Vi is defined as

Ei =
{
(x, x−1), (x, x + 1), (x, x − 1)

∣∣ x ∈ Vi\{0}
} ∪ {

(0, 0), (0, 1), (0,−1)
}
. (5.12)

Then Ai = (Vi, Ei) is a [pi, 3]-graph, and {Ai}i∈N∗ is an expander family [33].

4. Let p and q be distinct primes, with p ≡ q ≡ 1 mod 4, and let u be an integer for which u2 ≡ −1 mod q
(such a u always exists). It can be shown [44] that there are exactly (p + 1) 4-tuples (a0, a1, a2, a3)
with

a2
0 + a2

1 + a2
2 + a2

3 = p, (5.13)

and for which a0 > 0 is odd, and a1, a2, a3 are even. To each such tuple we associate the matrix(
a0 + ua1 a2 + ua3

−a2 + ua3 a0 − ua1

)
∈ PGL(2, Fq), (5.14)

and let S be the set of these p + 1 matrices. The Cayley graph Apq of PGL(2, Fq) with respect to S is
then an [N, p + 1]-graph, where

N = |PGL(2, Fq)| = q(q2 − 1). (5.15)

It can be shown [44] that

λApq =
2
√

p

p + 1
. (5.16)

So if we fix p ≡ 1 mod 4, take an infinite sequence q1 < q2 < . . . of primes for which qi ≡ 1 mod 4,
and let Ai = Apqi , then {Ai}i∈N∗ is a family of Ramanujan graphs of degree (p + 1).

This construction is due to Lubotzky, Phillips and Sarnak [43] [44] (1988). The term Ramanujan graph
comes from this family whose analysis uses the Ramanujan conjecture. This was later extended by
Morgenstern [56] to obtain constructions of (q + 1)-regular Ramanujan graphs for all prime powers q.

5.6 Graph Products and Operations

Because we are working with multigraphs, the edges E ⊆ V ×V form a multiset (a set in which elements can
appear multiple times). It is often inconvenient to refer to edges as elements of this multiset. Instead, having
a labeling of the edges allows for more concise notation.

We start this section by introducing labelings and the notation that follows, which we will then use to present
some graph products.

5.6.1 Edge Labelings

A labeling of an [n, d]-graph A consists of assigning distinct labels to the edges leaving each vertex of A. The
labels will be elements of a set L of size d. We often have L = [d]. In this case for a vertex u ∈ [n], if the
edge labeled i ∈ L connects u to v then we can say that v is the ith neighbor of u.

Each edge has two labels (one corresponding to each one of its vertices), and these labels may be different.
This is saying that if v is the ith neighbor of u then u may not be the ith neighbor of v. We write this formally
as follows:
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Definition 5.21. Let A = (V,E) be an [n, d]-graph on vertex set [n]. A labeling in L (so |L| = d) for a vertex
u ∈ [n] is a bijection

μu : L→ N(u). (5.17)

A labeling μ for the whole graph A consists of a labeling for each one of the n vertices

μ =
{
μu | u ∈ [n]

}
. (5.18)

All our graphs will either have some arbitrary (but fixed) labeling, or an implicit labeling from their construc-
tion. This enables us to employ the following notation:

Definition 5.22. Let A be an [n, d]-graph on vertex set [n], and with a labeling in [d]. For u, v ∈ [n] and
i ∈ [d] we use the notation

v = u[i] (5.19)

to denote the fact that v is the ith neighbor of u (i.e. that μu(i) = v).

Definition 5.23. A labeling of an [n, d]-graph A is said to be a d-edge-coloring if for each edge its two labels
are identical. More formally:

∀u ∈ [n], i ∈ [d] : u[i][i] = u. (5.20)

Not all d-regular graphs have d-colorings. Finding a d-edge-coloring is equivalent to partitioning the vertices
of A into d perfect matchings. So for example if n is odd then A does not have a d-edge-coloring. It turns out
that determining whether a given graph has d-edge-coloring is NP-complete [32]. In this work when we refer
to a coloring we mean an edge-coloring.

Definition 5.24. A labeling is said to be a half-coloring if for each color i ∈ [d] there is a corresponding color
ρ(i) ∈ [d] for which any edge colored i at one end will be colored ρ(i) at the other end. More formally, there
is a mapping ρ : [d] → [d] that satisfies

∀u ∈ [n], i ∈ [d] : u[ρ(i)][i] = u[i][ρ(i)] = u. (5.21)

We refer to ρ as the partner mapping. Notice that ρ is an involution. So a d-edge-coloring is a special case
of a half-coloring, in which ρ is the identity map. When a labeling is a half-coloring, the labels will also be
referred to as colors.

Half-colorings will be of interest to us because for our analysis of the expansion properties of the deran-
domized tensor product in Chapter 6 it will be necessary and sufficient for the graphs involved to have half-
colorings. They are also interesting because some of the graph products we will see preserve half-colorings,
but not colorings.

Non-regular graphs can also be labeled in a natural way. For each vertex u, the edges adjacent to u are labeled
with elements from a set of size deg(u).

5.6.2 Graph Squaring

We use the notation from Definition 5.22 to describe our products.
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Definition 5.25. Let A be an [n, d]-graph with a labeling. The square A2 of A is the [n, d2]-graph with vertex
set [n] and a labeling in [d]× [d]. For any a ∈ [n] and (i, j) ∈ [d]× [d], we have

a[i, j] = a[i][j]. (5.22)

More intuitively, this can be interpreted as taking all paths of length 2 in A. So A2 has the same vertex set as
A, and we put an edge in A2 between two vertices a, u for each path of length 2 between a and u in A. In
terms of random walks, taking one step in A2 can be decomposed into taking 2 substeps in A. For each of
these substeps we have d choices which gives us a total of d2 choices (as expected since the degree of A2 is
d2).

Notice that the labeling of A2 (with [d] × [d] as its set of labels) is implicit to its construction from A. It can
also be checked that graph squaring preserves half-colorings but not colorings.

Since A2 has the same size as A but has more edges, we expect it to be a better expander. More precisely, the
second eigenvalue gets squared:

Proposition 5.26. If A has second eigenvalue λA then A2 has second eigenvalue

λ(A2) = λ2
A.

Proof: If we let λ0 ≥ . . . ≥ λn−1 be the spectrum of MA, then the spectrum of M2
A will be λ2

0, . . . , λ
2
n−1.

By definition we have

λA = max
{|λ1|, . . . , |λn−1|

}
, and λ(A2) = max

{
λ2

1, . . . , λ
2
n−1

}
. (5.23)

Squaring positive numbers preserves their ordering, so as required:

λ(A2) = λ2
A. (5.24)

5.6.3 Graph Tensoring

Definition 5.27. Let A be an [n, d1]-graph, and let B be an [m,d2]-graph. Their tensor product A ⊗ B is
an [nm, d1d2]-graph with vertex set [n] × [m] and a labeling in [d1] × [d2]. For any (a, b) ∈ [n] × [m] and
(i, j) ∈ [d1]× [d2], we have

(a, b)[i, j] = (a[i], b[j]). (5.25)

Throughout this work, we will interpret the vertex set [n] × [m] as n copies of [m]. We will also follow the
convention of [61] and refer to these copies as clouds. So for a vertex (a, b) ∈ [n] × [m], a describes which
cloud it belongs to, and b describes its position within cloud a.

In the context of random walks, we can interpret a step (i, j) in A⊗B from the vertex (a, b) as follows:

1. Take one step between clouds. The different possibilities are given by the edges of A. The position b
within the cloud does not change:

(a, b) → (a[i], b).

Notice that there are exactly d1 possible choices for this step.
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2. Take one step within the new cloud a[i]. We view the cloud as a copy of B, and take one step along an
edge of this copy (so we stay in the same cloud):

(a[i], b) → (a[i], b[j]).

Notice that there are exactly d2 possible choices for this step.

So the total number of choices for both steps is d1d2, which as expected is equal to the degree of A⊗B. The
labeling of A⊗B (with [d1]× [d2] as its set of labels) is implicit to its construction from A and B. The two
subsets into which step (i, j) were decomposed above are commutative, we could just as well have presented
them the other way round.

It can also be checked that graph tensoring preserves both colorings and half-colorings. Graph tensoring can
also be interpreted as an operation on the corresponding transition matrices. We conveniently have

MA⊗B = MA ⊗MB . (5.26)

The expansion of A⊗B will be the worse of the two expansions:

Proposition 5.28. If A and B have second eigenvalues λA and λB then A⊗B has second eigenvalue

λA⊗B = max
{
λA, λB

}
.

Proof: If we let λ0 ≥ . . . ≥ λn−1 and μ0 ≥ . . . ≥ μm−1 and be the eigenvalues of MA and MB , then{
λi · μj

∣∣ i = 0, . . . , n− 1, j = 0, . . . ,m− 1
}

(5.27)

is the set of eigenvalues of MA⊗B. Since λ0 = μ0 = 1, the result follows.

5.6.4 The Zig-Zag Product

The Zig-zag product, introduced in 2002 by Reingold, Vadhan and Wigderson [61] enables the recursive
construction of expander families. In all previous explicit constructions of expander families, although the
graphs were easy to describe, the proofs of why they lead to good expanders were highly algebraic and rather
complex. It was therefore difficult to conceptualize the connection between the algebra and the actual graphs,
or to get any intuition as to why the resulting families were in fact expanders.

The zig-zag construction however is remarkable in that its analysis effectively relies on linear algebra, which
makes it not only easier to follow but also somewhat more intuitive. Once the expansion properties of the
product are known, it is very simple to show that the recursion suggested in [61] leads to an expander family.

Definition 5.29. Let A be an [n, d1]-graph, and let B be a [d1, d2]-graph. Their zig-zag product A z©B is
an [nd1, d

2
2]-graph with vertex set [n] × [d1] and a labeling in [d2] × [d2]. For any (a, b) ∈ [n] × [d1] and

(i, j) ∈ [d2]× [d2] we have
(a, b)[i, j] = (a[b[i]], b[i][j]). (5.28)

The zig-zag product has an appealing intuition in terms of walks. We can view the construction as first
replacing each vertex of A by a copy of the vertices of B (which we call a cloud), leading to the vertex set
[n]× [d1]. We can then break up one step (labeled (i, j)) in A z©B from vertex (a, b) into three substeps:
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1. We take one step within the current cloud (d2 choices):

(a, b) → (a, b[i]).

2. We take one step between clouds (deterministic, only one choice).

(a, b[i]) → (a[b[i]], b[i]).

3. We take one step within the new cloud (d2 choices)

(a[b[i]], b[i]) → (a[b[i]], b[i][j]).

Step 2 is determined by which vertex we are on within the current cloud. Indeed, this vertex corresponds to
an edge label in A, and therefore uniquely defines a neighbor of the current cloud. This leads to a total of d2

2

choices, which as expected is equal to the degree of A z©B.

The expansion of A z©B can be bounded as follows:

Theorem 5.30. If A is an [n, d1, λA]-graph, and B is an [d1, d2, λB ]-graph, then A z©B is a [n·d1, d2, f(λA, λB)]-
graph, where

f(λA, λB) =
1

2
· (1− λ2

B) · λA +
1

2
·
√

(1− λ2
B)2λ2

A + 4λ2
B . (5.29)

Furthermore, if λA, λB < 1 then f(λA, λB) < 1.

Proof: See [61].

Although the bound (5.29) is rather complicated, it can be shown that

f(λA, λB) ≤ λA + λB + λ2
B. (5.30)

As explained earlier, this product leads to recursive construction of fixed degree expander families.

Let B be a fixed [	8, 	, λ]-graph for some parameters 	 and λ. We define the family {Ai}i∈N∗ as follows:

A1 = B2

A2 = B ⊗B

∀i > 2 : Ai =

(
A� i−1

2 � ⊗A� i−1
2 	
)2

z©B.

It can be checked that Ai is a [	8i, 	2, μi]-graph, in which μi = λ + O(λ2). So by picking λ small enough
to start with, we can ensure that there is μ < 1 for which μi ≤ μ for all i, and therefore that {Ai}i∈N∗ is an
expander family.

We see the usual trade-off between degree and expansion in the choice of the initial graph B. Getting Ai to
have a small second eigenvalue requires λ to be small, which in turn means that the degree 	 of B must be
large, and this means that the degree 	2 of our family will also be larger.

This method does not enable the construction of a family of d-regular Ramanujan graphs (this would require
μ = O(d−1/2)). With the normal zig-zag product the best we can hope for is a second eigenvalue of O(d−1/4),
but through the derandomized zig-zag product (also in [61]) one can obtain a family of d-regular graph with
μ = O(d−1/3).
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5.6.5 Derandomized Squaring

The derandomized squaring operation was first presented by Rozenman and Vadhan [64]. Recall that squaring
an [n, d, λA]-graph A consisted in taking all paths of length 2. This led to improved expansion properties
(λA → λ2

A), but increased the degree considerably (d → d2). The idea of derandomized squaring is to take
only a subset of the paths of length 2. By cleverly choosing which of these paths to include we can get a
considerably smaller degree than A2, at the cost of only slightly worse expansion.

The idea is to use another graph C with parameters [d, t, λC ]. Let (u, v, w) be a path of length 2 in A. Let
i, k ∈ [d] be the labels of the edges from u to v and from v to w respectively. Then in A�C we keep only
those paths of length 2 for which i and k are connected in C . The expansion properties of the resulting graph
will depend on the expansion properties of both A and C . Formally:

Definition 5.31. Let A be an [n, d]-graph, and let C be an [d, t]-graph. The derandomized square A�C of
A with respect to C is the [n, dt]-graph with vertex set [n] and a labeling in [d1] × [t]. For any a ∈ [n] and
(i, j) ∈ [d]× [t] we have

a[i, j] = a[i][i[j]]. (5.31)

Notice that if Kd is the complete graph on d vertices then we obtain the standard squaring operation:

A�Kd = A2. (5.32)

Derandomized squaring does not preserve half-colorings or colorings. The expansion properties of A�C will
be analyzed in Section 6.3. The term “derandomized” comes from the fact that performing a random walk
on A�C requires fewer random bits than a random walk on A2. Indeed since the degree is smaller, there are
fewer choices to be made at each step.

5.6.6 Projection

The concept of graph projection will be essential to our proofs in the next chapter. Whenever we have a graph
whose vertices are divided into clouds, we can “collapse” each cloud into a single vertex, while keeping all
the edges.

Definition 5.32. Suppose we have an [nm, d]-graph A with vertex set [n] × [m]. Pn[A] is an [n,md]-graph,
with vertex set [n] and a labeling in [m]× [d], in which for any a ∈ [n], (b, k) ∈ [m]× [d]:

a[b, k] = u, (5.33)

where (u, v) ∈ [n]× [m] is the unique vertex of A for which (a, b)[k] = (u, v).

Notice that Pn[A] has the same number of edges as A. We can interpret the nm × nm transition matrix MA

of an [nm, d]-graph A as a block matrix, consisting of n × n blocks, each of size m×m. For i, j ∈ [n] and
k, 	 ∈ [m] we use the notation

(MA)ik,j� (5.34)

to refer to entry (k, 	) of block (i, j). The n× n transition matrix of P[A] is then equal to

(
MPn[A]

)
ij

=
1

m

m∑
k=1

m∑
�=1

(MA)ik,j�. (5.35)
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So each block is replaced with a single entry whose value is equal to the sum of all the entries in the block
divided by m. The factor 1

m ensures that MPn[A] is stochastic.

Example 5.33. Consider the following [18, 2]-graph A,

Figure 5.1: The graph A.

A has 18 vertices divided into 6 clouds. The projection P[A] (= P6[A]) of A is then the following graph:

Figure 5.2: The graph P[A].

So P[A] has 6 vertices, and the same number of edges as A (namely 18).

5.6.7 De-Projection

While projection collapsed each cloud into a single vertex, de-projection is a sort of reverse operation that
expands each vertex into a cloud.

Definition 5.34. Let A be a d-regular graph with vertex set [n] and a labeling in [d]. We define the de-
projection DP[A] of A as the [nd, 1]-graph with vertex set [n] × [d], in which each vertex (i, k) has a unique
neighbor:

(i, k)[1] = (i[k], 	), (5.36)

where 	 is the unique element of [d] for which i[k][	] = i.
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Notice that the graph DP[A] is a matching (i.e. no two edges are adjacent). If the labeling of A is a half-
coloring, then for each i ∈ [n] and each k ∈ [d], the element 	 from (5.36) is equal to the partner color ρ(k)
of k, so that

∀(i, k) ∈ [n]× [d] : (i, k)[1] = (i[k], ρ(k)). (5.37)

Likewise if the labeling is an edge coloring then 	 = k so that

∀(i, k) ∈ [n]× [d] : (i, k)[1] = (i[k], k). (5.38)

Notice that DP[A] has the same number of edges as A, and that there are no edges within the clouds, only
between clouds. Also, because it has degree 1, one step along DP[A] induces a permutation of the vertices (in
fact an involution).

We can write the transition matrix of DP[A] as follows:

(
MDP[A]

)
ik,jl

=

{
1 if j = i[k] and i = j[	]
0 otherwise.

(5.39)

The de-projection operation is defined for any [n, d]-graph, whereas the projection Pn[A] is defined only for
graphs whose vertices have been divided into n clouds. The relationship between the two operations can be
described as follows: For any [n, d]-graph A, we have

Pn

[
DP[A]

]
= A. (5.40)

Example 5.35. To illustrate the de-projection operation, we consider the [6, 3]-graph A given below. For
simplicity, the labeling in this example is an edge coloring.

Figure 5.3: The graph A.

So the edges of A are assigned one of three possible colors. Its de-projection DP[A] can then be drawn as:
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Figure 5.4: The graph DP[A].

We see that the vertices of A are replaced by clouds. Each cloud has one vertex for each color it used in A.
We also see that DP[A] has degree 1, and there are edges only between clouds, not within the clouds.

5.7 The Spectrum of Biregular Bipartite Graphs

Although the expansion properties of biregular bipartite graphs have been widely used (expander codes, for
example, are based entirely on these), there appears to be very little mention of the spectrum of such graphs,
and how it can be related to their expansion properties. Nevertheless, there is a similar link to that found
in non-bipartite regular graphs. For lack of reference, these links are derived in this section, along with the
results needed in the next chapter.

We had previously defined the second eigenvalue only for non-bipartite graphs. In this section we extend
this definition to cover biregular bipartite graphs, which will be used for our proofs in the next chapter. Our
aim is then first to prove the results that will be needed, and also to establish the relationship between the
second eigenvalue and combinatorial expansion in the biregular bipartite case. We will show that the second
eigenvalue also governs the rate of convergence of random walks (Proposition 5.45), and that a modified
version of the Expander Mixing Lemma holds (Lemma 5.48).

Throughout this section we will suppose that C is a biregular bipartite graph with d1 left vertices and d2 right
vertices and of left and right degrees 	 and r.

5.7.1 Notation

Recall that for any n ∈ N, [n] was defined as {1, . . . , n}, and 1n ∈ Rn was the all one vector. We will also
have the following:
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Definition 5.36. If d1 and d2 are the numbers of left and right vertices of C , then

D1 = {1, . . . , d1}.
D2 = {d1 + 1, . . . , d}.
[d] = {1, . . . , d} = D1 �D2.

(5.41)

When we consider vectors in Rd they will often have non-zero entries only in those positions in D1 or only in
D2, and will therefore work with the following spaces:

Definition 5.37. We define the subspaces R1 and R2 of Rd as follows:

R1 = {v ∈ Rd | vi = 0 ∀i ∈ D2}.
R2 = {v ∈ Rd | vi = 0 ∀i ∈ D1}.

We therefore have Rd = R1 ⊕R2.

Definition 5.38. e1 and e2 denote the following vectors in Rd:

(e1)i =

{
1 if i ∈ D1

0 if i ∈ D2.
(5.42)

(e2)i =

{
0 if i ∈ D1

1 if i ∈ D2.
(5.43)

Notice that e1 + e2 = 1d, 〈e1, e1〉 = d1, 〈e2, e2〉 = d2, and 〈e1, e2〉 = 0.

Recall that in general 1
‖
n and 1⊥n denote the spaces of vectors respectively parallel and perpendicular to 1n.

We have corresponding definitions for e1 and e2, where the spaces will be embedded into Rd.

Definition 5.39. For i = 1, 2, we have:

e
‖
i = {β · ei | β ∈ R}.

e⊥i = {v ∈ Ri | 〈v, ei〉 = 0}.
(5.44)

5.7.2 Transition Matrix

Let C be a biregular bipartite graph, with left and right vertex sets D1,D2, and of left and right degrees 	 and
r respectively. The number of edges of C can be expressed in two different ways:

|E(C)| = d1	 = d2r, (5.45)

which leads to the following equality
d1

d2
=

r

	
. (5.46)

The adjacency matrix of C has the form

Adj(C) =

(
0 X

X� 0

)
, (5.47)

91



where X is a d1 × d2 matrix. The rows of X have weight 	, while its columns have weight r. Adj(C) is
symmetric and therefore has d real eigenvalues and an orthonormal set of eigenvectors. The first problem we
encounter is how to define the normalized adjacency matrix of C . Indeed since C is not regular there is no
degree by which to divide Adj(C). Instead we define MC so that it describes one step of a random walk on
C . This requires it to be stochastic (each column must be a probability vector), which leads to the following
definition:

Definition 5.40. Let C be a biregular bipartite graph as describe above, with Adj(C) as in (5.47). Then the
normalized adjacency matrix (or transition matrix) MC of C is defined as

MC =

⎛
⎜⎜⎝

0 1
r ·X

1
� ·X� 0

⎞
⎟⎟⎠ . (5.48)

Because MC is stochastic, its eigenvalues are all between −1 and 1. However MC is not symmetric, and
therefore many of the properties we showed in the previous section for regular graphs no longer hold (for
example its eigenvectors are not necessarily pairwise orthogonal).

We start by presenting some characteristics of the spectrum and eigenvectors of Adj(C), which will then relate
to those of MC . Throughout this section, all vectors of the form(

x

y

)
(5.49)

will be elements of Rd, in which x ∈ Rd1 represents the top d1 components and y ∈ Rd2 the bottom d2

components. The next proposition states that the eigenvectors of Adj(C) with non-zero eigenvalues come in
pairs.

Proposition 5.41. If (
x

y

)
(5.50)

is an eigenvector of Adj(C) with eigenvalue λ, then(
x

−y

)
(5.51)

is also an eigenvector of Adj(C) with eigenvalue −λ.

Proof: See appendix C.

Next, we relate the spectrum of Adj(C) to that of MC . We can also deduce a bijection between the sets of
eigenvectors of the two matrices.

Proposition 5.42. Let u, v ∈ Rd be vectors written as follows:

u =

(
x

y

)
, v =

(
x√

	/r · y
)

. (5.52)

u is an eigenvector of Adj(C) with eigenvalue λ if and only if v is an eigenvector of MC with eigenvalue λ√
�r

.

Proof: See appendix C.
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5.7.3 Eigenvalues and Eigenvectors

The first consequence of Proposition 5.42 is that MC also has d real eigenvalues. We let λ0 ≥ . . . ≥ λd−1 be
these eigenvalues, and v0, . . . , vd−1 be the corresponding normalized eigenvectors. It can be checked that

e1 +
r

	
e2 and e1 − r

	
e2 (5.53)

are eigenvectors of MC , with respective eigenvalues 1 and −1. Since −1 ≤ λi ≤ 1 for all i, we deduce that
λ0 = 1 and λd−1 = −1. Normalizing the vectors in (5.53) gives us

λ0 = 1, v0 =

√
d2/d1 · e1 +

√
d1/d2 · e2√

d
(5.54)

and

λd−1 = −1, vd−1 =

√
d2/d1 · e1 −

√
d1/d2 · e2√

d
. (5.55)

Next, if we call u0, . . . , ud−1 the normalized eigenvectors of Adj(C) (ordered in the usual way), we know
first of all that they form an orthonormal basis of Rd. Using Proposition 5.42, we can also deduce from (5.54)
and (5.55) (and after normalizing) that

u0 =
e1√
2d1

+
e2√
2d2

, ud−1 =
e1√
2d1

− e2√
2d2

, (5.56)

and their corresponding eigenvalues are
√

	r and −√	r respectively.

5.7.4 Random Walks

A random walk on a biregular bipartite graph does not converge to the uniform distribution. Indeed it is clear
that if we start our walk on the left side, then after t steps we will be on the right side for odd t and back on
the left side for even t.

For an initial distribution x ∈ Rd, let

p1 =
∑
i∈D1

xi, and p2 =
∑
i∈D2

xi (5.57)

denote the probabilities of starting on the left and right sides respectively (so p1 + p2 = 1). Then when t is
even, the distribution Atx will converge to

weven = p1 · e1

d1
+ p2 · e2

d2
, (5.58)

and to
wodd = p2 · e1

d1
+ p1 · e2

d2
(5.59)

when t is odd. Intuitively this is saying that when t is even it is uniform over the left nodes with probability
p1 and uniform over the right nodes with probability p2 (and vice versa when t is odd).
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5.7.5 The Second Eigenvalue

Because λd−1 = −1, if we used for biregular bipartite graphs Definition 5.8 of the second eigenvalue, then
it would be 1 for every such graph. However we know that some bipartite graphs are better expanders than
others, and would like to have a definition that reflects this.

For a non-bipartite graph A with eigenvalues λ0 ≥ . . . ≥ λn−1 and corresponding eigenvectors v0, . . . , vn−1,
the definition of the second eigenvalue of A as

λC = max
(|λ1|, |λn−1|

)
(5.60)

was partly motivated in terms of convergence of random walks. The stationary distribution of a random walk
on A is a multiple of v0. An initial distribution x ∈ Rn can be expressed in the basis given by the eigenvectors
as

x =

n−1∑
i=0

αivi. (5.61)

Under a random walk on A it will converge to its first component α0v0, and λC therefore describes the rate at
which the other components get killed.

With a biregular bipartite graph C as above the situation is similar, though we must consider walks of even or
odd length separately to get convergence. In both cases the distributions to which the walks converge are in
Span(v0, vd−1), and so this time it is

max
(|λ1|, |λd−2|

)
(5.62)

that describes the rate at which the remaining components get killed. This leads to to the following definition:

Definition 5.43. Let C be a biregular bipartite graph with transition matrix MC , and let λ0 ≥ . . . ≥ λd−1 be
its eigenvalues. The second eigenvalue of C is defined as

λC = max
(|λ1|, |λd−2|

)
. (5.63)

Our aim in the rest of this section is to give some properties of λC we will need, and also to see how it can be
related to the expansion properties of C .

5.7.6 Results We Will Need

We saw in previous sections that in an [n, d] non-bipartite graph A, for any x ∈ 1⊥n :

‖MA · x‖ ≤ λA · ‖x‖. (5.64)

The following proposition presents the corresponding property of the second eigenvalue of a biregular bipartite
graph.

Proposition 5.44. Let C be a biregular bipartite graph, with transition matrix MC and second eigenvalue
λC .

• For any x ∈ e⊥1 , we have ∥∥MC · x
∥∥ ≤√d1

d2
· λC · ‖x‖. (5.65)
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• For any x ∈ e⊥2 , we have ∥∥MC · x
∥∥ ≤√d2

d1
· λC · ‖x‖. (5.66)

Proof: We will show only the first part (the second part follows by symmetry). We know from Proposi-
tion 5.42 that if λ0 ≥ . . . ≥ λd−1 are the eigenvalues of MC then

√
	r ·λ0, . . . ,

√
	r ·λd−1 are the eigenvalues

of Adj(C). We also let u0, . . . , ud−1 be the corresponding eigenvectors of Adj(C). These form an orthonor-
mal basis of Rd (since Adj(C) is symmetric). Once again, we decompose x with respect to this basis:

x =

d−1∑
i=0

αiui. (5.67)

Recall from (5.56) that

u0 =
e1√
2d1

+
e2√
2d2

, ud−1 =
e1√
2d1

− e2√
2d2

, (5.68)

Now because x ∈ e⊥1 we have

α0 = 〈x, u0〉 = 0, αd−1 = 〈x, ud−1〉 = 0. (5.69)

Also recall that

Adj(C) =

⎛
⎜⎜⎝

0 X

X� 0

⎞
⎟⎟⎠ , and MC =

⎛
⎜⎜⎝

0 1
r ·X

1
� ·X� 0

⎞
⎟⎟⎠ . (5.70)

The important thing to notice next is that because x ∈ R1, we have

MC · x =

⎛
⎜⎜⎝

0 1
r ·X

1
� ·X� 0

⎞
⎟⎟⎠ ·
(

x1

0

)
=

(
1
� ·X�x1

0

)
=

1

	
· Adj(C) · x. (5.71)

Since λi

√
	r is the eigenvalue of Adj(C) corresponding to ui (see Proposition 5.42) and α0 = αd−1 = 0 (see

(5.69)) this leads to

MC · x =
1

	
· Adj(C) ·

d−2∑
i=1

αi · ui =
1

	
·

d−2∑
i=1

αi ·
√

	r · λi · ui. (5.72)

Therefore by the definition of λC we have

∥∥MC · x
∥∥2

=
∥∥1

	
·

d−2∑
i=1

αi ·
√

	r · λi · ui

∥∥2 ≤ 	r

	2
· λ2

C ·

‖x‖2︷ ︸︸ ︷∥∥ d−2∑
i=1

αi · ui

∥∥2
. (5.73)

And so recalling that r
� = d1

d2
, this gives us

∥∥MC · x
∥∥ ≤√r

	
· λC · ‖x‖ =

√
d1

d2
· λC · ‖x‖, (5.74)

as required.
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5.7.7 Convergence of Random Walks

First of all, we see from the definition of MC (5.48) that

M2
C =

⎛
⎜⎜⎝

0 1
r ·X

1
� ·X� 0

⎞
⎟⎟⎠

2

=

⎛
⎜⎜⎝

1
�rXX� 0

0 1
�rX�X

⎞
⎟⎟⎠ . (5.75)

C2 is a regular graph of degree 	r with two connected components, and M2
C is its transition matrix. Let

μ0 ≥ . . . ≥ μd−1 be its eigenvalues with corresponding eigenvectors w0, . . . , wd−1. The wi’s form an
orthonormal basis of Rd. It can easily be checked that

M2
C · e1 = e1, M2

C · e2 = e2. (5.76)

Therefore normalizing these we see that

μ0 = 1, w0 =
e1√
d1

(5.77)

and
μ1 = 1, w1 =

e2√
d2

. (5.78)

In general, if λ is an eigenvalue of a matrix M then λ2 is an eigenvalue of M2. So here if λ0 ≥ . . . ≥ λd−1

are the eigenvalues of MC then {
μ0, . . . , μd−1

}
=
{
λ2

0, . . . , λ
2
d−1

}
. (5.79)

Since μ0 = λ2
0 and μ1 = λ2

d−1, the remaining μi’s are in
{
λ2

1, . . . , λ
2
d−2

}
, and therefore by the definition of

λC we have
μ2, . . . , μd−1 ≤ λ2

C . (5.80)

Now let x ∈ Rd be an initial distribution on the vertices of C . We stated above that a random walk of length
t on C will converge to different distributions depending on whether t is even or odd. In this subsection we
show this formally, and prove that the rate of convergence is given by the second eigenvalue λC of C .

Proposition 5.45. Suppose we take an even number t of steps of a random walk on C from an initial distri-
bution x ∈ Rd. Then

‖M t
Cx− weven‖ ≤ λt

C , (5.81)

where
weven = p1 · e1

d1
+ p2 · e2

d2
. (5.82)

Proof: t is even, so we let t = 2s. The eigenvectors w0, . . . , wd−1 of M2
C form an orthonormal basis of Rd.

We decompose x with respect to this basis as

x =

d−1∑
i=0

αiwi. (5.83)
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Recall that p1 and p2 were defined in (5.54) as the probabilities of starting on the left and right vertices of C:

p1 =
∑
i∈D1

xi, and p2 =
∑
i∈D2

xi. (5.84)

We have
α0 = 〈x, u0〉 = 〈x,

e1√
d1
〉 =

p1√
d1

, (5.85)

and likewise
α1 =

p2√
d2

. (5.86)

Now recalling that t = 2s gives us

M t
Cx = (M2

C)s
∑d−1

i=0 αiwi

=
∑d−1

i=0 αiμ
s
iwi

= α0w0 + α1w1 +
∑d−1

i=2 μs
iαiwi.

(5.87)

From the expression for α0, α1 (5.85), (5.86) and for w0, w1 (5.77), (5.78) we obtain

M t
Cx = p1

e1
d1

+ p2
e2
d2

+
∑d−1

i=2 μs
iαiwi

= weven +
∑d−1

i=2 μs
iαiwi

(5.88)

Therefore
‖M t

Cx− weven‖ =
∥∥∑d−1

i=2 μs
iαiwi

∥∥
=
√∑d−1

i=2 μ2s
i α2

i

≤ λ2s
C

√∑d−1
i=2 α2

i (using (5.80))

< λt
C · ‖x‖

≤ λt
C .

(5.89)

Proposition 5.46. Suppose we take an odd number of steps t = 2s + 1 of a random walk on C from an initial
distribution x.

1. If x ∈ R1 then

‖M t
Cx− e2

d2
‖ ≤

√
d1

d2
λt

C . (5.90)
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2. If x ∈ R2 then

‖M t
Cx− e1

d1
‖ ≤

√
d2

d1
λt

C . (5.91)

Proof: We will show only the first part, the second part will then follow by symmetry. Recall that M2
C has

two connected components, so it really is the concatenation of two separate subgraphs, one on the vertices in
D1 and the other on the vertices in D2. This is reflected in its eigenvectors wi which can be divided into two
categories: d1 of them in R1 (for the first subgraph) and the remaining d2 in R2 (for the second subgraph). So
if we express x in basis w0, . . . , wd−1 as

x =

d−1∑
i=0

αiwi, (5.92)

then we will have αi = 0 for all wi ∈ R2.

Recall from (5.57) that p1 and p2 were defined as

p1 =
∑
i∈D1

xi, and p2 =
∑
i∈D2

xi. (5.93)

Therefore in this case since x ∈ R1 (and x is a distribution), we have

p1 = 1, p2 = 0. (5.94)

It can be checked that
MC · e1

d1
=

e2

d2
. (5.95)

Now,
M t

Cx = M2s+1
C ·∑d−1

i=0 αiwi

= MC · (M2
C)s ·∑d−1

i=0 αiwi

= MC ·
(

p1
e1
d1

+ p2
e2
d2

+
∑d−1

i=2 μs
iαiwi

)
(from (5.87))

= MC ·
(

e1
d1

+
∑d−1

i=2 μs
iαiwi

)
(from (5.94))

= e2
d2

+ MC ·
∑d−1

i=2 μs
iαiwi (from (5.95)).

(5.96)

Because
d−1∑
i=2

μs
iαiwi ∈ e⊥1 , (5.97)

Proposition 5.44 tells us that

∥∥MC ·
d−1∑
i=2

μs
iαiwi

∥∥ ≤√d1

d2
· λC ·

∥∥ d−1∑
i=2

μs
iαiwi

∥∥. (5.98)
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This leads to
‖M t

Cx− e2
d2
‖ =

∥∥MC ·
∑d−1

i=2 μs
iαiwi

∥∥
≤
√

d1
d2
· λC ·

∥∥∑d−1
i=2 μs

iαiwi

∥∥ (from (5.98))

=
√

d1
d2
· λC ·

√∑d−1
i=2 μ2s

i α2
i

≤
√

d1
d2
· λC · λ2s

C ·
√∑d−1

i=2 α2
i (from (5.80))

<
√

d1
d2
· λ2s+1

C · ‖x‖

≤
√

d1
d2
· λt

C .

(5.99)

5.7.8 The Expander Mixing Lemma

We start by stating the expander mixing lemma, (due to Alon and Chung [3]):

Theorem 5.47. The Expander Mixing Lemma
Let A be a d-regular graph on vertex set [n]. Let S, T ⊆ [n]. Then∣∣∣∣|E(S, T )| − d · |S| · |T |

n

∣∣∣∣ ≤ λA · d ·
√
|S| · |T |.

This is saying that the number of edges between S and T is close to its expected value in a random setting,
namely d·|S|·|T |

2 . The second eigenvalue λA of A determines how close. We show below an analogue of the
expander mixing lemma for biregular bipartite graphs. The only difference is that one of the sets must contain
only left nodes and the other one only right nodes.

Theorem 5.48. The Bipartite Expander Mixing Lemma
Let C be a biregular bipartite graph, with left and right vertex sets D1 and D2 respectively, and left and right
degrees 	 and r. For any S ⊆ D1 and T ⊆ D2 we have∣∣∣∣|E(S, T )| − 	 · |S| · |T |

d1

∣∣∣∣ ≤ λC ·
√

	r ·
√
|S| · |T |.

Proof: Let χS ∈ Rd denote the characteristic vector of S:

(χS)i =

{
1 if i ∈ S
0 otherwise,

(5.100)
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and likewise let χT denote the characteristic vector of T .

If λ0 ≥ . . . ≥ λd−1 are the eigenvalues of MC , then Proposition 5.42 tells us that
√

	r · λ0 ≥ . . . ≥
√

	r · λd−1 (5.101)

are the eigenvalues of Adj(C). We then let u0, . . . , ud−1 be the corresponding normalized eigenvectors of
Adj(C), which form an orthonormal basis of Rd. Once again, we express χS and χT in this basis:

χS =

d−1∑
i=0

αi · ui, χT =

d−1∑
i=0

βi · ui.

A little maniplulation shows that ∣∣E(S, T )
∣∣ = χ�

S · Adj(C) · χT , (5.102)

which implies∣∣E(S, T )
∣∣ = χ�

S · Adj(C) · χT

=
(∑d−1

i=0 αiu
�
i

) · Adj(C) · (∑d−1
i=0 βiui

)
=
(∑d−1

i=0 αiu
�
i

) · (∑d−1
i=0 βi

√
	rλiui

)
=

√
	r ·∑d−1

i=0 αiβiλi (since the ui’s are orthonormal)

=
√

	r · (α0β0λ0 + αd−1βd−1λd−1 +
∑d−2

i=1 αiβiλi

)
=

√
	r · (α0β0 − αd−1βd−1 +

∑d−2
i=1 αiβiλi

)
,

(5.103)

where the last equality follows from the fact that λ0 = 1 and λd−1 = −1. Recall from (5.56) that

u0 =
e1√
2d1

+
e2√
2d2

, ud−1 =
e1√
2d1

− e2√
2d2

. (5.104)

This means that

α0 = 〈χS , u0〉 =
|S|√
2d1

, and αd−1 = 〈χS , ud−1〉 =
|S|√
2d1

. (5.105)

Likewise we obtain

β0 =
|T |√
2d2

, and βd−1 = − |T |√
2d2

. (5.106)

Combining (5.103), (5.105) and (5.106) leads to

∣∣E(S, T )
∣∣ =

√
	r ·
(

|S||T |√
4d1d2

− −|S||T |√
4d1d2

+
∑d−2

i=1 αiβiλi

)

=
√

	r · 2|S||T |
2
√

d1d2
+
√

	r ·∑d−2
i=1 αiβiλi

= �|S||T |
d1

+
√

	r ·∑d−2
i=1 αiβiλi (since �

d1
= r

d2
).

(5.107)
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Finally, ∣∣∣∣|E(S, T )| − �|S||T |
d1

∣∣∣∣ =

∣∣∣∣√	r ·∑d−2
i=1 αiβiλi

∣∣∣∣
≤

√
	r ·∑d−2

i=1 |αi| · |βi| · |λi|

≤ √
	r · λC ·

∑d−2
i=1 |αi| · |βi| (by the definition of λC)

≤ √
	r · λC ·

∑d−1
i=0 |αi| · |βi|.

Now define the vectors α′, β′ ∈ Rd as α′
i = |αi| and likewise for β′. We obtain∣∣∣∣|E(S, T )| − �|S||T |

d1

∣∣∣∣ ≤ √
	r · λC · 〈α′, β′〉

≤ √
	r · λC · ‖α′‖ · ‖β′‖ (by the Cauchy-Schwartz inequality)

=
√

	r · λC · ‖α‖ · ‖β‖

=
√

	r · λC · ‖χS‖ · ‖χT ‖

=
√

	r · λC ·
√
|S| · |T |,

as required.
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Chapter 6

Derandomization Through Expander
Graphs

6.1 Introduction

The derandomized square introduced by Rozenman and Vadhan in [64] enabled the derandomization of a
standard graph product, leading to graphs of smaller degree at the cost of slightly worsening the expansion
properties. The derandomized square of a graph A is taken with respect to another graph C , and the authors
obtained in [64] a bound on its spectral expansion as a function of the second eigenvalues of A and C , which
they then improved in [65]. They also used this product to obtain an alternative proof that S-T connectivity
in undirected graphs can be solved in deterministic logspace.

In this chapter we introduce derandomized versions of another standard graph product (tensoring), and of a
code product (concatenation). These are based on the ideas presented in [64], and are also taken with respect
to another graph on whose expansion their properties will depend. We will first derive the improved bound
on the expansion of the derandomized square from [65] using a different method. We can then use these
techniques to analyze and bound the expansion of the derandomized tensor product. This will require some
of the tools introduced in the previous chapter.

The derandomization technique essentially involves taking a graph and removing certain edges. Which edges
are removed is determined by another graph. In derandomized code concatentaion, we apply an analogous
technique to the world of codes, whereby a code is punctured with a pattern given by an expander graph. This
is interesting in the sense that constructing good codes can essentially be reduced to finding good puncturing
patterns, indeed almost any code can be seen as a puncturing of the dual of a Hamming code. Likewise, an
AG-code is really a puncturing of a product of two or more Reed-Solomon codes.

We start with some standard definitions and results that will constitute the background for the subsequent
proofs. We then obtain in Section 6.3 the bound on the spectral expansion of the derandomized square. The
derivation of our bound on the second eigenvalue of the derandomized tensor product is rather technical. We
give only an outline in Section 6.4 and include the full proof in Appendix B. The analysis is effectively an
extension of that in Section 6.3, though considerably longer. Finally in Section 6.5 we introduce and study
derandomized code concatenation.
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6.2 Background

We will be interacting often with vector spaces, tensor products and inner products. We therefore start by
giving some definitions and standard results.

Definition 6.1.
• If u ∈ Rn and v ∈ Rm then u⊗ v is a vector in Rnm (i.e., we identify Rn ⊗Rm with Rnm). If we index its
entries with the set [n]× [m] then we have

(u⊗ v)ij = ui · vj .

• If G ∈ Rn×n and H ∈ Rm×m then G⊗H is a matrix in Rnm×nm. If we index its rows and columns with
the set [n]× [m] then we have

(G⊗H)ik,j� = Gij ·Hk�.

• If U and V are subspaces of Rn, then U ⊗ V is the vector space defined as

U ⊗ V = Span
{
u⊗ v | u ∈ U, v ∈ V

}
.

The basic properties of tensor and inner products we will use are given below:

Proposition 6.2.
• If G ∈ Rn×n, H ∈ Rm×m, u ∈ Rn and v ∈ Rm then

(G⊗H) · (u⊗ v) = (Gu) ⊗ (Hv).

• Tensoring is distributive over vector addition: If u1, u2 ∈ Rn and v ∈ Rm then

(u1 + u2)⊗ v = u1 ⊗ v + u1 ⊗ v
v ⊗ (u1 + u2) = v ⊗ u1 + v ⊗ u2.

• If {u1, . . . , un} is a basis of U and {v1, . . . , vm} is a basis of V , then{
ui ⊗ vj | i ∈ [n], j ∈ [m]

}
is a basis of U ⊗ V . As a consequence we have

dim(U ⊗ V ) = dim(U) · dim(V ).
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• If u1, . . . , un form a basis of Rn then for any x ∈ Rn we have

x = α1u1 + . . . + αnun, (6.1)

where for all i ∈ [n]:

αi =
〈x, ui〉
〈ui, ui〉 . (6.2)

• If u1, u2 ∈ Rn and v1, v2 ∈ Rm then

〈u1 ⊗ v1, u2 ⊗ v2〉 = 〈u1, u2〉 · 〈v1, v2〉.

In particular if either u1 ⊥ u2 or v1 ⊥ v2 then (u1 ⊗ v1) ⊥ (u2 ⊗ v2).

• If u1, . . . , uk ∈ Rn are pairwise orthogonal then

‖u1 + . . . + uk‖2 = ‖u1‖2 + . . . + ‖uk‖2.

• Suppose u1, . . . , un ∈ Rn form an orthonormal basis of Rn, and an element x ∈ Rn can be expressed as

x = α1u1 + . . . + αnun, (6.3)

where α1, . . . , αn ∈ R. Then we have

‖x‖2 = α2
1 + . . . + α2

n. (6.4)

Proof: These are all standard results.

6.3 Derandomized Squaring

6.3.1 Introduction

We described the derandomized squaring operation in Subsection 5.6.5. In their original conference paper
[64], Rozenman and Vadhan obtained an upper bound on the second eigenvalue of the derandomized square
by interpreting it as a projection of the zig-zag product, and using the bound from [61] (Theorem 5.30).
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With a more careful analysis, a tighter bound can be found, as was done by the same authors in [65], and
independently in [16] using a different method. The latter is the derivation we present in this section.

Recall that for an [n, d, λA]-graph A and a [d, t, λC ]-graph C , the derandomized square A�C is defined
(using the notation from Definition 5.22) as the [n, dt]-graph with

a[i, j] = a[i][i[j]].

For the rest of this section we suppose that we have two graphs A and C with the parameters above. Our aim
is to find an upper bound on λA�C as a function of λA and λC . Throughout this chapter, we will often abuse
notation and write G to denote both a graph and its transition matrix MG. Recall from Theorem 5.10 that in
general for a graph G on vertex set [n] we have

λG = max
x∈1⊥n

∣∣〈Gx, x〉∣∣
〈x, x〉 , (6.5)

so we need to look at the effect of the transition matrix (or equivalently, at the effect of one step of a random
walk) on the anti-uniform vectors.

6.3.2 A�C as a Projection

We will consider A�C as a projection of a larger graph. The key point about projections is that analyzing
P[G] over anti-uniform vectors is the same as considering G itself over vectors that are anti-uniform overall,
but uniform over each cloud:

Proposition 6.3. Let G be a graph with vertex set [n]× [d] (whose vertices are grouped into n clouds of size
d). Then

max
x∈1⊥n

∣∣〈Pn[G] · x, x〉∣∣
〈x, x〉 = max

x∈1⊥n ⊗1
‖
d

∣∣〈Gx, x〉∣∣
〈x, x〉 . (6.6)

From the perspective of random walks, the intuition behind Proposition 6.3 is that taking a step in Pn[G] from
vertex i involves choosing an edge among all those connected to cloud i in G. This choice can be broken
up into first picking a vertex uniformly from all the vertices in cloud i, and then choosing an edge from this
vertex. So it is equivalent to taking a step in G starting from a uniformly chosen vertex of cloud i. We prove
this formally below:

Proof: Let P = Pn[G]. Recall that we can view the nd× nd matrix G as a block matrix consisting of n× n
blocks, each of size d× d. We use the following indexing: For i, j ∈ [n] and k, 	 ∈ [d],

Gik,j� (6.7)

denotes entry (k, 	) of block (i, j). P is then the n× n matrix defined as defined as

Pij =
1

d

d∑
k=1

d∑
�=1

Gik,j�. (6.8)

There is a natural bijection π : 1⊥n →
(
1⊥n ⊗ 1

‖
d

)
defined as

u �→ u⊗ 1d. (6.9)
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Note that π is clearly linear and injective, so since both spaces have dimension n− 1 it must be a bijection.

We will show that for any u ∈ 1⊥n , if we let w = π(u) = u⊗ 1d then

〈Pu, u〉
〈u, u〉 =

〈Gw,w〉
〈w,w〉 , (6.10)

from which the required result (6.6) follows immediately.

Gw = G(u⊗ 1d) is a vector in Rnd. Indexing its entries with the set [n]× [d] gives us

(
Gw
)
ik

=

(
G(u⊗ 1d)

)
ik

=

n∑
j=1

d∑
�=1

Gik,j� ·
(
u⊗ 1d

)
j�

=

n∑
j=1

d∑
�=1

Gik,j� · uj. (6.11)

So on the one hand we have:〈
Gw,w

〉
=
〈
G(u⊗ 1d), u⊗ 1d

〉
=
∑n

i=1

∑d
k=1

(
G(u⊗ 1d)

)
ik
· (u⊗ 1d

)
ik

=
∑n

i=1

∑d
k=1

(
G(u⊗ 1d)

)
ik
· ui

=
∑n

i=1

∑d
k=1

∑n
j=1

∑d
�=1 Gik,j� · uj · ui (from (6.11))

= d ·∑n
i=1

∑d
k=1 Pij · uj · ui (from (6.8)),

(6.12)

while on the other hand: 〈
Pu, u

〉
=

n∑
i=1

(Pu)i · ui =
n∑

i=1

d∑
j=1

Pij · uj · ui. (6.13)

So combining (6.12) and (6.13) we see that〈
Gw,w

〉
= d · 〈Pu, u

〉
. (6.14)

Furthermore since w = u⊗ 1d we have

〈w,w〉 = 〈u, u〉 · 〈1d, 1d〉 = d · 〈u, u〉. (6.15)

So we can deduce from (6.14) and (6.15) that (6.10) holds:

〈Pu, u〉
〈u, u〉 =

〈Gw,w〉
〈w,w〉 . (6.16)

Next, we define the graphs Â and Ĉ from which we will construct the large graph of which A�C is a
projection.

Definition 6.4. Let Ĉ be the graph with vertex set [n]× [d], defined as

Ĉ = In ⊗ C.
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Ĉ consists of n clouds, and each cloud is a copy of C . There are no edges between the clouds.

Definition 6.5. Let Â be the graph with vertex set [n]× [d] defined as the de-projection of A:

Â = DP[A].

The de-projection operation was introduced in Subsection 5.6.7. Â is 1-regular, so one step of a random
walk on Â is an permutation (in fact an involution). There are edges between clouds, but no edges within the
clouds.

Proposition 6.6. Let Â and Ĉ be defined as above. Then

A�C = Pn[ÂĈÂ].

Since the degrees of Â and Ĉ are 1 and t respectively, the degree of ÂĈÂ is t. There are d nodes in each
cloud, so there are dt edges leaving each cloud. When a cloud gets collapsed into a single vertex by the
projection, all these edges are kept, which means that Pn[ÂĈÂ] has degree dt.

In terms of random walks, we can get an intuition as to why this holds. A step labeled 	 ∈ [t] from a vertex
(a, i) ∈ [n]× [d] in ÂĈÂ can be decomposed as

1. A substep in between clouds (in Â): (a, i) → (a[i], i). This is deterministic.

2. A substep within the new cloud (in Ĉ): (a[i], i) → (a[i], i[	]). There are t choices for this substep.

3. A substep in between clouds (in Â): (a[i], i[	]) → (a[i][i[	]], i[	]). This is deterministic.

Now an edge (a, i) → (a[i][i[	]], i[	]) in ÂĈÂ will become an edge a→ a[i][i[	]] in the projected graph.

Relationship with the zig-zag product

Interestingly, as was shown in the original zig-zag product paper [61], we have the following equality:

A z©C = ĈÂĈ. (6.17)

This also leads to an interpretation of the following equality from the original paper on derandomized squaring
[64]:

d2 · A�(C2) = Pn[(A z©C)2]. (6.18)

The multiplication by d2 means that each edge is duplicated d2 times. The left hand side is equal to Pn[ÂĈ2Â],
while the right hand side is equal to Pn[(ĈÂĈ)2] = Pn[ĈÂĈ2ÂĈ]. But since Ĉ has edges only within the
clouds, the first and last Ĉ will have no effect on the projected (“collapsed”) graph, and so both sides are
equal.

6.3.3 Bounding the Second Eigenvalue

To bound the second eigenvalue of A�C we will apply Proposition 6.3 and analyze ÂĈÂ. We will be using
the following definition throughout this chapter:
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Definition 6.7. Whenever w is a vector in Rnd, we can view w as consisting of n blocks of size d. We index
its entries with the set [n]× [d], so that wij indexes the jth entry in block i. We define the map M : Rnd → Rn

as (
Mn(w)

)
i
=

d∑
j=1

wij .

So if we have a graph consisting of n clouds of size d (i.e., with vertex set [n]× [d]), and if w is a probability
distribution on the set of vertices, then Mn(w) is the marginal distribution on the set of clouds. This operation
can be seen as a projection for vectors.

The following lemma establishes a useful relationship between A and Â = DP[A]:

Lemma 6.8. Let Â = DP[A] be defined as above. Then for any σ ∈ Rn we have

Mn

(
Â(σ ⊗ 1d

d
)
)

= Aσ. (6.19)

Proof: See Appendix C.

We are now ready to prove the main result of this section.

Theorem 6.9. Let A and C be as above. Then we have

λA�C ≤ λ2
A + λC · (1− λ2

A).

Proof: From Proposition 6.3 we know that

λA�C = max
x∈1⊥n ⊗1

‖
d

∣∣〈ÂĈÂx, x〉∣∣
〈x, x〉 .

Let x ∈ 1⊥n ⊗ 1
‖
d. We define

γ = Âx, (6.20)

and then let

γ‖ = Mn(γ)⊗ 1d

d
, and γ⊥ = γ − γ‖. (6.21)

So γ‖ is uniform over each cloud, γ⊥ is anti-uniform over each cloud, and γ = γ‖ + γ⊥. We will use the two
following claims:

Claim 1: Ĉγ‖ = γ‖.
Proof: We have

Ĉγ‖ =
(
In ⊗ C

) · (Mn(γ)⊗ 1d

d

)
= Mn(γ)⊗ C · 1d

d
. (6.22)

Now because C is doubly stochastic, C · 1d
d = 1d

d . Therefore

Ĉγ‖ = γ‖. (6.23)

�
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Claim 2:
∣∣〈Ĉγ⊥, γ⊥〉

∣∣ ≤ λC · 〈γ⊥, γ⊥〉.
Proof: We can decompose γ⊥ ∈ Rnd as

γ⊥ =

⎛
⎜⎝ γ⊥

1
...

γ⊥
n

⎞
⎟⎠ , (6.24)

where γ⊥
1 , . . . , γ⊥

n ∈ 1⊥d . So since Ĉ = In ⊗ C this gives us

Ĉγ⊥ =

⎛
⎜⎝ Cγ⊥

1
...

Cγ⊥
n

⎞
⎟⎠ . (6.25)

Therefore ∣∣〈Ĉγ⊥, γ⊥〉∣∣ =
∣∣∑n

i=1〈Cγ⊥
i , γ⊥

i 〉
∣∣

≤ ∑n
i=1

∣∣〈Cγ⊥
i , γ⊥

i 〉
∣∣

≤ ∑n
i=1 λC ·

∣∣〈γ⊥
i , γ⊥

i 〉
∣∣ (by the definition of λC)

≤ λC · 〈γ⊥, γ⊥〉.

(6.26)

�

Continuing with our proof, we have∣∣〈ÂĈÂx, x〉∣∣ =
∣∣〈ĈÂx, Âx〉∣∣ (since Â is symmetric)

=
∣∣〈Ĉγ, γ〉∣∣

=
∣∣〈Ĉγ‖, γ‖〉 +

0︷ ︸︸ ︷
〈Ĉγ‖, γ⊥〉 +

0︷ ︸︸ ︷
〈Ĉγ⊥, γ‖〉 + 〈Ĉγ⊥, γ⊥〉∣∣

≤ ∣∣〈Ĉγ‖, γ‖〉∣∣ +
∣∣〈Ĉγ⊥, γ⊥〉∣∣

=
∣∣〈γ‖, γ‖〉∣∣ +

∣∣〈Ĉγ⊥, γ⊥〉∣∣ (from Claim 1).

And so we deduce:

∣∣〈ÂĈÂx, x〉
∣∣

〈x, x〉 ≤ ‖γ
‖‖2

‖x‖2 +

∣∣〈Ĉγ⊥, γ⊥〉
∣∣

‖x‖2 .

Now Â is a permutation, which means that it is length-preserving. Therefore ‖γ‖ = ‖Â · x‖ = ‖x‖, and
furthermore, from Claim 2 we have |〈Ĉγ⊥, γ⊥〉| ≤ λC〈γ⊥, γ⊥〉. This leads to:∣∣〈ÂĈÂx, x〉∣∣

〈x, x〉 ≤ ‖γ‖‖2
‖γ‖2 + λC · ‖γ

⊥‖2
‖γ‖2 . (6.27)
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If we let θ be the angle between γ and γ‖, then we have the following diagram

θ
γ‖

γ
γ⊥

and so (6.27) becomes ∣∣〈ÂĈÂx,x〉
∣∣

〈x,x〉 ≤ cos2(θ) + λC · sin2(θ)

= cos2(θ) + λC ·
(
1− cos2(θ)

)
= (1− λC) · cos2(θ) + λC .

(6.28)

Now clearly, since 1− λC ≥ 0, this expression will be maximal when cos2(θ) is maximal.

Claim: cos(θ) ≤ λA

Proof: We have:

γ‖ = Mn(γ) ⊗ 1d

d
= Mn(Âx)⊗ 1d

d
.

Since x ∈ 1⊥n ⊗ 1
‖
d, there is u ∈ 1⊥n with x = u⊗ 1d:

γ‖ = Mn

(
Â(u⊗ 1d)

)⊗ 1d

d
.

Using Lemma 6.8 we obtain:

γ‖ = d · (Au)⊗ 1d

d
= (Au)⊗ 1d. (6.29)

So this gives us

‖γ‖‖ = ‖Au‖ · ‖1d‖ ≤ λA · ‖u‖ · 1√
d
, (6.30)

by the definition of λA, since u ∈ 1⊥n . Recall that Â is a permutation, it is therefore length preserving
and so we obtain:

‖γ‖ = ‖Âx‖ = ‖x‖ = ‖u⊗ 1d‖ = ‖u‖ · 1√
d
. (6.31)

Combining (6.30) and (6.31) yields

cos(θ) =
‖γ‖‖
‖γ‖ ≤ λA,

as required. �

Combining this Claim with (6.28) gives us

λA�C ≤ λ2
A + λC · (1− λ2

A).
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6.4 Derandomized Tensoring

6.4.1 The Product

The tensor product of two graphs A and B enables the construction of a larger graph with expansion properties
no worse than A and B but at the cost of a large increase in the degree.

A�C effectively consisted in taking A2 and removing some edges in a clever way. Which edges to remove
was determined by a second graph C . In the same way, the idea of derandomized tensoring is to remove
edges from A⊗B based on a third graph C , which in this case will be a bipartite graph. We will see that the
derandomized tensor product can in some cases reduce the degree of the resulting graph while preserving its
expansion properties.

Let A be an [n, d1]-graph, and B be an [m,d2]-graph. Furthermore let C be a bipartite graph with d1 left
nodes and d2 rights nodes. Keeping the notation from Subsection 5.7.1, we have d = d1 + d2 and we label
the edges of A and B with the sets D1 and D2 respectively, where

D1 = {1, . . . , d1}
D2 = {d1 + 1, . . . , d},

so that [d] = D1 �D2.

The tensor product A ⊗ B has vertex set [n] × [m], which we interpret as n clouds of size m. Recall from
its description in Section 5.6.3 that a step in A ⊗ B can be decomposed into two parts: first a step between
clouds, and then a step within the new cloud (we presented them in this order, though they could also be done
the other way round). The first step has a label i ∈ D1, while the second step has a label j ∈ D2. In the
derandomized tensor product of A and B with respect to C , denoted A⊗C B we take only the steps (i, j) for
which i and j are connected in C .

We can describe A⊗C B as the graph with vertex set [n]× [m], and in which there is an edge from (a, b) to
(u, v) if and only if the following conditions hold:

1. There is an edge from a to u in A: There is i ∈ D1 with a[i] = u.

2. There is an edge from b to v in B: There is j ∈ D2 with b[j] = v.

3. i and j are connected in C .

Notice that if we remove the third condition then we obtain the normal tensor product. Also, if C is the
complete bipartite graph then whenever the first two conditions are verified then so is the third one, and so in
this case the product is also equal to the normal tensor product.

The degree of A⊗C B is equal to the number of edges in C . Although this product is defined for any bipartite
graph C of the right dimensions, we will be concerned only with the cases in which C is biregular. The
spectrum and expansion properties of such graphs were discussed in Section 5.7.

A biregular bipartite graph of left and right degrees 	 and r respectively can be labeled in the following way:
the edges are labeled with elements of [	] at their left ends, and with elements of [r] at their right ends, in
such a way that the edges adjacent to a given node all have distinct labels. For a left node i ∈ D1 and a
label k ∈ [	], i[k] ∈ D2 denotes the kth neighbor of i (so i[k] is a right node). Because the degree of the
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derandomized tensor product is equal to the number of edges in C , we have

deg
(
A⊗C B

)
= d1	 = d2r. (6.32)

We give the formal definition only for the case in which C is biregular.

Definition 6.10. Let A be an [n, d1]-graph, B be an [n, d2]-graph and C be a biregular bipartite graph with
d1 left nodes, d2 right nodes and of left and right degrees 	 and r respectively. The derandomized tensor
product A⊗C B of A and B with respect to C is an [nm, d1	]-graph with vertex set [n]× [m] and a labeling
in D1 × [	]. For any (a, b) ∈ [n]× [m] and (i, k) ∈ D1 × [	] we have

(a, b)[i, k] = (a[i], b[i[k]]).

We could of course have presented an equivalent definition with a labeling in D2 × [r]. If the labelings of A
and B are colorings then A ⊗C B will be undirected. However, if the labelings are only half-colorings then
to ensure that the product is undirected C also needs to have the following property: for any i ∈ D1, j ∈ D2,
i and j are connected in C if and only if ρA(i) and ρA(j) are connected in C .

Our aim is to analyze the expansion properties of G = A ⊗C B, more precisely to upper bound its second
eigenvalue λG as a function of λA, λB and λC .

The main result of this section is the following theorem:

Theorem 6.11. Let A, B and C be graphs as described above, in which the labelings of A and B are half-
colorings. Suppose without loss of generality that λB ≤ λA. If G = A⊗C B then

λG ≤ max

(
λA, λB ,m(λA, λB , λC)

)
,

where f(a, b, c) = ab + c
√

(1− a2)(1− b2), g(b, c) = 1q
c2

b2
−c2+1

, and

m(a, b, c) = f
(

min(a, g(b, c)), b, c)
)
. (6.33)

Notice that if C is the complete bipartite graph, then λC = 0, and so g(λB , λC) = 1 ≥ λA, and therefore
our bound becomes max

(
λA, λB , λAλB

)
= max

(
λA, λB

)
, which is the same as that of the normal tensor

product, as would be expected.

Also, if
m(λA, λB , λC) ≤ max(λA, λB) = λA⊗B (6.34)

then A⊗C B has expansion properties at least as good as those of A⊗B, but with a smaller degree.

If λA = λB then we always have λA ≤ g(λB , λC), and so we obtain the simpler expression:

Theorem 6.12. Suppose that λA = λB . If G = A⊗C B then

λG ≤ max

(
λA, F (λA, λC)

)
,

where F (a, c) = a2 + c · (1− a2).
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Interestingly, F (a, c) is the same bound as for derandomized squaring.

The idea behind the analysis is conceptually the same as that in the previous section, namely to view A⊗C B
as the projection of a larger graph, and study this larger graph. However, while previously we could index
our vertices with a two-dimensional array [n]× [d], in this case three dimensions will be required, which will
make both the notation and the proofs rather technical.

6.4.2 Notation

All the notations defined in Subsection 5.7.1 will still hold. We summarize them below:

• If d1 and d2 are the degrees of A and B as above, then we let d = d1 + d2 and define

D1 = {1, . . . , d1}
D2 = {d1 + 1, . . . , d}
[d] = {1, . . . , d} = D1 ∪D2.

(6.35)

• We define the subspaces R1 and R2 of Rd as follows:

R1 = {v ∈ Rd | vi = 0 ∀i ∈ D2}
R2 = {v ∈ Rd | vi = 0 ∀i ∈ D1}. (6.36)

• e1 and e2 denote the following vectors in Rd:

(e1)i =

{
1 if i ∈ D1

0 if i ∈ D2.
(6.37)

(e2)i =

{
0 if i ∈ D1

1 if i ∈ D2.
(6.38)

Definition 6.13. For i = 1, 2, we have:

e
‖
i = {β · ei | β ∈ R}.

e⊥i = {v ∈ Ri | 〈v, ei〉 = 0}.
(6.39)

6.4.3 Definitions

As explained above, we will analyze the expansion of A⊗C B by viewing it as a projection of a larger graph
H . In this subsection we give the formal definitions required for the construction of H .

A⊗C B has vertex set [n]× [m], and H will have vertex set [n]× [m]× [d]. We will suppose throughout this
section that the labelings of A and B are half-colorings, for which

ρA : D1 → D1, and ρB : D2 → D2 (6.40)

denote the partner mappings for A and B. ρA and ρB are involutions.

We start by defining the graphs Â, B̂, X̂ and Ĉ.

113



Definition 6.14. Â is a graph with vertex set [n] × [m] × [d]. Each vertex (a, b, c) has either one or no
neighbors:
• If c ∈ D1 then there is an edge from (a, b, c) to (a[c], b, ρA(c)).
• If c ∈ D2 then (a, b, c) has no neighbors.

B̂ is defined analogously:

Definition 6.15. B̂ is a graph with vertex set [n]× [m]× [d]. Each vertex (a, b, c) has either one or no neigh-
bors:
• If c ∈ D1 then (a, b, c) has no neighbors.
• If c ∈ D2 then there is an edge from (a, b, c) to (a, b[c], ρB(c)).

So Â and B̂ are not regular graphs. Notice that the two graphs “complement” each other in the sense that
every vertex in [n]× [m]× [d] has an edge either in Â or in B̂, but not in both. They can be naturally combined
as follows:

Definition 6.16. X̂ is the graph with vertex set [n]× [m]× [d] defined as

X̂ = Â + B̂.

So X̂ is regular, it is a [nmd, 1]-graph. Since X̂ has degree 1, one step of a random walk on X̂ is an involution.

Definition 6.17. Ĉ is the graph with vertex set [n]× [m]× [d] defined as

Ĉ = In ⊗ Im ⊗ C.

Ĉ can be interpreted as nm copies of C . We are now ready to characterize A⊗C B as a projection:

Proposition 6.18. Suppose we have graphs A,B,C, X̂ , and Ĉ defined as above. Then

A⊗C B = Pnm[X̂ĈX̂]. (6.41)

The large graphs we are considering have vertex set [n] × [m] × [d]. We can see this as nm copies of [d],
which we refer to as “C-clouds”. The C-clouds get collapsed in the projection, leading to a graph with vertex
set [n]× [m].

Example 6.19. We illustrate these constructions with the following graphs A, B and C:

C
B

A

Figure 6.1: The graphs A, B and C .
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So A is an [n, d1] = [6, 3]-graph, B an [m,d2] = [4, 2]-graph and C a bipartite graph with d1 left vertices
and d2 right vertices (so d = 5 vertices in total). For this example C is not biregular. We suppose that the
labelings of A and B are edge colorings to simplify the illustration (so each left vertex of C corresponds to a
color of A and each right vertex to a color of B).

Figure 6.2: The graph Ĉ .

Figure 6.3: The graph Â.
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Figure 6.4: The graph B̂.

Figure 6.5: The graph X̂.

116



The graphs Â and B̂ are related to the de-projections of A and B. We explore this relationship by first defining
the following graphs:

Definition 6.20. A is a graph with vertex set [n]× [d]. Each vertex (a, c) has either one or no neighbors:
• If c ∈ D1 then there is an edge from (a, c) to (a[c], ρA(c)).
• If c ∈ D2 then (a, c) has no neighbors.

Definition 6.21. B is a graph with vertex set [m]× [d]. Each vertex (b, c) has either one or no neighbors:
• If c ∈ D1 then (b, c) has no neighbors.
• If c ∈ D2 then there is an edge from (b, c) to (b[c], ρB(c)).

B can be seen as the de-projection DP[B] of B (which would have vertex set [m] ×D2) to which are added
some edgeless vertices, namely all those in [m]×D1.

It can be checked that
B̂ = In ⊗ B̄. (6.42)

Example 6.22. If we use the graphs A,B and C from Example 6.19 above then B is the following graph:

Figure 6.6: The graph B.

We also see from Figure 6.4 that B̂ consists of n = 6 copies of B, so that the equality

B̂ = In ⊗ B̄ (6.43)

is verified. DP[B], given below is the same but without the edgeless vertices:

Figure 6.7: The graph DP[B].

B̂ is in a certain sense “two steps away” from DP[B]. The differences are:

1) There are some extra edgeless vertices (this corresponds to the difference between DP[B] and B). See
Figures 6.6 and 6.7 of Example 6.22 for an illustration

2) There are n copies of this graph B (since B̂ = In ⊗B).
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There is a similar relationship between A, A and Â. However with our current tensor product notation it can
only be expressed after an appropriate permutation of the indices (algebraically this is just a change of basis).
Informally, by indexing the vertices with [m]× [n]× [d] instead of [n]× [m]× [d] we can write Â as

Im ⊗ Ā. (6.44)

The relationship between Â and DP[A] is analogous to that between B̂ and DP[B].

Change of basis

Although it is intuitively quite clear that the change of basis we require is that in which u⊗ v ⊗ w becomes
v⊗u⊗w, writing so formally is a little tedious. We include it nevertheless for completeness. Since the change
of basis we need to do is just a permutation of the basis elements, the basis change matrix is a permutation
matrix.

Definition 6.23. Consider the following nm× nm block matrix

L =

⎛
⎜⎝ Q11 · · · Q1m

...
...

...
Qn1 · · · Qnm

⎞
⎟⎠ ,

where Qij ∈ Rm×n is defined as

(Qij)k� =

{
1 if k = j and 	 = i
0 otherwise.

Let P ∈ Rnmd×nmd be the matrix defined as

P = L⊗ Id.

Notice that P is a permutation matrix, so it is invertible, and is therefore valid basis change matrix. the only
basis change for Rnmd we will do is that given by P .

We will use the notation x ∼P y to denote the fact that y is the expression of x in the new basis (y = Px).
So for example for any u ∈ Rn, v ∈ Rm, w ∈ Rd we have

u⊗ v ⊗ w ∼P v ⊗ u⊗ w. (6.45)

Clearly, if x ∼P x′ and y ∼P y′ then
〈x, y〉 = 〈x′, y′〉. (6.46)

A⊗C B as a derandomized square

An alternative construction of X̂ is to let X = (A⊗ Im) + (In⊗B), and then set X̂ = DP[X]. The graph X
is interesting in that it enables us to express A ⊗C B as a derandomized square. X has vertex set [n] × [m]
and degree d1 + d2 = d. Its edges are given by

(a, b)[i] =

{
(a[i], b) if i ∈ D1

(a, b[i]) if i ∈ D2.
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Combining our description of the derandomized square as a graph projection in Section 6.3 and (6.41), we
can deduce that

A⊗C B = X�C. (6.47)

A first approach to bounding the expansion of A⊗C B would be to compute λX , and use the bound on λX�C

from Theorem 6.9. However, this would not take into account the special structure of X, in terms of how it is
constructed from A and B, and therefore how λX depends on λA and λB. A better bound can be obtained by
making more use of the structure of X.

6.4.4 Proof Outline

In this subsection we outline the proof of Theorem 6.11. The full details can be found in Appendix B. Let
G = A⊗C B. Since

G = Pnm[X̂ĈX̂ ],

we use Proposition 6.3 to deduce that

λG = max
x∈1⊥nm

∣∣〈Gx, x〉∣∣
〈x, x〉 = max

x∈1⊥nm⊗1
‖
d

∣∣〈X̂ĈX̂x, x〉∣∣
〈x, x〉 . (6.48)

Recalling that X̂ was defined as Â + B̂, we obtain:

|〈X̂ĈX̂x, x〉| = |〈ĈX̂x, X̂x〉| (since X̂ is symmetric)

= |〈Ĉ(Â + B̂)x, (Â + B̂)x〉|

≤
0︷ ︸︸ ︷

|〈ĈÂx, Âx〉| + |〈ĈÂx, B̂x〉| + |〈ĈB̂x, Âx〉| +

0︷ ︸︸ ︷
|〈ĈB̂x, B̂x〉| .

Indeed Âx ∈ R1 and ĈÂx ∈ R2, and likewise B̂x ∈ R2 and ĈB̂x ∈ R1, which leads to

〈ĈÂx, Âx〉 = 0, 〈ĈB̂x, B̂x〉 = 0.

We therefore have
|〈X̂ĈX̂x, x〉| ≤ |〈ĈÂx, B̂x〉| + |〈ĈB̂x, Âx〉|. (6.49)

Since Â and B̂ are symmetric this leads to

|〈X̂ĈX̂x, x〉| ≤ |〈B̂ĈÂx, x〉| + |〈ÂĈB̂x, x〉|. (6.50)

(In fact we have X̂ĈX̂ = ÂĈB̂ + B̂ĈÂ).

Now (6.48) tells us that we must consider vectors in the space S = 1⊥nm ⊗ 1
‖
d, which we can decompose as

S =
(
1⊥n ⊗ 1‖m ⊗ 1

‖
d

)︸ ︷︷ ︸
S1

⊕ (
1‖n ⊗ 1⊥m ⊗ 1

‖
d

)︸ ︷︷ ︸
S2

⊕ (
1⊥n ⊗ 1⊥m ⊗ 1

‖
d

)︸ ︷︷ ︸
S3

. (6.51)
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This means that for any x ∈ S there are unique x1 ∈ S1, x2 ∈ S2, and x3 ∈ S3 with

x = x1 + x2 + x3. (6.52)

Note that S1, S2 and S3 have respective dimensions n − 1, m − 1 and (n − 1)(m − 1). These add up to
nm− 1 = dim(S), as expected.

We will first show (Lemma B.6) that

〈ÂĈB̂x, x〉 = 〈ÂĈB̂x1, x1〉+ 〈ÂĈB̂x2, x2〉+ 〈ÂĈB̂x3, x3〉. (6.53)

The intuition is that the images of the spaces S1, S2 and S3 under the linear transformation defined by ÂĈB̂
are also pairwise orthogonal. Therefore when we expand the left hand side of (6.53) only the terms on the
right hand side will remain. Likewise we will have

〈B̂ĈÂx, x〉 = 〈B̂ĈÂx1, x1〉+ 〈B̂ĈÂx2, x2〉+ 〈B̂ĈÂx3, x3〉. (6.54)

Next, letting m(a, b, c) be the function defined in Theorem 6.11, we will upper bound terms from (6.53) and
(6.54) as follows:

|〈B̂ĈÂx1, x1〉| + |〈ÂĈB̂x1, x1〉| ≤ λA · 〈x1, x1〉.∣∣〈B̂ĈÂx2, x2〉
∣∣ +

∣∣〈ÂĈB̂x2, x2〉
∣∣ ≤ λB · 〈x2, x2〉.∣∣〈B̂ĈÂx3, x3〉

∣∣ +
∣∣〈ÂĈB̂x3, x3〉

∣∣ ≤ m(λA, λB , λC) · 〈x3, x3〉.

(6.55)

Because x1, x2 and x3 are pairwise orthogonal, (see (6.51)) and x = x1 + x2 + x3, we have

〈x, x〉 = 〈x1, x1〉 + 〈x2, x2〉 + 〈x3, x3〉. (6.56)

We know from (6.50) that

|〈X̂ĈX̂x, x〉| ≤ |〈B̂ĈÂx, x〉| + |〈ÂĈB̂x, x〉|. (6.57)

So combining (6.53), (6.54) with the inequalities in (6.55) leads to

|〈X̂ĈX̂x, x〉| ≤ λA · 〈x1, x1〉+ λB · 〈x2, x2〉+ m(λA, λB , λC) · 〈x3, x3〉

≤ max

(
λA, λB ,m(λA, λB , λC)

)
·
(
〈x1, x1〉 + 〈x2, x2〉 + 〈x3, x3〉

)

= max

(
λA, λB ,m(λA, λB , λC)

)
· 〈x, x

〉
(using (6.56)).

(6.58)

The result of Theorem 6.11 then follows immediately:

|〈X̂ĈX̂x, x〉|
〈x, x〉 ≤ max

(
λA, λB ,m(λA, λB , λC)

)
. (6.59)

For the full proof, see Appendix B.
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6.5 Derandomized Code Concatenation

6.5.1 Introduction

The operation of code concatenation was first presented by Forney in [25]. Suppose we have a finite field Fq1

and an extension Fq2 of Fq1 of degree m. An outer code C1 over Fq2 can be concatenated with an inner code
C1 over Fq1 of dimension m, which will yield a longer Fq1-code.

Concatenated codes are particularly useful for the construction of explicit families of good codes. For the
binary case, the constructions of Justesen [37], Zyablov [95], Bloch-Zyablov [9] (using multilevel concatena-
tion) and Katsman-Tsfasman-Vladut [38] are all concatenations. This last construction, obtained by concate-
nating a very good fixed binary code (the inner code) with a family of Algebraic-Geometric codes beyond the
Gilbert-Varshamov bound (the outer code), yields some of the best known explicit families of binary codes.

An improved version of the concatenation operation is therefore potentially very interesting in the quest for
better explicit families. The derandomization presented in this section improves the rate of the concatenated
code at the cost of decreasing its relative distance (by how much depends on how good the expander we
employ is).

It is a recurring theme in coding theory that random constructions yield good codes with high probability, but
doing so explicitly is much more difficult (i.e., finding a way of guaranteeing a good code). Although the
expected code is good, there will be some variance in the experiment which also makes very bad codes possible
(very far from the expected result). Expander graphs have the remarkable property that they enable fairly
good “simulations” of random behavior. More precisely one can in some contexts use expanders to achieve
deterministic (i.e., non-random) behavior within a close range of the expectation of a random experiment. So
if the expectation is good, then the result is guaranteed to be almost as good.

In this section we essentially use the fact that randomly puncturing a code will improve its rate, while keeping
its expected relative distance fixed. So we employ an expander graph to simulate this random puncturing. In
general, it is an interesting problem to find good ways of puncturing codes. For example an AG-code can be
seen as a puncturing of a product of two or more Reed-Solomon codes, and it would be interesting to study
the properties of the corresponding puncturing pattern.

6.5.2 Definitions

We will consider only binary inner codes. We will suppose throughout this section that we have an [n1, k1, d1]q-
code C1, and an [n2, k2, d2]2-code C2, where q = 2k2 (so Fq is an extension of F2 of degree k2). We will also
suppose that we have a fixed basis of Fq over F2, which leads to a natural bijection

σ : Fq → Fk2
2 . (6.60)

We start by recalling the definition of code concatenation:

Definition 6.24. Let C1 and C2 be as above. We define their concatenation C = C1♦C2 as the [n1n2, k1k2]2-
code whose encoding map E : Fk1k2

2 → Fn1n2
2 can be decomposed as follows:

F
k1k2
2 −→σ−1

Fk1
q −→E1 Fn1

q −→σ F
n1k2
2 −→E2 F

n1n2
2 ,

where E1 and E2 are the encoding maps of C1 and C2.
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This amounts to first interpreting the message vector u ∈ F
k1k2
2 as a message vector in Fk1

q for C1 and encoding
it to a codeword c1 ∈ C1. Then each of the n1 components of c1 are interpreted as message vectors of C2, and
encoded to codewords in C2.

Notice that there is a bijection between C1 and C (but they have different dimensions since they use different
alphabets). C consists of n1 codewords of C2. We index the n1n2 components of c ∈ C with the set [n1]× [n2]
in the canonical way. We can write a codeword c ∈ C1♦C2 as

c = (x1, . . . , xn1), (6.61)

where xj ∈ C2 for all j.

We will now puncture C, with a pattern that will be given by a bipartite expander graph. We suppose through-
out this section that we have a biregular bipartite graph H with left vertex set [n1], right vertex set [n2], and
of left and right degrees 	 and r, respectively.

Definition 6.25. Let C1,C2 and H be as above. We construct the derandomized concatenation C1♦HC2 of
C1 and C2 with respect to H by taking their normal concatenation C1♦C2, and then performing the following
puncturing: we remove all components (j, k) ∈ [n1]× [n2] that are not connected in H .

The resulting code C will have length n1	 = n2r (which is equal to the number of edges in H).

6.5.3 The Rate of C1♦HC2

Proposition 6.26. Let H be a biregular bipartite graph as above. Let C1 and C2 also be as above, and let R1

and R2 denote their respective rates. Let R be the rate of C1♦HC2.

If 	 > n2 − d2 then

R = R1R2
n2

	
. (6.62)

Proof: We will show that C1♦HC2 has the same dimension as C1♦C2, namely k1k2. It will suffice to show
that no non-zero-codeword of C1♦C2 becomes the zero-codeword after the puncturing (since puncturing is a
linear operation, this makes it injective). Let c be a codeword of C1♦C2, which we write as

c = (x1, . . . , xn1). (6.63)

Now each non-zero xj ∈ C2 gets punctured n2 − 	 times. Since xj has weight at least d2, as long as

n2 − 	 < d2 (6.64)

xj will not become the zero-codeword. In particular c cannot become the zero-codeword through this punc-
turing.

Since C1♦HC2 has dimension k1k2 and length n1	, we can deduce that it has rate

R =
k1k2

n1	
=

k1

n1

k2

n2

n2

	
= R1R2

n2

	
. (6.65)
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So as long as 	 > n2 − d2, by performing this puncturing we increase the rate of C1♦C2 by a factor of n2
� .

Notice that since n1	 = n2r, we can write (6.62) as

R = R1R2
n2

	
= R1R2

n1

r
= R1

k2

	
= R2

k1

r
. (6.66)

6.5.4 The Relative Distance of C1♦HC2

We start by giving the following bound on the relative distance of C1♦C2:

Proposition 6.27. Let C1 and C2 be as above. Then the minimum distance of C1♦C2 is at least d1d2.

Proof: Let c be a codeword of C = C1♦C2. c can be constructed by taking some c1 ∈ C1, interpreting each
of its n1 components as a C2-message vector, and then encoding these to obtain n1 codewords x1, . . . , xn1 in
C2. So we have c = (x1, . . . , xn1).

Note that wgt(c) is equal to the sum of the weights of the xi’s. Since at least d1 of these are non-zero (c1 must
have at least that many non-zero components), and each non-zero codeword of C2 has weight at least d2, we
have

wgt(c) ≥ d1d2, (6.67)

as required.

Recall that q = 2k2 = |C2|. We label the q codewords in C2 as

C2 = {c(0)
2 , . . . , c

(q−1)
2 }, (6.68)

where c
(0)
2 denotes the zero-codeword.

Fix a codeword c ∈ C = C1♦HC2. c was obtained by puncturing some codeword c of C1♦C2. As seen above,
c consists of n1 codewords of C2:

c =
(
x1, . . . , xn1

)
, (6.69)

where xj ∈ C2. For all i ∈ [q − 1] we define the sets Si and Ti as

Si =
{
j ∈ [n1]

∣∣ xj = c
(i)
2

}
and Ti = supp

(
c
(i)
2

)
. (6.70)

So we have Si ⊆ [n1] and Ti ⊆ [n2]. Notice that the Si’s depend on c ∈ C (and therefore on the codeword
c ∈ C we fixed above), but the Ti’s do not. This enables us to obtain the following expression for the weight
of c:

Lemma 6.28. Let c ∈ C1♦HC2. If Si and Ti are defined as above then

wgt(c) =

q−1∑
i=1

∣∣EH(Si, Ti)
∣∣. (6.71)

Proof: Let c be the codeword in C1♦C2 from which c was constructed, and let c1 be the C1-codeword from
which c was constructed. So S1, . . . , Sq−1 form a partition of supp(c1).
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For each i ∈ [q − 1] we let ai = |Si|, and notice that

q−1∑
i=1

ai = wgt(c1) ≥ d1. (6.72)

Next, we let bi = |Ti| = wgt
(
c
(i)
2

)
so that for all i ∈ [q − 1] we have:

bi ≥ d2. (6.73)

In c there are ai copies of the codeword c
(i)
2 . So if there was no puncturing (or equivalently if H was the

complete bipartite graph), the total weight of all the copies of c
(i)
2 would be aibi, and so we would get

wgt(c) =

q−1∑
i=1

aibi ≥ d2

q−1∑
i=1

ai ≥ d1d2, (6.74)

as expected.

When puncturing does occur, notice first of all that Si is a subset of the left vertices of H , and Ti a subset of
the right vertices of H . The non-zero components of c are exactly those whose index (j, k) is in Si × Ti for
some i ∈ [q − 1]. Furthermore any component of c whose index (j, k) ∈ [n1]× [n2] is not an edge in H will

be punctured out. So the total weight of all the copies of c
(i)
2 after puncturing will be equal to the number of

edges between Si and Ti. This gives us

wgt(c) =

q−1∑
i=1

∣∣EH(Si, Ti)
∣∣. (6.75)

We have the intuition that if H is a good expander, then
∣∣EH(Si, Ti)

∣∣ should be close to its expected value in
a random setting (i.e., when H is constructed randomly). This however is only true if Si and Ti are not too
small, for example nothing can be said of the case |Si| = 1. We know that |Ti|/n2 ≥ δ2, but we have no
guarantee on the size of Si. Once again the intuition behind a large Si is that we would like to apply many
different puncturing patterns to the same codeword (here c

(i)
2 ) to ensure that the resulting average weight will

be good.

If n1 is much larger than q, then we are dividing a large set (namely supp(c1), of size δ1n1) into few subsets
Si (q of them), and so most elements of supp(c1) will be in a large subset, which is what we are looking for.
So we can ensure that

∣∣E(Si, Ti)
∣∣ will be close to its expected value in a random setting as long as q is not too

large, or equivalently, as long as the rate of C2 is small (since q = 2k2).

The Expander Mixing Lemma (see Section 5.7.8) formalized the idea that in a good expander the number
of edges between two sets of vertices is close to what would be expected in a random setting (the second
eigenvalue of H determines how close). We restate the bipartite version below (see Section 5.7.8 for a proof).

Lemma 6.29. (The Bipartite Expander Mixing Lemma).
Let H be a biregular bipartite graph, with left and right vertex sets [n1] and [n2] respectively, and left and
right degrees 	 and r. Let λH denote the second eigenvalue of H . For any S ⊆ [n1] and T ⊆ [n2] we have∣∣∣∣|E(S, T )| − 	 · |S| · |T |

n1

∣∣∣∣ ≤ λH ·
√

	r ·
√
|S| · |T |. (6.76)
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The main result of this section is the following theorem:

Theorem 6.30. Let C1,C2 and H be as above. Suppose furthermore that λH ≤ 1√
�r

, and 	 > n2

2
√

d2
. If δ is

the relative distance of C1♦HC2 then

δ ≥ δ1δ2 − λH ·
√

q − 1 ·
√

δ1δ2. (6.77)

Requiring that λH ≤ 1√
�r

is saying that we want H to be quite a good expander (otherwise the puncturing
could deviate too much from its expected behavior, opening up the possibility of “worst- case” scenarios about
which we can say nothing).

Proof: Let c ∈ C1♦HC2 be a codeword constructed from c1 ∈ C1 (as in the analysis above). Suppose
S1, . . . Sq−1 and T1, . . . , Tq−1 are defined as above. We know from Lemma 6.28 that

wgt(c) =

q−1∑
i=1

∣∣E(Si, Ti)
∣∣.

Setting ai = |Si| and bi = |Ti|, we deduce from the expander mixing lemma that

wgt(c) ≥
q−1∑
i=1

(
	aibi

n2
− λH ·

√
	r ·
√

aibi

)
=

A︷ ︸︸ ︷
	

n2

q−1∑
i=1

(aibi)−

B︷ ︸︸ ︷
λH ·

√
	r ·

q−1∑
i=1

√
aibi . (6.78)

Notice that A corresponds to the “expected behavior” whereas B corresponds to the “error” (i.e., the variance).
We know that

q−1∑
i=1

ai ≥ d1 and ∀i ∈ [q − 1] : bi ≥ d2, (6.79)

We use this to deduce that

A =
	

n2
·

q−1∑
i=1

(aibi) ≥ 	

n2
· d2 ·

q−1∑
i=1

ai ≥ 	

n2
· d2d1. (6.80)

This corresponds to the expected behavior in the “worst-case” scenario (i.e., c1 has weight d1 and all non zero
C2-codewords have weight d2).

Claim 1: A−B is minimal when bi = d2 ∀i ∈ [q − 1].
Proof: d2 is the smallest possible value each bi can take. We will show that increasing any bi cannot
decrease the value of A − B. First note that if ai = 0 then A − B = 0 for all values of bi, so the
statement holds. Suppose now that ai ≥ 1. For each i = 1, . . . , q − 1, we have

∂

∂bi

(
A−B

)
=

	

n2
· ai − λH ·

√
	r ·

√
ai

2
· 1√

bi
. (6.81)

We therefore have:

∂
∂bi

(
A−B

) ≥ 0 ⇐⇒ λH ·
√

	r ·
√

ai

2
· 1√

bi
≤ �

n2
· ai

⇐⇒ λH ·
√

	r · n2

	
· 1

2
√

ai
≤ √bi.

(6.82)
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We will show that the last line of (6.82) is always true. We call LHS and RHS respectively the left and

right hand sides of this inequality. Because λH ≤ 1√
�r

and ai ≥ 1, we have LHS ≤ n2

2	
. Recalling

that 	 ≥ n2

2
√

d2
(see the theorem statement), we have n2

2� ≤
√

d2. Finally for all i ∈ [n] :
√

d2 ≤
√

bi.
Combining all this we obtain

LHS ≤ n2

2	
≤
√

d2 ≤
√

bi = RHS.

We see in (6.82) that this is equivalent to

∂

∂bi

(
A−B

) ≥ 0.

So increasing bi cannot decrease A−B for any i ∈ [q − 1], so A− B is minimal when all bi’s are set
to their minimal value d2. �

We let Bm denote the value of B when all bi’s are set to d2. We would now like to upper bound Bm, which
along with (6.80) will give us a lower bound on A−Bm (and therefore on A−B by Claim 1).

Bm = λH ·
√

	r ·
q−1∑
i=1

√
aibi = λH ·

√
	r ·
√

d2 ·
q−1∑
i=1

√
ai. (6.83)

Claim 2:
q−1∑
i=1

√
ai ≤

√
q − 1 · √d1.

Proof: We will use the Cauchy-Schwarz inequality. We define the vector v =
(√

a1, . . . ,
√

aq−1

)� ∈
Rq−1, and let 1q−1 ∈ Rq−1 be the all one vector. We know (Cauchy-Schwarz) that

〈v, 1q−1〉2 ≤ ‖v‖2 · ‖1q−1‖2. (6.84)

This means that(∑q−1
i=1 vi

)2 ≤ (∑q−1
i=1 v2

i

) · (q − 1
)

=⇒ (∑q−1
i=1

√
ai

)2 ≤ (∑q−1
i=1 ai

) · (q − 1
)

=⇒ (∑q−1
i=1

√
ai

)2 ≤ d1 ·
(
q − 1

)
=⇒ ∑q−1

i=1

√
ai ≤

√
q − 1 · √d1.

(6.85)

�

Combining (6.83) with Claim 2, we deduce that

Bm ≤ λH ·
√

	r ·
√

d2 ·
√

q − 1 ·
√

d1. (6.86)

We know from (6.78) and Claim 1 that wgt(c) ≥ A−Bm. (6.80) and (6.86) therefore lead to

wgt(c) ≥ 	d1d2

n2
− λH ·

√
	r ·
√

d2 ·
√

q − 1 ·
√

d1, (6.87)
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which is also a lower bound on the minimum distance d of C1♦HC2. Since the length of C1♦HC2 is 	n1, we
can now obtain a bound on its relative distance δ:

δ ≥ 	d1d2

	n1n2
− λH ·

√
	r · √q − 1 · √d1d2

	n1

= δ1δ2 − λH ·
√

r · √q − 1 · √d1d2√
	 · √n1 · √n1

= δ1δ2 − λH ·
√

q − 1 ·
√

r

	
·
√

d1

n1
·
√

d2

n1

= δ1δ2 − λH ·
√

q − 1 ·
√

r

	
·
√

d1

n1
·
√

d2

n2
·
√

	

r
(since n1 =

n2r

	
)

= δ1δ2 − λH ·
√

q − 1 · √δ1δ2,

(6.88)

as required.
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Appendix A

The Extension of the Binomial Function

This appendix deals with the extension of the binomial function from natural numbers to non negative real
numbers. We give the required definitions, and prove some of the properties needed in Chapter 3. In particular,
we prove Proposition 3.13.

The binomial function
(
a
b

)
is a map (·

·
)

: N× N → N,

which we will extend to a map (·
·
)′

: R≥0 × R≥0 → R≥0,

with the property that

a, b ∈ N =⇒
(

a

b

)
=

(
a

b

)′
.

We will do this using the gamma function Γ, see ([91]), which is defined everywhere in R>0, and has the
property that

Γ(1) = 1
Γ(z + 1) = z · Γ(z).

In particular, we can deduce from this that

n ∈ N =⇒ Γ(n + 1) = n!.

Because of this slightly inconvenient relation to the factorial function, we will also use Gauss’s simpler nota-
tion

Π(z) = Γ(z + 1),

which is defined over all of R≥0 and gives us the nicer relationship:

n ∈ N =⇒ Π(n) = n!.

So Π can be seen as an extension of the factorial function from N to R≥0. We use this to define our extension
of the binomial function:
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Definition A.1. For any a, b ∈ R≥0 with a ≥ b, we define:

(
a

b

)′
=

⎧⎪⎨
⎪⎩

Π(a)
Π(a−b)·Π(b) if a ≥ b

0 otherwise.

Notice that as required, when a, b ∈ N we have(
a

b

)′
=

(
a

b

)
.

From now on we will just write
(
a
b

)
instead of

(
a
b

)′
. We will start with some lemmas giving general properties

of the functions Γ and Π.

Lemma A.2. The gamma function has the following property:

∀x, y ∈ R>0, d ∈ R≥0 : y ≤ x =⇒ Γ(y + d)

Γ(y)
≤ Γ(x + d)

Γ(x)
.

Proof: Suppose we have a fixed d ∈ R≥0: We consider the following function:

f(t) =
Γ(t + d)

Γ(t)
,

over the range t ∈ R>0. Differentiating we obtain:

f ′(t) =
Γ′(t + d) · Γ(t)− Γ(t + d) · Γ′(t)

Γ(t)2
,

and so
f ′(t) ≥ 0 ⇐⇒ Γ′(t + d) · Γ(t)− Γ(t + d) · Γ′(t) ≥ 0

⇐⇒ Γ′(t + d) · Γ(t) ≥ Γ(t + d) · Γ′(t)

⇐⇒ Γ′(t+d)
Γ(t+d) ≥ Γ′(t)

Γ(t) (since Γ(t + d),Γ(t) > 0).

Now in general (see [91]) we have

Γ′(z)

Γ(z)
= −

(
1

z
+ γ +

∞∑
n=1

[
1/n

1 + z/n
− 1

n

])
,

where γ is the Euler-Mascheroni constant (see [93] [39]). We see that Γ′(z)
Γ(z) increases as z increases, and so

because t + d ≥ t, we have
Γ′(t + d)

Γ(t + d)
≥ Γ′(t)

Γ(t)
,

which means that f ′(t) ≥ 0 for all t. So f is an increasing function, which in particular means that

∀x, y ∈ R>0, d ∈ R≥0 : y ≤ x =⇒ f(y) ≤ f(x) =⇒ Γ(y + d)

Γ(y)
≤ Γ(x + d)

Γ(x)
.
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It is clear that because Π(x) = Γ(x+1), and y ≤ x ⇐⇒ y +1 ≤ x+1, for any x, y, d ∈ R≥0 we also have

y ≤ x =⇒ Π(y + d)

Π(y)
≤ Π(x + d)

Π(x)
. (A.1)

Lemma A.3. For any z ∈ R≥0 and m ∈ N we have

Π(z + m)

Π(z)
=

m∏
i=1

(z + i). (A.2)

Proof: We have:
Π
(
z + m

)
=
(
z + m

) · Π(z + m− 1
)

=
(
z + m

) · (z + m− 1
) · Π(z + m− 2

)
=
(
z + m

) · . . . · (z + 1
) ·Π(z)

=

[∏m
i=1(z + i)

]
·Π(z),

and so the result follows.

Proposition A.4. For any a, b ∈ R with 1 ≤ b ≤ a we have(
a

b

)
< 2a·h(b/a),

where h denotes the binary entropy function:

h(x) = −x · log2(x)− (1 − x) · log2(1− x).

Proof: We will use Stirling’s formula (see [51], Chapter 10): for x ≥ 1 we have
√

2π · xx+ 1
2 · e−x < Π(x) <

√
2π · xx+ 1

2 · e−x+ 1
12x . (A.3)

We set λ = b
a , so that b = λa. Since b ≤ a we have λ ≤ 1. We also define λ = 1− λ. We have:(
a
b

)
= Π(a)

Π(a−b)·Π(b)

<

[√
2π · aa+ 1

2 · e−a+ 1
12a

]
·
[√

2π · bb+ 1
2 · e−b · √2π · (a− b)a−b+ 1

2 · eb−a

]−1

= 1√
2π
· a1/2

b1/2·(a−b)1/2 · aa

bb·(a−b)a−b · exp
(− a + b + (a− b) + 1

12a)

= 1√
2π
·
√

a
λa·(1−λ)a · aa

(λa)λa·((1−λ)a)(1−λ)a · exp
(

1
12a)

= 1√
2π·λλa

· 1

λλa·λλa
· exp

(
1

12a)

< 1

λλa·λλa
(since a ≥ 1).

130



Now we see that

λλa · λλa
= 2λ·a·log2(λ)+λ·a·log2(λ) = 2a·(λ·log2(λ)+(1−λ)·log2(1−λ)) = 2−a·h(λ),

and since λ = b
a , the result follows.

Proposition A.5. For any a, b, c ∈ N, ε ∈ R≥0. We have:

b + ε ≤ a =⇒
(

a

c

)(
b

c

)
≤
(

a− ε

c

)(
b + ε

c

)
, (A.4)

and

b + ε ≤ a =⇒
(

a

c

)(
b

c + 1

)
≤
(

a− ε

c

)(
b + ε

c + 1

)
. (A.5)

Proof: We start with the first inequality:
• 1) Calling LHS and RHS the left and right hand sides of inequation (A.4), we have:

RHS
LHS = π(a−ε)

π(a−c−ε)·π(c) · π(b+ε)
π(b−c+ε)·π(c) ·

[
π(a)

π(a−c)·π(c) · π(b)
π(b−c)·π(c)

]−1

= π(a−ε)
π(a−ε−c) · π(b+ε)

π(b+ε−c) · π(a−c)
π(a) · π(b−c)

π(b) .

(A.6)

Recall from Lemma A.3 that

∀z ∈ R≥0,m ∈ N :
Π(z + m)

Π(z)
=

m∏
i=1

(z + i). (A.7)

Now to each one of the four fractions in (A.6) we can apply (A.7). We set m = c, and z = a− c− ε, b− c +
ε, a− c and b− c to obtain

RHS
LHS =

∏c
i=1(a− c + i− ε) · (b− c + i + ε) · 1

a−c+i · 1
b−c+i

=
∏c

i=1
a−c+i−ε
a−c+i · b−c+i+ε

b−c+i

=
∏c

i=1
Ai−ε
Ai

· Bi+ε
Bi

,

where Ai = a− c + i and Bi = b− c + i. Now

A−ε
A · B+ε

B ≥ 1 ⇐⇒ (A− ε) · (B + ε) ≥ AB

⇐⇒ AB −Bε + Aε− ε2 ≥ AB

⇐⇒ −B + A− ε ≥ 0

⇐⇒ A ≥ B + ε.

(A.8)
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Now since we suppose in the statement that a ≥ b + ε, for all i we have Ai ≥ Bi + ε. So since we used
equivalences everywhere in (A.8), we obtain

c∏
i=1

Ai − ε

Ai
· Bi + ε

Bi
≥ 1,

which means that
LHS ≤ RHS,

and so (A.4) holds.

• 2) The second inequality can be proved in much the same way. We proceed exactly as in 1), the only
difference being that in this case we have Bi = b− c− 1+ i. So we have an even stronger inequality between
the Ai’s and B′

is: a ≥ b + ε implies that for all i: Ai ≥ Bi + ε + 1 > Bi + ε. So (A.5) also holds.

Proposition A.6. For any a, b, c ∈ R≥0 with b < a, we have(
a

c

)(
b

c + 1

)
≤
(

a

c + 1/2

)(
b

c + 1/2

)
. (A.9)

Proof: Calling LHS and RHS the left and right hand sides of the inequation (A.9), we have

RHS
LHS = π(a)

π(a−c−1/2)·π(c+1/2) · π(b)
π(b−c−1/2)·π(c+1/2) ·

[
π(a)

π(a−c)·π(c) · π(b)
π(b−c−1)·π(c+1)

]−1

=

X1︷ ︸︸ ︷
π(a− c)

π(a− c− 1/2)
· π(b− c− 1)

π(b− c− 1/2)
·

X2︷ ︸︸ ︷
π(c)

π(c + 1/2)
· π(c + 1)

π(c + 1/2)
.

Now we know from (A.1) that for x, y, d ∈ R≥0 we have

y ≤ x =⇒ Π(y + d)

Π(y)
≤ Π(x + d)

Π(x)
, (A.10)

So setting y = c, x = c + 1
2 and d = 1

2 , we have y < x, and therefore

Π(c + 1/2)

Π(c)
≤ Π(c + 1)

Π(c + 1/2)
.

From this we can deduce that
X2 ≥ 1.

Likewise, we apply (A.10) with y = b− c− 1, x = a− c− 1
2 and d = 1

2 . Since we are supposing that b < a,
we have y < x, and therefore

Π(b− c− 1/2)

Π(b− c− 1)
≤ Π(a− c)

Π(a− c− 1/2)
,

which leads to
X1 ≥ 1.

132



So we have
X1 ·X2 ≥ 1 =⇒ RHS ≥ LHS,

and so (A.9) holds.

We are now ready to prove Proposition 3.13 of Chapter 3, which we restate below:

Proposition 3.13. For any n, 	 ∈ N, 0 < δ < 1
2 with 1 ≤ 	 ≤ 2nδ, letting δ = 1− δ we have

�nδ�∑
d=1

(
n− d

�	/2	
)(

d− 1

�	/2� − 1

)
≤ nδ ·

(
nδ

	/2

)(
nδ

	/2

)
. (A.11)

Proof: We call LHS and RHS the left and right hand sides of (A.11). We proceed differently depending on
whether 	 is even or odd.

• 1) 	 is even.
Letting x = �

2 =
⌊

�
2

⌋
=
⌈

�
2

⌉
, we have

LHS =

�nδ�∑
d=1

(
n− d

x

)(
d− 1

x− 1

)
≤

�nδ�∑
d=1

(
n− d

x

)(
d

x

)
,

where the inequality follows from the fact that everything is positive and in general
(a

b

) ≤ (a+1
b+1

)
. We let

wn,x(d) =

(
n− d

x

)(
d

x

)
.

We will show that for any n, x and for any d = 1, . . . , �nδ	 − 1 we have wn,x(d) ≤ wn,x(d + 1):

wn,x(d+1)
wn,x(d) =

[(
n−d−1

x

)(
d+1
x

)] · [(n−d
x

)(
d
x

)]−1

= (n−d−1)!
(n−d−x−1)!x! · (d+1)!

(d+1−x)!x)! · (n−d−x)!x!
(n−d)! · (d−x)!x!

d!

= d+1
d+1−x · n−d−x

n−d

=

[ X1︷ ︸︸ ︷
1− x

d + 1

]−1

·
[ X2︷ ︸︸ ︷

1− x

n− d

]
.

This means that
wn,x(d) ≤ wn,x(d + 1) ⇐⇒ 1 ≤ X−1

1 ·X2

⇐⇒ X1 ≤ X2

⇐⇒ 1− x
d+1 ≤ 1− x

n−d

⇐⇒ d+1
x ≤ n−d

x

⇐⇒ d + 1 ≤ n− d.

(A.12)
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Now for any d = 1, . . . , �nδ	 − 1, we have d + 1 ≤ �nδ	 < n
2 (since δ < 1

2 ). So

d + 1 <
n

2
=⇒ 2d + 2 < n =⇒ d + 1 < n− d− 1 < n− d.

Combining this with (A.12) we deduce that

∀ d = 1, . . . , �nδ	 − 1 : wn,x(d) ≤ wn,x(d + 1).

So this leads to
∀ d = 1, . . . , �nδ	 : wn,x(d) ≤ wn,x(�nδ	).

We can now deduce:

LHS =

�nδ�∑
d=1

wn,x(d) ≤ �nδ	 · wn,x(�nδ	) = �nδ	 ·
(

n− �nδ	
x

)(�nδ	
x

)
. (A.13)

Now letting ε = nδ − �nδ	, we notice that n− �nδ	 − ε = n− �nδ	 − (nδ − �nδ	) = n− nδ = nδ. So we
have

n− �nδ	 − ε = nδ
�nδ	+ ε = nδ.

(A.14)

Now recall from (A.4) of Proposition A.5 that for any a, b, c ∈ N with b + ε ≤ a we have(
a

c

)(
b

c

)
≤
(

a− ε

c

)(
b + ε

c

)
. (A.15)

We notice that because δ < 1
2 we have �nδ	 < n/2, which means that �nδ	 < n − �nδ	. So setting

a = n− �nδ	, b = �nδ	 and c = x we see first of all that b < a. So since a and b are integers and 0 ≤ ε < 1
we have b + ε < a and we therefore can apply (A.15) to obtain(

n− �nδ	
x

)(�nδ	
x

)
≤
(

n− �nδ	 − ε

x

)(�nδ	+ ε

x

)
=

(
nδ

	/2

)(
nδ

	/2

)
, (A.16)

where the last equality follows from (A.14) and the fact that x was defined as x = �
2 . Now we combine (A.13)

and (A.16) to deduce

LHS ≤ �nδ	 ·
(

n− �nδ	
x

)(�nδ	
x

)
≤ nδ ·

(
nδ

	/2

)(
nδ

	/2

)
= RHS.

• 2) 	 is odd.
We let x = �−1

2 . So �	/2	 = x and �	/2� − 1 = (x + 1)− 1 = x. This leads to

LHS =

�nδ�∑
d=1

(
n− d

x

)(
d− 1

x

)
≤

�nδ�∑
d=1

(
n− d

x

)(
d

x + 1

)
,

where the second inequality follows from the fact that in general
(a

b

) ≤ (a+1
b+1

)
. As above, letting

wn,x(d) =

(
n− d

x

)(
d

x + 1

)
,
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we will show that for any n, x and for any d = 1, . . . , �nδ	 − 1 we have wn,x(d) ≤ wn,x(d + 1):

wn,x(d+1)
wn,x(d) =

[(
n−d−1

x

)(
d+1
x+1

)] · [(n−d
x

)(
d

x+1

)]−1

= (n−d−1)!
(n−d−x−1)!x! ·

(d+1)!
(d−x)!(x+1)! · (n−d−x)!x!

(n−d)! · (d−x−1)!(x+1)!
d! ·

= d+1
d−x · n−d−x

n−d

=

[
d+1−(x+1)

d+1

]−1

·
[

n−d−x
n−d

]

=

[ Y1︷ ︸︸ ︷
1− x + 1

d + 1

]−1

·
[ Y2︷ ︸︸ ︷

1− x

n− d

]
.

.

We saw above in (A.12) that because d + 1 ≤ n− d, for any x ≥ 0 we have

1− x

d + 1
≤ 1− x

n− d
.

So here

Y1 = 1− x + 1

d + 1
< 1− x

d + 1
≤ 1− x

n− d
= Y2,

and therefore Y −1
1 · Y2 ≥ 1. From this we deduce that

∀ d = 1, . . . , �nδ	 − 1 : wn,x(d) ≤ wn,x(d + 1),

and therefore
∀ d = 1, . . . , �nδ	 : wn,x(d) ≤ wn,x(�nδ	).

As above, this leads to

LHS =

�nδ�∑
d=1

wn,x(d) ≤ �nδ	 · wn,x(�nδ	) = �nδ	 ·
(

n− �nδ	
x

)( �nδ	
x + 1

)
. (A.17)

In exactly the same way as case 1) above, setting ε = nδ − �nδ	 gives us

n− �nδ	 − ε = nδ
�nδ	+ ε = nδ.

(A.18)

Recall from (A.5) of Proposition A.5 that for any a, b, c ∈ N with b + ε ≤ a we have(
a

c

)(
b

c + 1

)
≤
(

a− ε

c

)(
b + ε

c + 1

)
. (A.19)

If we set a = n − �nδ	, b = �nδ	 and c = x then as above we have b + ε ≤ a, and we can therefore apply
(A.19) to obtain (

n− �nδ	
x

)( �nδ	
x + 1

)
≤
(

nδ

x

)(
nδ

x + 1

)
. (A.20)
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Finally, we saw in Proposition A.6 that for any a, b, c ∈ R≥0 with b < a, we have(
a

c

)(
b

c + 1

)
≤
(

a

c + 1/2

)(
b

c + 1/2

)
, (A.21)

and so applying this with a = nδ, b = nδ and c = x we have b < a and therefore(
nδ

x

)(
nδ

x + 1

)
≤
(

nδ

x + 1/2

)(
nδ

x + 1/2

)
=

(
nδ

	/2

)(
nδ

	/2

)
, (A.22)

where the second equality follows from the fact that x was defined as x = �−1
2 . Combining (A.17), (A.20)

and (A.22) gives us

LHS ≤ �nδ	 ·
(

n− �nδ	
x

)( �nδ	
x + 1

)
≤ nδ ·

(
nδ

	/2

)(
nδ

	/2

)
= RHS.
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Appendix B

Proof of Theorem 6.11

The proof of Theorem 6.11 was outlined in section 6.4.4, In this appendix we give proofs of the results that
were stated in that section namely we will prove (6.53) and (6.54) (Lemma B.6), and the three inequalities in
(6.55) (Lemmas B.7, B.8 and B.9).

Although there is a certain intuition behind these (similar to that in the section on derandomized squaring), it
is not easy to convince oneself of the truth of the propositions by intuitive reasoning. We therefore make our
proofs more technical and rigorous, even though this does make things more tedious to follow.

We will need some basic results on tensoring, inner products and the graphs we defined in section 6.4.3.
Although with a little thought we can convince ourselves that they hold, formal proofs are technical. We
therefore lay these results out in the following lemmas for reference. The proofs are included in Appendix C.

Lemma B.1.

1. ∀σ ∈ Rnm, τ ∈ Rn : 〈σ, τ ⊗ 1m〉 = 〈Mn(σ), τ〉.
2. ∀σ ∈ Rnd(1), τ ∈ Rn : 〈σ, τ ⊗ e1〉 = 〈Mn(σ), τ〉.
3. ∀σ ∈ Rnd(2), τ ∈ Rn : 〈σ, τ ⊗ e2〉 = 〈Mn(σ), τ〉.

Lemma B.2.

1. ∀σ ∈ Rn : Mn

(
A(σ ⊗ e1)

)
= d1 · Aσ.

2. ∀σ ∈ Rm : Mm

(
B(σ ⊗ e2)

)
= d2 ·Bσ.

3. ∀σ ∈ Rn,∀τ ∈ Rn : 〈A(σ ⊗ e1), τ ⊗ e1〉 = d1 · 〈Aσ, τ〉.
4. ∀σ ∈ Rm,∀τ ∈ Rm : 〈B(σ ⊗ e2), τ ⊗ e2〉 = d2 · 〈Bσ, τ〉.

Lemma B.3.
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1. C · e1 = d1
d2
· e2.

2. C · e2 = d2
d1
· e1.

3. ∀σ ∈ Rnm : A(σ ⊗ 1d) = A(σ ⊗ e1).

4. ∀σ ∈ Rnm : B(σ ⊗ 1d) = B(σ ⊗ e2).

5. ∀σ ∈ Rn, τ ∈ Rmd : Mnm(σ ⊗ τ) = σ ⊗Mm(τ).

To obtain the required results we will first need to prove two Lemmas (B.4 and B.5). As stated in Theo-
rem 6.11, our bound on the second eigenvalue of a derandomized tensor product required that the labellings
of the graphs A and B be half-colorings. The next two lemmas are the only places we will use this.

Recall that we interpret the graph B (see Definition B.5 as consisting of m copies of the vertices of C (m
clouds), namely one for each vertex of B. We refer to the vertices in [m] ×D1 as the left vertices of B, and
to those in [m]×D2 as the right vertices. A vector τ ∈ Rmd is said to be B-uniform if

Mm(τ) ∈ 1‖m. (B.1)

So if τ is a distribution over the right vertices of B, it is B-uniform if and only if the marginal over the clouds
is uniform (the probability of being on any given cloud is the same, namely 1

m ).

The intuition behind Lemma B.4 is the following: Suppose we start with a B-uniform distribution on the
vertices of B of the form 1m ⊗ σ (so the distribution inside each cloud is the same). Then after one step of a
walk in B it will still be B-uniform.

Lemma B.4. If the labeling of B is a half-coloring then for any σ ∈ R2,

Mm

(
B(1m ⊗ σ)

)
= 1m · 〈σ, 1d〉.

Proof: Recall from Definition B.5 that B is a graph with vertex set [m]× [d] in which each vertex (i, j) has
either one or no neighbors:
• If j ∈ D1 then (i, j) has no neighbors.
• If j ∈ D2 then there is an edge from (i, j) to (i[j], ρB(j)).

One step of a random walk on B can be seen as an involution on the set [m] of vertices (they all have degrees
either 1 or 0). Multiplying a vector τ ∈ Rmd by B involves permuting its components. Formally, if we index
the entries of τ with the set [m]× [d] then

(Bτ)ij = τi[j],ρ(j). (B.2)

Recall that a half-coloring means that each color j ∈ D2 has a “partner color” p(j) ∈ D2 for which any vertex
i ∈ [m] satisfies

i[j][ρ(j)] = i[ρ(j)][j] = i. (B.3)

We want to study B(1m ⊗ σ). Let w = 1m ⊗ σ. If we index the entries of w with the set [m] × D2 in the
natural way then we have

wi,j = σj . (B.4)
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So using (B.2) gives us
(Bw)i,j = wi[j],ρ(j) = σρ(j). (B.5)

So for all i ∈ [m] the vector (Bw)i ∈ R2 is just a permutation of σ. We have

(
Mm(Bw)

)
i
=

d∑
j=1

(Bw)i,j =

d∑
j=1

σρ(j) =

d∑
j=1

σj = 〈σ, e2〉.

Since this holds for all m entries of Mm(Bw), we have

Mm(Bw) = 1m · 〈σ, e2〉. (B.6)

A vector τ ∈ Rmd is said to be B-anti-uniform if the marginal over each C-vertex is anti-uniform. Another
way of phrasing this is that if we decompose τ as

τ =

⎛
⎜⎝ τ1

...
τm

⎞
⎟⎠ , (B.7)

where τi ∈ Rd, then
m∑

i=1

τi = 0d. (B.8)

The intuition behind Lemma B.5 is the following: Suppose we start with a B-anti-uniform distribution on the
vertices of B of the form v ⊗ 1d, with v ∈ 1⊥m (so a C-uniform distribution). Then after one step of a walk in
B it will still be B-anti-uniform.

Lemma B.5. Suppose the labeling of B is a half-coloring. Let v ∈ 1⊥m, and decompose b = B(v⊗1d) ∈ Rmd

as follows:

b =

⎛
⎜⎝ b1

...
bm

⎞
⎟⎠ , (B.9)

where bi ∈ Rd. Then
m∑

i=1

bi = 0d. (B.10)

Proof: Recall that a half-coloring means that each color j ∈ D2 has a “partner color” ρ(j) ∈ D2 for which
every vertex i ∈ [m] satisfies

i[j][ρ(j)] = i[ρ(j)][j] = i. (B.11)

We will first show that for a fixed j ∈ D2, the mapping χj : [m] → [m] defined as

χj(i) = i[j]
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is a bijection. For i, 	 ∈ [m] we have

χj(i) = χj(	) =⇒ i[j] = 	[j]

=⇒ i[j][ρ(j)] = 	[j][ρ(j)]

=⇒ i = 	 (by the definition of a half-coloring).

(B.12)

So χj is injective and therefore (by cardinality arguments) bijective. So χj is a permutation of [m].

Now let w = v ⊗ 1n ∈ Rmd. If we index the entries of w with the set [m]× [d] then

wi,j = vi. (B.13)

Now using (B.2) we have:
(bi)j = (Bw)i,j = wi[j],ρ(j) = vi[j]. (B.14)

So for each j ∈ [m]: ( m∑
i=1

bi

)
j

=

m∑
i=1

(
bi

)
j

=

m∑
i=1

vi[j] =

m∑
i=1

vχj(i). (B.15)

Since χj is a permutation of [m], we can deduce that( m∑
i=1

bi

)
j

=
m∑

i=1

vi = 0, (B.16)

where the last equality follows from the fact that v ∈ 1⊥m. So as required,

m∑
i=1

bi = 0d. (B.17)

We are now ready to prove the results we stated in our outline of the proof of Theorem 6.11. We start by
giving a reminder of the definitions of the subspaces S1, S2 and S3 of Rnmd:

S1 = 1⊥n ⊗ 1
‖
m ⊗ 1

‖
d.

S2 = 1
‖
n ⊗ 1⊥m ⊗ 1

‖
d.

S3 = 1⊥n ⊗ 1⊥m ⊗ 1
‖
d.

(B.18)

Lemma B.6. Let S1, S2 and S3 be the subspaces defined in (B.18). If x1 ∈ S1, x2 ∈ S2, x3 ∈ S3 and
x = x1 + x2 + x3 then

〈ÂĈB̂x, x〉 = 〈ÂĈB̂x1, x1〉+ 〈ÂĈB̂x2, x2〉+ 〈ÂĈB̂x3, x3〉. (B.19)

〈B̂ĈÂx, x〉 = 〈B̂ĈÂx1, x1〉+ 〈B̂ĈÂx2, x2〉+ 〈B̂ĈÂx3, x3〉. (B.20)
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Proof: We will show only the first part, from which the second part will follow by symmetry. We have

〈ÂĈB̂x, x〉 = 〈ÂĈB̂(x1 + x2 + x3), (x1 + x2 + x3)〉, (B.21)

and therefore expanding this leads to

〈ÂĈB̂x, x〉 =

3∑
i=1

3∑
j=1

〈ÂĈB̂xi, xj〉. (B.22)

We will show that of the nine terms in (B.22), all but the three that appear in (B.20) are zero. As explained
above, the intuition is that the images of the spaces S1, S2 and S3 under the linear transformation defined by
ÂĈB̂ are also pairwise orthogonal.

By the definitions of S1, S2 and S3, there are w ∈ 1⊥n , y ∈ 1⊥m with

x1 = w ⊗ 1m ⊗ 1d, x2 = 1n ⊗ y ⊗ 1d, (B.23)

and there are u1, . . . , uk ∈ 1⊥n , v1, . . . , vk ∈ 1⊥m with

x3 =

k∑
i=1

ui ⊗ vi ⊗ 1d. (B.24)

Claim 1: For any σ ∈ 1⊥n , τ ∈ Rm, we have

〈ÂĈB̂x2, σ ⊗ τ ⊗ 1d〉 = 0. (B.25)

Proof: Recall that B̂ = In ⊗B (see Section 6.4.3).

B̂x2 = B̂(1n ⊗ y ⊗ 1d) = (In ⊗B)(1n ⊗ y ⊗ 1d) = 1n ⊗B(y ⊗ 1d) = 1n ⊗ b, (B.26)

where b = B(y ⊗ 1d). We can decompose b ∈ Rmd as follows:

b =

⎛
⎜⎝ b1

...
bm

⎞
⎟⎠ , (B.27)

where b1, . . . , bm ∈ Rd. Now recalling that Ĉ = In ⊗ Im ⊗ C , we obtain

ĈB̂x2 = (In ⊗ Im ⊗ C) ·
(

1n ⊗

⎛
⎜⎝ b1

...
bm

⎞
⎟⎠) = 1n ⊗

⎛
⎜⎝ Cb1

...
Cbm

⎞
⎟⎠ = 1n ⊗

⎛
⎜⎝ t1

...
tm

⎞
⎟⎠ , (B.28)

where ∀j ∈ [m] : tj = Cbj ∈ Rd. Let t ∈ Rmd be defined as

t =

⎛
⎜⎝ t1

...
tm

⎞
⎟⎠ . (B.29)
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We now need to change bases (purely for notational purposes). We make the basis change given by the
matrix P from Definition 6.23. This gives us

ĈB̂x2 = 1n ⊗ t ∼P

⎛
⎜⎝ 1n ⊗ t1

...
1n ⊗ tm

⎞
⎟⎠ . (B.30)

In this new basis we have Â ∼P 1m ⊗A, so that

ÂĈB̂x2 ∼P Â(1n ⊗ t) =

⎛
⎜⎝ A(1n ⊗ t1)

...
A(1n ⊗ tm)

⎞
⎟⎠ . (B.31)

Again in our new basis, σ ⊗ τ ⊗ 1d becomes

σ ⊗ τ ⊗ 1d ∼P τ ⊗

⎛
⎜⎝ σ ⊗ 1d

...
σ ⊗ 1d

⎞
⎟⎠ =

⎛
⎜⎝ τ1(σ ⊗ 1d)

...
τm(σ ⊗ 1d)

⎞
⎟⎠ . (B.32)

Recall that we need to compute
〈ÂĈB̂x2, σ ⊗ τ ⊗ 1d〉, (B.33)

which according to (B.31) and (B.32) is equal to

〈⎛⎜⎝ A(1n ⊗ t1)
...

A(1n ⊗ tm)

⎞
⎟⎠ ,

⎛
⎜⎝ τ1(σ ⊗ 1d)

...
τm(σ ⊗ 1d)

⎞
⎟⎠〉. (B.34)

We can express this as

〈ÂĈB̂x2, σ ⊗ τ ⊗ 1d〉 =
∑m

j=1

〈
A(1n ⊗ tj), τj(σ ⊗ 1d)

〉
=
∑m

j=1 τj ·
〈
A(1n ⊗ tj), σ ⊗ e1

〉
=
∑m

j=1 τj · d ·
〈
Mn

(
A(1n ⊗ tj)

)
, σ
〉

(Lemma B.1 (2))

=
∑m

j=1 τj · d ·
〈
tj, 1d

〉 ·
0︷ ︸︸ ︷〈

1n, σ
〉

(Lemma B.4)

= 0 (since σ ∈ 1⊥n ).

(B.35)

�

The next two claims are corollaries of Claim 1:

Claim 2: 〈ÂĈB̂x2, x1〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, (B.36)

where w ∈ 1⊥n . So the result follows by setting σ = w and τ = 1m in Claim 1. �
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Claim 3: 〈ÂĈB̂x2, x3〉 = 0.
Proof: Recall that

x3 =

k∑
i=1

ui ⊗ vi ⊗ 1d. (B.37)

For each i = 1, . . . , k, setting σ = ui ∈ 1⊥n and τ = vi ∈ 1⊥m in Claim 1 enables us to obtain

〈ÂĈB̂x2, ui ⊗ vi ⊗ 1d〉 = 0, (B.38)

which means that 〈
ÂĈB̂x2, x3

〉
=
〈
ÂĈB̂x2,

∑
i ui ⊗ vi ⊗ 1d

〉
=
∑

i

〈
ÂĈB̂x2, ui ⊗ vj ⊗ 1d

〉
= 0.

(B.39)

�

Claim 4: 〈ÂĈB̂x3, x1〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, x3 =
k∑

i=1

zi︷ ︸︸ ︷
ui ⊗ vi ⊗ 1d . (B.40)

We will show that for each i, 〈ĈB̂zi, Âx1〉 is zero. Since B̂ = In ⊗B, we have

B̂zi = B̂(ui ⊗ vi ⊗ 1d) = ui ⊗B(vi ⊗ 1d) = ui ⊗ b, (B.41)

where b = B(vi ⊗ 1d). We can decompose b ∈ Rmd as follows:

b =

⎛
⎜⎝ b1

...
bm

⎞
⎟⎠ , (B.42)

where b1, . . . , bm ∈ Rd. Now recalling that Ĉ = In ⊗ Im ⊗ C , we obtain

ĈB̂zi = (In ⊗ Im ⊗ C) ·
(

ui ⊗

⎛
⎜⎝ b1

...
bm

⎞
⎟⎠) = ui ⊗

⎛
⎜⎝ Cb1

...
Cbm

⎞
⎟⎠ = ui ⊗

⎛
⎜⎝ t1

...
tm

⎞
⎟⎠ , (B.43)

where tj = Cbj . Changing the basis, (B.43) becomes

ĈB̂zi ∼P

⎛
⎜⎝ ui ⊗ t1

...
ui ⊗ tm

⎞
⎟⎠ . (B.44)

Since in this new basis Â ∼P Im ⊗A and x1 ∼P 1m ⊗ w ⊗ 1d, we can deduce that

Âx1 ∼P 1m ⊗A(w ⊗ 1d). (B.45)
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So combining (B.44) and (B.45) leads to

〈ĈB̂zi, Âx1〉 =

〈⎛⎜⎝ ui ⊗ t1
...

ui ⊗ tm

⎞
⎟⎠ ,

⎛
⎜⎝ A(w ⊗ 1d)

...
A(w ⊗ 1d)

⎞
⎟⎠〉. (B.46)

This can be written as

〈ĈB̂zi, Âx1〉 =

m∑
j=1

〈
ui ⊗ tj , A(w ⊗ 1d)

〉
=

〈
ui ⊗

m∑
j=1

tj, A(w ⊗ 1d)

〉
. (B.47)

We know from Lemma B.5 that
m∑

j=1

bj = 0d. (B.48)

So

m∑
j=1

tj =

m∑
j=1

Cbj = C ·

0d︷ ︸︸ ︷
m∑

j=1

bj = 0d. (B.49)

Plugging in (B.49) we see that (B.47) is equal to zero, and therefore

〈ĈB̂zi, Âx1〉 = 0. (B.50)

Since Â is symmetric, we have

〈
ÂĈB̂x3, x1

〉
=
〈
ĈB̂x3, Âx1

〉
=
〈
ĈB̂

k∑
i=1

zi, Âx1

〉
=

k∑
i=1

0︷ ︸︸ ︷〈
ĈB̂zi, Âx1

〉
= 0. (B.51)

�

Claim 5: 〈ÂĈB̂x1, x2〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, x2 = 1n ⊗ y ⊗ 1d, (B.52)

with w ∈ 1⊥n and y ∈ 1⊥m. Since B is a permutation on elements of Rm × R2, it is clear that it fixes
uniform vectors, in particular:

B(1m ⊗ e2) = 1m ⊗ e2. (B.53)

This leads to
B̂x1 = (In ⊗B)(w ⊗ 1m ⊗ 1d)

= w ⊗B(1m ⊗ e2)

= w ⊗ 1m ⊗ e2 (using (B.53)).

(B.54)

In the same way (though again a basis change is required to accommodate the limits of the current
notation) it can be shown that

Âx2 = 1n ⊗ v ⊗ e1. (B.55)
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Now (B.54) leads to

ĈB̂x1 = (Inm ⊗ C)
(
w ⊗ 1m ⊗ e2

)
= w ⊗ 1m ⊗ C · e2

= w ⊗ 1m ⊗ d2
d1
· e1 (from Lemma B.3 (1)).

(B.56)

So combining (B.55) and (B.56) gives us〈
ÂĈB̂x1, x2

〉
=
〈
ĈB̂x1, Âx2

〉
(since Â is symmetric)

= d2
d1
· 〈1n ⊗ v ⊗ e1, w ⊗ 1m ⊗ e1

〉
(using (B.55) and (B.56))

= d2
d1
·

0︷ ︸︸ ︷〈
1n, w

〉 ·〈v ⊗ e1, 1m ⊗ e1〉

= 0 (since w ∈ 1⊥n ).

�

Claim 6: 〈ÂĈB̂x1, x3〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, x3 =
k∑

i=1

zi︷ ︸︸ ︷
ui ⊗ vi ⊗ 1d, (B.57)

with w ∈ 1⊥n , ∀i = 1, . . . k : ui ∈ 1⊥n and vi ∈ 1⊥m. We know from (B.56) that

ĈB̂x1 =
d2

d1
· (w ⊗ 1m ⊗ e1

)
. (B.58)

Now by changing basis we have Â ∼P Im ⊗A, which means that

ÂĈB̂x1 ∼P
d2

d1
· (1m ⊗A(w ⊗ e1)

)
. (B.59)

Since for all i ∈ [k] : zi ∼P vi ⊗ ui ⊗ 1d , we obtain〈
ÂĈB̂x1, zi

〉
= d2

d1
· 〈1m ⊗A(w ⊗ e1), vi ⊗ ui ⊗ 1d

〉
(from (B.59))

= d2
d1
·

0︷ ︸︸ ︷〈
1m, vi

〉 · 〈A(w ⊗ 1d), ui ⊗ 1d

〉
= 0 (since vi ∈ 1⊥m).

(B.60)

This leads to

〈
ÂĈB̂x1, x3

〉
=
〈
ÂĈB̂x1,

k∑
i=1

zi

〉
=

k∑
i=1

0︷ ︸︸ ︷〈
ÂĈB̂x1, zi

〉
= 0. (B.61)

�
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Claim 7: 〈ÂĈB̂x3, x2〉 = 0.
Proof: Recall that

x2 = 1n ⊗ y ⊗ 1d, x3 =
k∑

i=1

zi︷ ︸︸ ︷
ui ⊗ vi ⊗ 1d, (B.62)

with y ∈ 1⊥m, ∀i = 1, . . . k : ui ∈ 1⊥n and vi ∈ 1⊥m. We have:

ĈB̂zi = Ĉ
(
In ⊗B

)(
ui ⊗ vi ⊗ 1d

)
= Ĉ

(
ui ⊗B(vi ⊗ 1d)

)
=
(
In ⊗ Im ⊗ C

)(
ui ⊗B(vi ⊗ 1d)

)
=
(
ui ⊗ ti

)
,

(B.63)

where ti =
(
Im ⊗ C

)(
B(vi ⊗ 1d)

) ∈ Rmd. We can now write〈
ÂĈB̂zi, x2

〉
=
〈
ĈB̂zi, Âx2

〉
since Â is symmetric

=
〈
ui ⊗ ti, 1n ⊗ v ⊗ e1

〉
using (B.63) and (B.55)

=

0︷ ︸︸ ︷〈
ui, 1n

〉 ·〈ti, y ⊗ 1d

〉
= 0 since ui ∈ 1⊥n .

(B.64)

This leads to

〈
ÂĈB̂x3, x2

〉
=
〈
ÂĈB̂

k∑
i=1

zi, x2

〉
=

k∑
i=1

0︷ ︸︸ ︷〈
ÂĈB̂zi, x2

〉
= 0. (B.65)

�

Combining everything: We know from (B.22) that

〈ÂĈB̂x, x〉 =
3∑

i=1

3∑
j=1

〈ÂĈB̂xi, xj〉. (B.66)

Claims 2 to 7 tell us that six of the nine terms in (B.66) are zero, so keeping only the remaining ones leads to

〈ÂĈB̂x, x〉 = 〈ÂĈB̂x1, x1〉+ 〈ÂĈB̂x2, x2〉+ 〈ÂĈB̂x2, x2〉, (B.67)

as required.

The next 3 lemmas will prove the inequalities of (6.55).
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Lemma B.7. Let S2 = 1
‖
n ⊗ 1⊥m ⊗ 1

‖
d. For any x2 ∈ S2, we have:∣∣〈B̂ĈÂx2, x2〉

∣∣ +
∣∣〈ÂĈB̂x2, x2〉

∣∣ ≤ λB · 〈x2, x2〉.

Proof: Recall first of all that we can write x2 as

x2 = 1n ⊗ y ⊗ 1d. (B.68)

Next, we saw in (B.55) that
Âx2 = 1n ⊗ y ⊗ e1. (B.69)

So this gives us
ĈÂx2 = Ĉ(1n ⊗ y ⊗ e1)

= 1n ⊗ y ⊗ C · e1

= 1n ⊗ y ⊗ d1
d2
· e2 (from Lemma B.3 (1)).

(B.70)

Also, since B̂ = In ⊗B
B̂x2 = 1n ⊗B(y ⊗ 1d). (B.71)

We therefore have

〈B̂ĈÂx2, x2〉 = 〈ĈÂx2, B̂x2〉 (B̂ is symmetric)

= d1
d2
· 〈1n ⊗ y ⊗ e2, 1n ⊗B(y ⊗ 1d)〉 (from (B.70) and (B.71))

= d1
d2
· 〈1n, 1n〉 · 〈y ⊗ e2, B(y ⊗ e2)〉 (from Lemma B.3 (4) )

= d1
d2
· 〈1n, 1n〉 · d2 · 〈y,By〉 (from Lemma B.2 (2) )

= d1 · 〈1n, 1n〉 · 〈y,By〉.

(B.72)

Now since y ∈ 1⊥m we know by definition that∣∣〈y,Bv〉∣∣ ≤ λB〈y, y〉. (B.73)

We therefore have: ∣∣〈B̂ĈÂx2, x2〉
∣∣ = d1 ·

∣∣〈1n, 1n〉
∣∣ · ∣∣〈y,By〉∣∣

≤ d1 ·
∣∣〈1n, 1n〉

∣∣ · λB · 〈y, y〉

= d1 · λB · 〈1n, 1n〉 · 〈y, y〉 · 〈1d,1d〉
d

= d1
d · λB · 〈1n ⊗ y ⊗ d, 1n ⊗ y ⊗ d〉

= d1
d · λB · 〈x2, x2〉.

(B.74)
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Analogously, we can show that

∣∣〈ÂĈB̂x2, x2〉
∣∣ ≤ d2

d
· λB · 〈x2, x2〉. (B.75)

Since d1 + d2 = d, we can combine (B.74) and (B.75) to obtain∣∣〈ĈÂx2, B̂x2〉
∣∣+ ∣∣〈ĈB̂x2, Âx2〉

∣∣ ≤ λB · 〈x2, x2〉, (B.76)

as required.

Lemma B.8. Let S1 = 1⊥n ⊗ 1
‖
m ⊗ 1

‖
d. For any x1 ∈ S1, we have:∣∣〈B̂ĈÂx1, x1〉

∣∣ +
∣∣〈ÂĈB̂x1, x1〉

∣∣ ≤ λA · 〈x1, x1〉.

Proof: Analogous to that of Lemma B.7 (though a basis change is required).

Theorem B.9. Let m(a, b, c) be the function defined in (6.33) of Theorem 6.11. Let x3 ∈ S3. Then

∣∣〈B̂ĈÂx3, x3〉
∣∣ +

∣∣〈ÂĈB̂x3, x3〉
∣∣ ≤ m(λA, λB , λC) · 〈x3, x3〉. (B.77)

Proof: Since B̂ is symmetric, we have

〈B̂ĈÂx3, x3〉 = 〈ĈÂx3, B̂x3〉. (B.78)

Let γ = Âx3 and μ = B̂x3. Notice that

γ ∈ Rn ⊗ Rm ⊗R1, μ ∈ Rn ⊗ Rm ⊗R2. (B.79)

We define γ‖ and γ⊥ as follows:

γ‖ = Mnm(γ)⊗ e1

d1
, γ⊥ = γ − γ‖.

So γ‖ is uniform and γ⊥ is anti-uniform over the left nodes of each C-cloud (so γ‖ ⊥ γ⊥), and γ = γ‖ + γ⊥.
In the same way we decompose μ with respect to the right nodes of each C-cloud. Formally,

μ‖ = Mnm(μ)⊗ e2

d2
, μ⊥ = μ− μ‖.
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Claim 1: 〈Ĉγ‖, μ⊥〉 = 〈Ĉγ⊥, μ‖〉 = 0.

Proof: γ‖ ∈ Rn ⊗ Rm ⊗ e
‖
1, and Ĉ = In ⊗ Im ⊗ C . Now for any w ∈ e

‖
1 we have Cw ∈ e

‖
2, so

Ĉγ‖ ∈ Rn ⊗ Rm ⊗ e
‖
2. On the other hand, μ⊥ ∈ Rn ⊗ Rm ⊗ e⊥2 , which means that 〈Ĉγ‖, μ⊥〉 = 0.

The second part can be shown in exactly the same way. �

Using Claim 1 we see that:

〈ĈÂx3, B̂x3〉 = 〈Ĉγ, μ〉

= 〈Ĉγ‖ + Ĉγ⊥, μ‖ + μ⊥〉

= 〈Ĉγ‖, μ‖〉+

0︷ ︸︸ ︷
〈Ĉγ‖, μ⊥〉+

0︷ ︸︸ ︷
〈Ĉγ⊥, μ‖〉+〈Ĉγ⊥, μ⊥〉 (Claim 1)

= 〈Ĉγ‖, μ‖〉+ 〈Ĉγ⊥, μ⊥〉

= ‖Ĉγ‖‖ · ‖μ‖‖ · cos (Ĉγ‖, μ‖)+ ‖Ĉγ⊥‖ · ‖μ⊥‖ · cos (Ĉγ⊥, μ⊥).

(B.80)

Therefore we have ∣∣〈ĈÂx3, B̂x3〉
∣∣ ≤ ‖Ĉγ‖‖ · ‖μ‖‖+ ‖Ĉγ⊥‖ · ‖μ⊥‖. (B.81)

Now, we know that x3 ∈ S3 with S3 = 1⊥n ⊗ 1⊥m ⊗ 1
‖
d. Let u0, . . . un−1 and v0, . . . , vm−1 be the normalized

eigenvectors of A and B respectively. As usual u0 and v0 are uniform while u1, . . . un−1 and v1, . . . , vm−1

form orthonormal bases of 1⊥n and 1⊥m respectively. Consequently,

{
ui ⊗ vj ⊗ 1d√

d

∣∣ i ∈ [n− 1], j ∈ [m− 1]
}

is an orthonormal basis of S3. So there are αij ∈ R with

x3 =

n−1∑
i=1

m−1∑
j=1

αij · (ui ⊗ vj ⊗ 1d√
d
). (B.82)

Claim 2: ‖x3‖2 = d
d2
· ‖μ‖2

Proof: Since the basis in which x3 is expressed in (B.82) is orthonormal, we have

‖x3‖2 =
n−1∑
i=1

m−1∑
j=1

α2
ij. (B.83)

Now for i = 1, . . . , n− 1 let wi ∈ Rm be defined as

wi =

m−1∑
j=1

αijvj, (B.84)
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so that

x3 =
n−1∑
i=1

m−1∑
j=1

αij(ui ⊗ vj ⊗ 1d√
d
) =

n−1∑
i=1

(ui ⊗ wi ⊗ 1d√
d
). (B.85)

Notice that because the vectors u1, . . . , un−1 are pairwise orthogonal, the ui⊗wi⊗1d are also pairwise
orthogonal.∥∥μ∥∥2

=
∥∥B̂x3

∥∥2

=
∥∥∑n−1

i=1 B̂ · (ui ⊗ wi ⊗ 1d√
d

)∥∥2

=
∥∥∑n−1

i=1 ui ⊗B · (wi ⊗ 1d√
d

)∥∥2

=
∑n−1

i=1

∥∥ui ⊗B · (wi ⊗ 1d√
d

)∥∥2
(since the ui’s are pairwise orthogonal)

=
∑n−1

i=1

∥∥B · (wi ⊗ 1d√
d

)∥∥2
(since ‖ui‖ = 1 ∀i).

(B.86)

From Lemma B.3 (4) we know that

B · (wi ⊗ 1d√
d

)
= B · (wi ⊗ e2√

d

)
. (B.87)

Since B is a permutation on elements of Rm⊗R2, it is length preserving on these elements. This leads
to ∥∥B · (wi ⊗ 1d√

d

)∥∥ =
∥∥wi ⊗ e2√

d

∥∥ =
∥∥wi

∥∥ · ∥∥ e2√
d

∥∥ =

√
d2

d
· ∥∥wi

∥∥. (B.88)

So plugging (B.88) into (B.86) gives us

∥∥μ∥∥2
=

d2

d
·

n−1∑
i=1

∥∥wi

∥∥2
. (B.89)

Since wi =
∑m

j=1 αijvj , and the vj’s are pairwise orthogonal, we obtain

‖wi‖2 =
m−1∑
j=1

α2
ij · ‖vj‖2 =

m−1∑
j=1

α2
ij. (B.90)

Plugging (B.90) into (B.89) gives us

∥∥μ∥∥2
=

d2

d
·

n−1∑
i=1

m−1∑
j=1

α2
ij =

d2

d
‖x3‖2, (B.91)

where the last equality follows from (B.83). �
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Claim 3: ‖x3‖2 = d
d1
‖γ‖2.

Proof: Analogous to that of Claim 2. �

Claim 4:
∥∥Ĉγ‖∥∥ =

√
d1
d2
· ‖γ‖‖

Proof: Lemma B.3 (1) tells us that
C · e1

d1
=

e2

d2
. (B.92)

Now recall that γ‖ = Mnm(γ)⊗ e1
d1

, and Ĉ = Inm ⊗ C . We therefore have

Ĉγ‖ = Mnm(γ)⊗ C · e1

d1
= Mnm(γ)⊗ e2

d2
. (B.93)

This leads to ∥∥Ĉγ‖∥∥ =
∥∥Mnm(γ)

∥∥ · ∥∥e2

d2

∥∥ =
∥∥Mnm(γ)

∥∥ · 1√
d2

, (B.94)

and therefore ∥∥Ĉγ‖∥∥ =

√
d1

d2
· ‖γ‖‖. (B.95)

�

Claim 5: ‖Ĉγ⊥‖ ≤ λC ·
√

d1
d2
· ‖γ⊥‖.

Proof: We saw in Proposition 5.44 that for any x ∈ e⊥1∥∥Cx
∥∥ ≤√d1

d2
· λC · ‖x‖. (B.96)

Now we can decompose γ⊥ ∈ Rnm ⊗ e⊥1 as

γ⊥ =

⎛
⎜⎝ γ⊥

1,1
...

γ⊥
n,m

⎞
⎟⎠ , (B.97)

where γ⊥
i,j ∈ e⊥1 . Therefore

Ĉγ⊥ =

⎛
⎜⎝ Cγ⊥

1,1
...

Cγ⊥
n,m

⎞
⎟⎠ , (B.98)

and so

‖Ĉγ⊥‖2 =
∑n

i=1

∑m
j=1 ‖Ĉγ⊥

i,j‖2

≤ ∑n
i=1

∑m
j=1

d1
d2
· λ2

C · ‖γ⊥
i,j‖2 (from (B.96), since γ⊥

i,j ∈ e⊥1 )

= d1
d2
· λ2

C · ‖γ⊥‖2.
(B.99)
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And so we conclude that

‖Ĉγ⊥‖ ≤ λC ·
√

d1

d2
· ‖γ⊥‖. (B.100)

�

Continuing with our proof, from (B.81) we obtain∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 ≤ ‖μ‖‖ · ‖Ĉγ‖‖
‖x3‖2 +

‖μ⊥‖ · ‖Ĉγ⊥‖
‖x3‖2 , (B.101)

and so Claims 4 and 5 then give us∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 ≤
√

d1

d2
· ‖μ

‖‖
‖x3‖ ·

‖γ‖‖
‖x3‖ + λC ·

√
d1

d2
· ‖μ

⊥‖
‖x3‖ ·

‖γ⊥‖
‖x3‖ . (B.102)

From Claims 2 and 3 we know that

‖x3‖ =

√
d

d1
‖γ‖, ‖x3‖ =

√
d

d2
‖μ‖. (B.103)

Therefore (B.102) and (B.103) lead to∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 ≤
√

d1

d2
·
√

d1d2

d
· ‖μ

‖‖
‖μ‖ ·

‖γ‖‖
‖γ‖ + λC ·

√
d1

d2
·
√

d1d2

d
· ‖μ

⊥‖
‖μ‖ ·

‖γ⊥‖
‖γ‖ · (B.104)

We now let θA be the angle between γ and γ‖, and θB be the angle between μ and μ‖. Notice that

cos(θA) =
‖γ‖‖
‖γ‖ , sin(θA) =

‖γ⊥‖
‖γ‖ , (B.105)

and likewise for θB . With these definitions, (B.104) can be reduced to∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 ≤ d1

d
· cos(θA) · cos(θB) + λC · d1

d
· sin(θA) · sin(θB). (B.106)

Since in general for any θ ∈ [0, π/2] we have sin(θ) =
√

1− cos2(θ), we can deduce:∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 ≤ d1

d
· cos(θA) · cos(θB) + λC · d1

d
·
√

(1− cos2(θA)) · (1− cos2(θB)). (B.107)

In exactly the same way it can be shown that∣∣〈ĈB̂x3, Âx3〉
∣∣

〈x3, x3〉 ≤ d2

d
· cos(θA) · cos(θB) + λC · d2

d
·
√

(1− cos2(θA)) · (1− cos2(θB)). (B.108)

Since d = d1 + d2, combining (B.107) and (B.108) gives us∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 +

∣∣〈ĈB̂x3, Âx3〉
∣∣

〈x3, x3〉 ≤ f(cos(θA), cos(θB), λC), (B.109)

where
f(a, b, c) = ab + c ·

√
(1− a2) · (1− b2). (B.110)
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Claim 6: cos(θB) ≤ λB

Proof: First recall from (B.82) that there are αij ∈ R with

x3 =

n−1∑
i=1

m−1∑
j=1

αij · (ui ⊗ vj ⊗ 1d√
d
). (B.111)

Setting bj = B(vj ⊗ 1d√
d
) ∈ Rmd gives us

μ = B̂x3

= B̂ · (∑n−1
i=1

∑m−1
j=1 αij · (ui ⊗ vj ⊗ 1d√

d
)
)

=
∑n−1

i=1

∑m−1
j=1 αij · (In ⊗B) · (ui ⊗ vj ⊗ 1d√

d
)

=
∑n−1

i=1

∑m−1
j=1 αij · (In · ui)⊗

bj︷ ︸︸ ︷
B · (vj ⊗ 1d√

d
)

=
∑n−1

i=1

∑m−1
j=1

αij√
d
· (ui ⊗ bj).

Recall that μ‖ was defined as
μ‖ = Mnm(μ)⊗ e2

d2
. (B.112)

Lemma B.3 (5) tells us that
Mnm(ui ⊗ bj) = ui ⊗Mm(bj), (B.113)

and therefore

μ‖ =

n−1∑
i=1

m−1∑
j=1

αij√
d
·Mnm(ui ⊗ bj)⊗ e2

d2
=

n−1∑
i=1

m−1∑
j=1

αij√
d
· ui ⊗Mm(bj)⊗ e2

d2
.

Now bj = B(vj ⊗ e2), and therefore Lemma B.2 (2) tells us that

Mm(bj) = d2 ·Bvj. (B.114)

This leads to

‖μ‖‖2 = ‖∑n−1
i=1

∑m−1
j=1

αij√
d
· ui ⊗Mm(bj)⊗ e2

d2
‖2

= ‖∑n−1
i=1

∑m−1
j=1

αij√
d
· ui ⊗ (d2 ·Bvj)⊗ e2

d2
‖2 (from (B.114))

=
∑n−1

i=1

∑m−1
j=1

αij√
d
· ‖ui‖2 · ‖d2 · Bvj‖2 · ‖ e2

d2
‖2 (since the ui’s are pairwise orthogonal)

=
∑n−1

i=1

∑m−1
j=1

αij√
d
· d2

2 · ‖Bvj‖2 · 1
d2

(since ∀i : ‖ui‖ = 1).

(B.115)
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Now since vj ∈ 1⊥m, by the definition of λB we have

‖Bvj‖ ≤ λB‖vj‖ = λB . (B.116)

So plugging this into (B.115) gives us

‖μ‖‖2 ≤ λ2
B ·

d2

d
·

n−1∑
i=1

m−1∑
j=1

αij. (B.117)

We also know from (B.91) that

‖μ‖2 =
d2

d
·

n−1∑
i=1

m−1∑
j=1

αij . (B.118)

So combining (B.117) and (B.118) leads to

‖μ‖‖
‖μ‖ ≤ λB. (B.119)

�

Claim 7: cos(θA) ≤ λA.
Proof: Analogous to that of Claim 6. �

Combining it all: Since cos(θA) ∈ [0, λA], and cos(θB) ∈ [0, λB ], (B.109) tells us that∣∣〈ĈÂx3, B̂x3〉
∣∣

〈x3, x3〉 +

∣∣〈ĈB̂x3, Âx3〉
∣∣

〈x3, x3〉 ≤ M(λA, λB , λC), (B.120)

where
M(λA, λB , λC) = max

{
f(a, b, λC) | a ∈ [0, λA], b ∈ [0, λB ]

}
. (B.121)

Theorem B.10 below states that

M(λA, λB , λC) ≤ m(λA, λB , λC), (B.122)

and so we deduce ∣∣〈ĈÂx3, B̂x3〉
∣∣ +

∣∣〈ĈB̂x3, Âx3〉
∣∣ ≤ m(λA, λB , λC) · 〈x3, x3〉, (B.123)

as required.
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Theorem B.10. Suppose that we have λA, λB , c ∈ [0, 1] with λB ≤ λA. Let f(a, b, c) be the function

f(a, b, c) = ab + c
√

(1− a2)(1 − b2), (B.124)

let M(λA, λB , c) be the quantity

M(λA, λB , c) = max
{
f(a, b, c) | a ∈ [0, λA], b ∈ [0, λB ]

}
, (B.125)

and let g(b, c) be the function

g(b, c) =
1√

c2

b2
− c2 + 1

. (B.126)

Then we have:

M(λA, λB , c) =

{
f(λA, λB , c) if λA ≤ g(λB , c)
f(g(λB , c), λB , c) otherwise.

(B.127)

So another way of putting this is

M(λA, λB , c) = f

(
min

(
λA, g(λB , c)

)
, λB , c

)
:= m(λA, λB , λC), (B.128)

which means that m(a, b, c) is as defined in Theorem 6.11.

Proof: First of all, we have
∂

∂a
f(a, b, c) = b− ac

√
1− b2

√
1− a2

. (B.129)

Now
∂
∂af(a, b, c) ≥ 0 ⇐⇒ b

√
1− a2 ≥ ac

√
1− b2 ⇐⇒

√
1
a2 − 1 ≥ c

√
1
b2
− 1

⇐⇒ 1
a2 ≥ c2 · ( 1

b2
− 1) + 1

⇐⇒ a ≤ 1q
c2

b2
−c2+1

⇐⇒ a ≤ g(b, c),

where g(b, c) is taken from (B.126).

Furthermore, for any b, c ∈ [0, 1] we have

∂

∂a
f(0, b, c) = b ≥ 0, (B.130)

which means that for fixed b and c, f(a, b, c) is increasing when a ∈ [0, g(b, c)], and decreasing when a ∈
[g(b, c), 1]. So over the range a ∈ [0, λA] (and for fixed b, c ∈ [0, 1]), depending on whether λA ≤ g(b, c) we
have one of the two following cases:
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Case 2Case 1

λAλA

f(a, b, c)f(a, b, c)

g(b, c)g(b, c)
aa 11 00

The maxima of f(a, b, c) over the range a ∈ [0, λA] will therefore be at a0 = min
(
λA, g(b, c)

)
. We will

consider the two values a0 can take separately. We will show that in both cases, when b ∈ [0, λB ] and
c ∈ [0, 1] we have:

f(a0, b, c) ≤ f(a0, λB , c), (B.131)

from which the result follows.

Case 1: g(b, c) < λA. So a0 = g(b, c). Let

h1(b, c) = f
(
a0, b, c

)
= f
(
g(b, c), b, c

)
=

b√
c2

b2
− c2 + 1

+ c ·
√

(1− b2) · (1− 1
c2

b2
− c2 + 1

). (B.132)

It can then be checked that
∂

∂b
h1(b, c) =

1− c2√
(c/b)2(1− b)2 + 1

, (B.133)

which means that

∀ b, c ∈ [0, 1] :
∂

∂b
h1(b, c) ≥ 0. (B.134)

Therefore for fixed c, h1(b, c) increases with b and so when b is in the range [0, λB ] it is maximal when
b = λB :

∀ b, c ∈ [0, 1] : h1(b, c) ≤ h1(λB , c). (B.135)

Case 2: λA ≤ g(b, c). So a0 = λA. Let

h2(b, c) = f
(
a0, b, c

)
= f
(
λA, b, c

)
. (B.136)

Now for any a, b, c we have f(a, b, c) = f(b, a, c). Therefore

h2(b, c) = f
(
b, λA, c

)
. (B.137)
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We showed above that for fixed b and c, f(a, b, c) is increasing when a ∈ [0, g(b, c)]. So applying this to
(B.137) we can deduce that for fixed c, h2(b, c) is increasing for b ∈ [0, g(λA, c)].

Claim: ∀x, c ∈ [0, 1] : g(x, c) ≥ x.
Proof: Recall from (B.126) that g(x, c) is defined as

g(x, c) =
1√

c2

x2 − c2 + 1
. (B.138)

Now we have:
x

g(x, c)
= x

√
c2

x2
− c2 + 1. (B.139)

Therefore

(
x

g(x,c)

)2
= x2

(
c2

x2 − c2 + 1
)

= c2 − x2c2 + x2

= c2
(
1− x2

)
+ x2

≤ (
1− x2

)
+ x2 (since c ∈ [0, 1] and 1− x2 ≥ 0)

= 1,

(B.140)

and the result follows immediately. �

From this claim we obtain
λB ≤ λA ≤ g(λA, c). (B.141)

(The first inequality is an assumption we made in the statement of the proposition). We have the following
situation:

λB
λB

f(λA, b, c)

g(λA, c) 10
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So over the range b ∈ [0, λB ], h2(b, c) is maximal when b = λB :

h2(b, c) ≤ h2(λB , c), (B.142)

which concludes case 2.
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Appendix C

Proofs

This appendix contains the proofs that are either too technical to feature in the main chapters, or that do not
involve results of central importance.

Lemma 3.16. For any ε1 > 0, there are N1,Γ1 with

N ≥ N1, γ ≥ Γ1 =⇒
∣∣∣∣Pw − 1

2

∣∣∣∣ ≤ ε1. (C.1)

Proof: Using the definition γ = w
n1−y , we get

Pw =
1

2
− 1

2

(
1− 2w

Rn

)(nR)y

=
1

2
− 1

2

(
1− 2γ

Rny

)(nR)y

, (C.2)

and therefore ∣∣∣∣Pw − 1

2

∣∣∣∣ =
∣∣∣∣12
(

1− 2γ

Rny

)(nR)y ∣∣∣∣ =
∣∣∣∣12
(

1− 2γ

R1−y · (nR)y

)(nR)y ∣∣∣∣. (C.3)

To make notation simpler, we let

x = (nR)y, a =
2γ

R1−y
. (C.4)

So the expression in (C.3) is ∣∣∣∣12
(

1− a

x

)x∣∣∣∣. (C.5)

Studying the asymptotic properties of (C.5) is a little delicate since we need to consider the asymptotic be-
havior of two variables x and a. Furthermore the growth rate of one with respect to the other could behave in
many different ways (corresponding to how w grows with n). We start by seeing that(

1− a

x

)x

= exp

[
x · ln (1− a

x

)]
,

and so recalling that the Maclaurin expansion of ln(1− z) is

−z − 1

2
· z2 − 1

3
· z3 − 1

4
· z4 − . . . ,
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we obtain(
1− a

x

)x

= exp

[
x · (− a

x
− a2

2x2
− a3

3x3
− . . .

)]
= exp

[
− a− a2

2x
− a3

3x2
− . . .

]
. (C.6)

Now since x > 0, no matter how x behaves, we will have

lim
a→∞

(− a− a2

2x
− a3

3x2
− . . .

)
= −∞. (C.7)

Notice that x could have any behavior as a gets large and (C.7) would still hold. Now combining (C.6) and
(C.7) we obtain

lim
a→∞

(
1− a

x

)x

= 0.

So replacing a and x according to (C.4), and combining this with (C.3), we can deduce that

lim
γ→∞

∣∣∣∣Pw − 1

2

∣∣∣∣ = 0.

Formally, this means that for any ε1 > 0 there is Γ1 with

γ ≥ Γ1 =⇒
∣∣∣∣Pw − 1

2

∣∣∣∣ ≤ ε1.

Now recall that the only values of w we consider are w = 1, . . . , �nR	. So since γ = w
n1−y , for w to get large

it is also necessary that n be large enough. Although this is sort of implicit in the statement “γ ≥ Γ1”, we
make this requirement explicit, by saying there are N1,Γ1 with

n ≥ N1, γ ≥ Γ1 =⇒
∣∣∣∣Pw − 1

2

∣∣∣∣ ≤ ε1.

Theorem 3.22. For any b, x with b ≥ 1 and 0 ≤ x ≤ 1 we have

1− x ≤
(
1− x

b

)b
. (C.8)
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Proof: Using the Maclaurin expansion of ln(1− x), we obtain:

ln(1− x) = −x− 1

2
x2 − 1

3
x3 − 1

4
x4 − . . .

= −b · x
b
− b2 · 1

2

(x

b

)2
− b3 · 1

3

(x

b

)2
− . . .

b≥1︷︸︸︷
≤ −b · x

b
− b · 1

2

(x

b

)2
− b · 1

3

(x

b

)2
− . . .

= b ·
(

x

b
− 1

2

(x

b

)2
− 1

3

(x

b

)2
− . . .

)

= b · ln
(
1− x

b

)

= ln
((

1− x

b

)b)
.

Because the function ln is increasing, we obtain

1− x ≤
(
1− x

b

)b
, (C.9)

as required.

Lemma 3.33. For all x, b ∈ R>0 we have

−x ln(bx) ≤ 1

be
.

Proof: Suppose that b ∈ R>0 is fixed, and let t(x) = −x ln(bx). Differentiating we get

t′(x) =
∂

∂x
t(x) = − ln(bx)− x

bx
b = − ln(bx)− 1.

Now,
t′(x) = 0 ⇐⇒ ln(bx) = −1

⇐⇒ bx = 1
e

⇐⇒ x = 1
be .

Furthermore, t′′(x) = − 1
bx < 0, so x = 1

be is a maxima for t.

t
( 1

be

)
= − 1

be
· ln (b 1

be

)
= − 1

be
· ln (1

e

)
=

1

be
.

Now x = 1
be is a maxima, so ∀x ∈ R>0 : t(x) ≤ t

(
1
be

)
, and the result follows.

Lemma 3.45. Let f : R→ R be a bounded function. Then for any ε > 0 there is X with

x ≥ X =⇒ exp
(− f(x)

)− ε ≤
(
1− f(x)

x

)x
≤ exp

(− f(x)
)
.
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Proof: The second inequality follows from the fact that for any z ∈ R : (1 + z) ≤ exp(z).

Next, we have: (
1− f(x)

x

)x
= exp

[
x · ln

(
(1− f(x)

x

)]
.

Recall that the Maclaurin expandion of ln(1− z) is

ln(1− z) = −z − 1

2
z2 − 1

3
z3 − 1

4
z4 − . . . .

This leads to (
1− f(x)

x

)x
= exp

[
− f(x) − f(x)2

2x
− f(x)3

3x2
− . . .

]
. (C.10)

Therefore since f(x) is bounded, by making x large enough, we can bring (C.10) as close as necessary to
exp
(− f(x)

)
. The result then follows.

Lemma 6.8. Let Â = DP[A]. Then for any σ ∈ Rn we have

Mn

(
Â(σ ⊗ 1d

d
)
)

= Aσ. (C.11)

Proof: Recall that in the notation from definition 5.22, for a vertex a ∈ [n] and a label k ∈ [d], a[k] denotes
the kth neighbor of a.

Now multiplying σ ∈ Rn by A can be described as follows:

(
Aσ
)
i
=

1

d
·

d∑
k=1

σi[k]. (C.12)

Next recall that the transition matrix of Â = DP[A] was defined in (5.39):

(
Â
)
ik,jl

=

{
1 if j = i[k] and i = j[	]
0 otherwise.

(C.13)

Therefore, we have (
Â(σ ⊗ 1d)

)
ik

= (σ ⊗ 1d)i[k]� = σi[k]. (C.14)

So (
Mn

(
Â(σ ⊗ 1d

d
)
))

i

=
1

d
·

d∑
k=1

(
Â(σ ⊗ 1d)

)
ik

=
1

d
·

d∑
k=1

σi[k]. (C.15)

Combining (C.12) and (C.15) then leads to

Mn

(
Â(σ ⊗ 1d

d
)
)

= d · Aσ, (C.16)

as required.

Lemma B.1
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1. ∀σ ∈ Rnm, τ ∈ Rn : 〈σ, τ ⊗ 1m〉 = 〈Mn(σ), τ〉.
2. ∀σ ∈ Rnd(1), τ ∈ Rn : 〈σ, τ ⊗ 1d1〉 = 〈Mn(σ), τ〉.
3. ∀σ ∈ Rnd(2), τ ∈ Rn : 〈σ, τ ⊗ 1d2〉 = 〈Mn(σ), τ〉.

Proof: We will prove only part (1), the proofs of (2) and (3) are analogous.

We index the elements of vectors in the the space Rm⊗Rd with the set [m]× [d]. For any i ∈ [n], j ∈ [d] we
have

(τ ⊗ 1d2)ij = τi (C.17)

Now
〈σ, τ ⊗ 1d2〉 =

∑m
i=1

∑d
j=1 σij · (τ ⊗ 1d2)ij

=
∑m

i=1

(∑d
j=1 σij

) · τi (from (C.17))

=
∑m

i=1

(
Mm(σ)

)
i
· τi

= 〈Mm(σ), τ〉.

(C.18)

Lemma B.2

1. ∀σ ∈ Rn : Mn

(
A(σ ⊗ 1d1)

)
= d1 · Aσ.

2. ∀σ ∈ Rm : Mm

(
B(σ ⊗ 1d2)

)
= d2 ·Bσ.

3. ∀σ ∈ Rn,∀τ ∈ Rn : 〈A(σ ⊗ 1d1), τ ⊗ 1d1〉 = d1 · 〈Aσ, τ〉.
4. ∀σ ∈ Rm,∀τ ∈ Rm : 〈B(σ ⊗ 1d2), τ ⊗ 1d2〉 = d2 · 〈Bσ, τ〉.

Proof:
• The proofs of (1) and (2) and analogous to that of Lemma 6.8.

• For (3), let σ ∈ Rn and τ ∈ Rn.

〈A(σ ⊗ 1d1), τ ⊗ 1d1〉 = 〈Mn

(
A(σ ⊗ 1d1)

)
, τ〉 (using Lemma B.1 (2))

= 〈d1 · Aσ, τ〉 (using (1))

= d1 · 〈Aσ, τ〉.
(C.19)

• the proof of (4) if analogous to that of (3).

Lemma B.3
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1. C · 1d1 = d1
d2
· 1d2 .

2. C · 1d2 = d2
d1
· 1d1 .

3. ∀σ ∈ Rnm : A(σ ⊗ 1d) = A(σ ⊗ 1d1).

4. ∀σ ∈ Rnm : B(σ ⊗ 1d) = B(σ ⊗ 1d2).

5. ∀σ ∈ Rn, τ ∈ Rmd : Mnm(σ ⊗ τ) = σ ⊗Mm(τ).

Proof:

• (1) and (2) follow immediately from the fact that the transition matrix of C is in the form⎛
⎜⎜⎝

0 1
r ·X

1
� ·XT 0

⎞
⎟⎟⎠ , (C.20)

where the rows and columns of X have weight r and 	 respectively. So

C · 1d1 =
r

	
· 1d1 =

d1

d2
· 1d1 . (C.21)

• For (3) Recall A has vertex set [n]× [m]× [d], and that all vertices in [n]× [m]× [d2] are edgeless. Therefore
for any x ∈ Rn ⊗ Rm ⊗ Rd(2) we have Ax = 0. Now

A · 1d = A
(
1d1 + 1d2

)
= A · 1d1 . (C.22)

• The proof of (4) is analogous to that of (3).

• For (5), on the left hand side we have Mnm(σ ⊗ τ) ∈ Rn ⊗ Rm. For any i ∈ [n], j ∈ [m]

Mnm(σ ⊗ τ)ij =

d∑
k=1

σi · τjk. (C.23)

On the right hand side, first note that Mm(τ) ∈ Rm and

(
Mm(τ)

)
j

=
d∑

k=1

τjk. (C.24)

Now (
σ ⊗Mm(τ)

)
ij

= σi ·
(
Mm(τ)

)
j

= σi ·
∑d

k=1 τjk

= Mnm(σ ⊗ τ)ij using (C.23),

(C.25)

and so (5) follows.
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List of Symbols

Algebra

N Natural numbers ({0, 1, 2, . . .})
N∗ Positive natural numbers ({1, 2, 3, . . .})
Z Ring of integers
Zn Ring of integers modulo n (Z/nZ)
Q Field of rationals
R Field of real numbers
R≥0 Set of non-negative real numbers
R>0 Set of positive real numbers
C Field of complex numbers
Fq Finite field of size q
C� Cyclic group of size 	
D� DFT matrix corresponding to C�

[n] The set {1, . . . , n}
�x� Smallest integer not smaller than x
�x	 Largest integer not larger than x
S � T Disjoint union of the sets S and T

Linear Algebra

〈x, y〉 Inner product of the vectors x and y
x⊗ y Tensor product of the vectors x and y
‖x‖ Norm of vector x
x ‖ y Vectors x and y are parallel
x ⊥ y Vectors x and y are orthogonal
1n The vector in Rn whose entries are all 1

1
‖
n Space of vectors in Rn generated by 1n

1⊥n Space of vectors in Rn that are orthogonal to 1n

Rn×m The set of all n×m matrices with entries in the ring R
lker(M) Left kernel of the matrix M
rker(M) Right kernel of the matrix M
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Algebraic Geometry

X Algebraic curve
D(X) Divisor group of the curve X

D0(X) Group of divisors of degree 0
Prin(X) Group of principal divisors
Pic(X) D(X) modulo Prin(X)
Pic0(X) D0(X) modulo Prin(X)
D Divisor (element of D(X))
L(D) Linear space of the divisor D
dim(D) Dimension of the divisor D
deg(D) Degree of the divisor D
Nq(g) Maximum number of points on a curve over Fq of genus g

Coding Theory

C Code
wgt(x) Hamming weight of the vector x
d(x, y) Hamming distance between the vectors x and y
Br(x) Ball of radius r around the vector x
Vol(r, n) Volume of a ball of radius r in Fn

2

dmin(C) Minimum distance of the code C

δ(C) Relative distance of the code C

dim(C) Dimension of the code C

R(C) Rate of the code C

{Ci}i∈N∗ Family of codes
hq q-ary entropy function
h Binary entropy function

Graph Theory

Kd Complete graph on d vertices
N(a) Set of neighbors of the vertex a
N(S) Set of neighbors of the set of vertices S
a[i] ith neighbor of vertex a
λA Second eigenvalue of the graph A
Pn[A] Projection of size n of the graph A
DP[A] De-projection of the graph A
A2 Square of the graph A
A�C Derandomized square of the graph A with respect to the graph C
A⊗B Tensor product of the graphs A and B
A⊗C B Derandomized tensor product of the graphs A and B with respect to the graph C
A z©B Zig-zag product of the graphs A and B
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