Provided by Central Archive at the University of Reading

Metadata, citation and similar papers at core.ac.uk

Practical access control using NDG security

Bryan N Lawrence', Philip Kershaw', Jon Blower?

'NCAS/British Atmospheric Data Centre, Rutherford Appleton Laboratory, STFC
*Reading e-Science Centre, Environmental Systems Science Centre, University of Reading

Abstract

Access control in the NERC DataGrid (NDG) is accomplished using a combination of WS-Security
to ensure message level integrity, X.509 proxy certificates to assert identity, and bespoke XML
tokens to handle authorization. Access control decisions are handled by Gatekeepers and mediated
by Attribute Authorities. The design of the NDG-security reflects the reality of building a
deployable access control system which respects pre-existing user databases of thousands of
individuals who could not be asked to reregister using a new system, and pre-existing services that
need to be modified to take advantage of the new security tooling. NDG-security has been built in
such a way that it should be able to evolve towards the use of community standards (such as SAML
and Shibboleth) as they become more prevalent and best practice becomes clearer. This paper
describes NDG-security in detail, and presents experiences deploying NDG-security both in the e-
Science funded NDG and the DTI funded Delivering Environmental Web Services (DEWS)
projects. Plans for the future of NDG-security are outlined; both in terms of application

modification and the evolution of NDG-security itself.

1. Introduction

The NERC DataGrid (NDG), which originally
consisted primarily of a partnership between the
British Atmospheric Data Centre (BADC) and
British Oceanographic Data Centre (BODC),
along with the STFC e-Science department, was
established as a NERC funded e-Science project
with the aim of improving integration of data
holdings in the atmospheric and oceanographic
sciences to the point where users could mix and
match data from multiple sources in a “single-
sign-on” context [1]. The NDG is now nearing
the end of a second tranche of funding, with
partners extended to include the Plymouth
Marine Laboratory and the National
Oceanography Centre, Southampton. The
mandate has also been extended to look at
integrating data holdings on a wider scale,
although the NDG is still only committed to
delivering integration of some classes of
atmospheric and oceanographic data.

There is a common assumption in the
environmental sciences community that access
control on data is something that is not
necessary and positively gets in the way of
“doing science”. Many academics have
asserted (and continue to assert) that the first
thing the NDG should have done was to throw
away the single-sign on requirement in favour
of uncontrolled access. None of those
academics has the responsibility of providing
services that are used by a significant number of
people, or that deliver a significant amount of
data. Experience tells us that it doesn’t take

many users before /O subsystems are
completely overloaded (never mind CPUs or
networks). In such an environment, it is crucial
to have methods to constrain access to priority
users. When a data provider is also holding
data which is either owned by, or for which the
IPR resides with, third parties, there is also a
requirement to protect the legal rights of those
third parties (whether or not some individuals
want it done at the time, their employing
organizations may well take a different position
at a later date). Sometimes too, data providers
may be holding data that is in an interim form
that is not suitable for general use; in this case
too access needs to be limited. There are thus
two driving requirements for access control: to
protect access to finite resources, and to ensure
that the use of those resources is appropriate
(legally and/or scientifically).

The remainder of this paper describes the
access control mechanism developed for the
NDG, and its application in both the NDG and
the Delivering Environmental Web Services
(DEWS) projects. DEWS is a technology
demonstrator project, that is using the same
underlying technology to (1) take marine
forecasts from the Met Office and deliver them
into Search and Rescue applications at British
Maritime Technology, and (2) take primary data
from the health sector (e.g. GP admissions etc)
and feed them into a system which returns
predictions of hospital admissions broken down
into geographical areas. (The prediction systems
themselves are not part of the DEWS project; it

https://core.ac.uk/display/12597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

User

Choose dnd Logsinwia

invpkes

Howthe portal
intaracts with the
resource depends on a
number of factors, as

dizcussed in Section <.

Portal fApplication

The Login Server instantiates a User
Seszzion wia the Session Manager and
returnz a handle to the userwia a
redirect to the potal which can then
create a cookie in the corract
damain.

E ;

Login Serwver i

sS0AaP
Application Gateleeper
Exphses Prot
Resource

associated with role at

2]

My Prosoy

AP
utilifes

5]

Session Manager

Attribute Authority

User Sezsion

5]

Figure 1: Eey Conponents in Security Transactions

is the web services and data standards that share
the same technology heritage.)

1.1 Security Requirements

Early in the design of the NDG activities it
became clear that a number of guiding
principles were going to affect what could be
accomplished:

1. Data holders could not, and would not,
consider changing the way they stored data and
fundamental = metadata (including user
information).

2. User information could not be shared
between partners without explicit authorization
by the users on a case-by-case basis.

3. Real existing licensing constraints would
affect what common “authorization roles” could
be established, and that with more than two
partners, common roles across all partners
would be few.

4. Real existing users could not be asked to
work directly with X.509 certificates.

5. Any new access paradigm had to support
what was already possible and did not
necessarily have to be any more secure than
current practice (although all recognized better
security would be good).

6. The technology used had to be portable and
easily deployed in groups that have little
resource for “tinkering”. (Often such groups
have little or no Java experience.)

At the time (2002/03), there was no existing
access control paradigm that addressed all these
principles satisfactorily, and so the NDG team
reluctantly took a decision to engineer their
own! Given the resource available a further
principle emerged:

7. NDG security had better be simple to devise
and build, as well as easy to deploy and use.

2. NDG-Security

NDG security provides access control by
ensuring that users are granted permission to
access a resource by a “gatekeeper”, which has
access to (1) an authentication token produced
by means of an X.509 certificate issued by a
“Login-Server” at one of the partners, and (2)
an authorization token issued by the “Attribute
Authority” associated by the gatekeeper with
the resource in question. At that level the NDG-
security mechanism is not fundamentally
different from other solutions in this space.

2.1 NDG Authorisation

NDG uses a simple non-hierarchical role based
access control mechanism. Roles are issued for
users in Attribute Certificates (authorization
tokens) issued and digitally signed by Attribute
Authorities (“AAuthorities”). The current
format is a bespoke XML document, it is highly
likely that the next version of NDG will use a
SAML [2] format token. The access control
policy for a resource is based on a simple triple:
for a Resource A, access control depends on
Role B known by AAuthority C. Any
gatekeeper that is presented with an attribute
certificate obtained from AAuthority C that
asserts that the user has role B can then grant
access to A.

Principles 3 and 7 listed above led the NDG
to decide on a bilateral trust mechanism. This is
realized in the detail of how AAuthorities issue
Attribute Certificates. The bilateral step comes
from including within each AAuthority the
mechanism to establish (zero, one or more)
mappings between local roles and those known
by remote AAuthorities. Thus, if AAuthority C
trusts AAuthority D, and C has an equivalence
mapping between role B (known by C) and role
E (known by D), then AAuthority C can issue a
“mapped attribute certificate” to a user (or their
software agent) in response to an attribute
certificate from D with role E. This “mapped
attribute certificate” is an assertion from C that
the user has role B, and can thus be used by the
gatekeeper process to authorize access.

The role mapping is expressed at each
AAuthority by means of an XML based role-
mapping file. This contains details of which
organizations the A Authority trusts and for each
of these what role mappings apply. This could
be thought of as equivalent to an attribute
assignment policy [3].

It is currently a design decision that only one
level of mapping is allowed, since the NDG
participants could then only envisage a situation
where trust could only reliably be extended after
an actual human bilateral relationship between
the data providers (in practice many of the roles
are intended to reflect real legally binding
contracts by the users as to what they can do
with the data and so the initial role mapping has
to be done by a human).

2.2 NDG Authentication

Authenticating users across multiple domains is
now a common problem, and there are multiple
solutions: ranging from Shibboleth [4]
assertions to OpenlD [5]. NDG envisages
browser and non-browser based profiles. The

browser based profile is treated in detail here.
In this case, the NDG mechanism is not
fundamentally different from Shibboleth or
OpenlD.

NDG users start by logging in, usually in
response to a request to access to restricted data
in the situation where the portal doesn’t yet
have access to the required user credentials to
present to the gatekeeper.

The key components in the process are
shown in Figure 1. In this case, for browser
access to a portal, the gatekeeper process will
launch a login page that has much the same
functionality as a Shibboleth WAYF (Where
Are You From). In the NDG case, the options
presented will be for “Login Servers” associated
with the AAuthorities that are listed in the
mappings available to the AAuthority protecting
the resource in question. So for example,
continuing with the previous nomenclature:
Should a user be trying to access resource A, the
login page would allow the user to choose
between two login servers: those associated
with AAuthorities C and D.

Each Login Service utilizes a MyProxy [6]
server via its own Session Manager service. In
NDG that MyProxy server is populated by
lightweight' certificates issued by a SimpleCA,
itself populated and updated directly from
existing user databases, but more reliable
certificates could be used.

On response to a login request, the Login
Server requests a “Session Manager” to
authenticate the user against their MyProxy
credentials and create a “User Session” with a
“Credential Wallet” within which the users
proxy certificate [7] is held. The Session
Manager returns the Login Server a handle to
the User Session it has created. In the case of a
browser process, the handle is then returned via
a redirect to an HTTPS GET to the original
application (the address of which is passed in
the redirect to the Login Server). The
application can then populate a cookie with the
encrypted Session Manager address and User
Session details for subsequent use.

2.3 Obtaining Credentials

Requests from the portal to access the resource
are accompanied by the (Session Manager, User
Session handle) tuple. The gatekeeper can then
request the Session Manager for a specific
attribute certificate associated with the
appropriate AAuthority.

! Lightweight: no real effort has been made to
secure the SimpleCA.

If the user session does not hold an attribute
certificate from the AAuthority associated by
the gatekeeper with the resource, then the
Session Manager can use the proxy certificate to
an attribute
AAuthority. If the user is not known by that
AAuthority, the session manger can obtain a list
of trusted AAuthorities for that resource,
approach them with the user proxy, take that
remote attribute certificate and use it to obtain a
mapped attribute certificate from the original

request

AAuthority.

A walk through of the entire sequence from

certificate

from the

login through to a Gatekeeper decision based on

a mapped an attribute certificate
AAuthority C (based on Authority D) is show in
Figure 2.

2.4 Known Exploitation Stategies

One of the strengths of the NDG-security
mechanisms is that apart from applications
which have obtained individual credentials, the
Session Manager is the only entity with access
to credentials which needs to be accessible
outside a firewall: the MyProxy Servers do not
need to be visible outside. This means that all

Erowser Cliert Legin

Sarver

Sassion
Manager A

Attribute
Authority C

Portal

Attribute
Authority D

Gatekeeper

al:l:essLinkTuSEecuredResuurl:e

htmlF orm= sh

L §

owlLoginSites elect

Y

salectl_oginP agel hameloginlIRI)

showLogi

(username, passphrase)
L]

[
|

[

-

P

coblje= showlLoginRe

foo

httpRedirgct2Homes kel datal

roviderRaturnlIRI)

Jn-
donnect(usernarms

SID proxyCart= co
-

= s P |

assphrase)

ppnse

-
-

httpRedirect2D ataP rovider

trustadH

bool= is5 ecurityC dokieP resert
\

| proseyCert= MyPrlélxyGetDelegatiun[us:e
'

cacheAtt artl nWa!let[attributec ertiﬁl:a:te]
|
|

[
] Lot
'
'
'

getAttC ertRequest

(RO SRR

maj

:I:f:appedAttributeC':ertiﬁ:ateﬂ getattC]

bredAttributec ertificate= getAttc ertRes|
. g

'
accesss ecuradfesourceResponse

accassControlD aciy

—
'
'
'
'
'
'

F

attributeC ertificate= getAHC ertFrom{w

&

=l

allat

i attribLtec ertificate)

ertificate)

nsa

rname, passphrase

DRoles= mapReles CRolas)

= requestAl:l:ess[ﬁﬂappedﬁttributel.‘.“qrtliﬁca‘te]

s

Figure 2: Simple Browser Login and Atiribute Mapping Sequence Diagram '

pol= makesccessD deision(resourcaRole, BRolas)

exploits are limited to obtaining proxy and/or
attribute certificates at best.

There is, however, an obvious opportunity
for a form of phishing in NDG-security: anyone
could produce a “rogue” service which when a
user attempts to access it passes a request to a
“proper” Login Server. That rogue service,
exploiting the open access NDG source code,
could then get access to the use of a proxy
certificate via the redirect holding the Session
Manager handle. The rogue could then purport
to require access to a ‘rogue Attribute
Authority”, at which point the Session Manager
would give up the proxy certificate to that rogue
in an attempt to obtain an attribute certificate.
While the NDG currently sees this as a low risk,
the most obvious way to avoid the problem is to
give all login servers the capability to register
associated portals (and/or applications), and
require redirections to be signed. This has not
yet been implemented.

2.5 Non-Browser Based Profile

Provided the client holds a valid proxy
certificate it can be used to obtain the required
attributes from an AAuthority where the user is
registered by sending a request signed with the
proxy. The client can manage and cache
attribute certificate credentials locally in its own
Credential Wallet. Alternatively, it can delegate
this task to a Session Manager. The client
authenticates with the Session Manager and its
User Session and Credential Wallet are held
there remotely.

2.6 Software Implementation

The core NDG security software consists of two
components: the server suite, needed to deploy
an AAuthority etc, and the client suite, used to
build applications.

Both components have been been
engineered in Python and have been recently
rebuilt as Python eggs to minimize problems
with dependencies. The server component
currently uses Twisted” as the execution
environment. The client egg provides a Session
Manager and AAuthority client interfaces that
can be plumbed into existing applications, and
NDG-security middleware exploiting that client
in a WSGT package is nearing completion.

The Session Manager and AAuthority
services use SOAP based interfaces with WS-
Security [8] digital signature and transport level
encryption to secure messages.

2 . .
twistedmatrix.com
3 WWW.WSgi.org

3. NDG-security in DEWS

As outlined in the introduction, the NDG
software has been deployed in DEWS, which
introduced a new set of requirements over and
above those in the original NDG project.

Within DEWS, the major requirements were
to (1) streamline the security for a case where
the data transfers between one organisation and
the servers on the boundary of another were to
be controlled by NDG-security, but “the final
mile” was internal to the consumer organisation;
and (2), deploy NDG-security to protect a
specific implementation of the OGC-Web
Coverage Service (WCS) [9]. While this latter
case is definitely an NDG use-case, the NDG
experience had thus far been on securing Python
applications that could be heavily modified by
including the NDG-client code directly.

In both DEWS cases the consumers of
NDG-security are Java applications, but using
differing execution environments. While the
project set out to use IBM WebSphere
exclusively, various practical issues with
application portability led to a different strategy.
Now IBM WebSphere is used as the container
for the gatekeepers and for the portal, and
Apache WSS4J* is used as an additional client
for the Marine stream. In addition, the DEWS-
WCS itself is run in Apache Tomcat’.

Using the native filtering capability of the
containers to do the WS-Security, and having
them interact with the NDG-security Python
server implementations of WS-Security has
been an interesting exercise in the real state of
interoperability in this area. In practice, the
actual configuration of what, and how, blocks in
the messages are signed was a major stumbling
block with progress held up by weeks on rather
trivial steps. One further unexpected difficulty
was also discovered with establishing the chain
of trust for proxy -certificates: because the
standard web service containers expect to have
static key stores it is difficult to set up signature
verification with dynamically generated
certificates.

In DEWS, one of the “users” is in fact a
downstream server platform (BMT Sealnfo),
which performs search and rescue predictions,
thereby adding value to the data served by
DEWS-WCS. As was expected, modelling
Sealnfo as a dedicated “user” with a static
certificate was easy to setup with NDG-security,
however, more complicated problems were

* http://ws.apache.org/wss4j/
5 http://tomcat.apache.org/

encountered with the WCS access, primarily
because of the data volumes.

4. Large Data Issues

One of the major issues faced is how to secure
access to both applications and the data they
deliver. While the NDG-security paradigm can
deal with the logical issues associated with
making a policy decision, the practical issue still
remains how to deal with the transactions
themselves, and in particular key transactions
that result in large data transfers (potentially of
gigabytes to terabytes).

This issue manifests itself directly when
dealing with the OGC WCS specification in the
context of both the marine data server in DEWS
and the wider NDG. This specification imposes
no limit on the size of data that can be
requested. That leads to a number of possible
responses to a data request, not all of which are
supported by the vanilla WCS specification
which was not produced with large met-ocean
data transfers in mind.

The WCS specification describes a Web
Service that receives requests for data either as a
URL (via HTTP GET) or an XML document
(via HTTP POST with or without SOAP). If
security were not required, there would be no
problem with delivering large datasets.

To protect the WCS, the DEWS gatekeeper
web service acts as a proxy to it intercepting
data requests and checking their security
credentials. In this respect it is similar to the
model used in the recent OGC GeoDRM
interoperability experiment’. Communication is
secured using WS-Security with transport level
encryption as required (HTTPS), and is
implemented in WebSphere. Two gatekeepers
are deployed in DEWS, one each for the health
and marine streams. The code is identical: the
Gatekeepers know nothing about the data server
that they protect. They simply check the
security credentials of the clients’ requests and
forward the unmodified requests to the
underlying data server.

In order to use WS-Security, all data
requests must be formatted as SOAP messages
that contain the required security credentials.
The current Gatekeeper is a typical SOAP Web
Service in that it receives SOAP messages and
responds with SOAP messages (“SOAP in
SOAP out”). This is fine for the Health stream
of DEWS (in which the data sizes are small
enough to be encoded in SOAP) and for most
messaging in the Marine stream of DEWS.

®Details are available via OGC members.

However, because the WCS allows arbitrarily
large file responses, and because in the Marine
stream large files are actually needed, a problem
arises: such files are too big to be encoded in
XML SOAP messages, yet the Gatekeeper can
only respond to clients with SOAP messages
(SOAP “out™).

When one does not wish to modify the
application code stack, there are three possible
solutions, (1) Stream binary data through the
gatekeeper; (2) Use SOAP extensions for binary
data transfer, and; (3) Construct a new data
delivery web service to wrap the original
service with additional new access control
syntax.

The first of these solutions would involve
changing the Gatekeeper so that it is able to
stream binary data (i.e. NetCDF files) as a direct
response to a SOAP message. That is to say,
change the Gatekeeper from purely “SOAP in”,
“SOAP out” behaviour to allow “SOAP in”,
“data out” behaviour for the downloading of
data. However this would break all the available
software tooling, require a lot of new code, and
result in a particularly unportable solution.

The second option would exploit one of
three binary transfer extensions to the SOAP
standards. The impracticality of encoding large
binary datasets as XML in SOAP is widely
acknowledged, and has resulted in (at least)
three options: (1) Base-64 encoding , (2) SOAP
with Attachments (SwA), and (3) Message
Transmission Optimization Mechanism
(MTOM). Of these three, vanilla base-64
encoding is not really a solution for large
datasets. The second two are not conceptually
significantly different. Some tests were carried
out with a WebSphere based solution using
SwA but ultimately, for the large data transfers
required this would not provide a solution.

The third option, like the first, results in a
bespoke solution, but the methodology is
relatively easily extensible for modification into
a variety of other applications. The existing
DEWS prototype adopts this approach, handling
the access control requests using the
Gatekeeper, resulting with the final data request
returning an obscured URL and a unique job
identifier. To access the data, the client digitally
signs the identifier with its private key and
passes the identifier and the signature in the
URL to retrieve the data. On receipt of the
request, the data server checks the signature
against a public key contained in its key store
and returns the data. The signature ensures that
the token is of no use to an attacker without an
appropriate private key.

While all these mechanisms require an
NDG-security aware client, none of them
require modification of the original application.
If access to the application code stack is also
available, then the access control can be done
by SOAP messages independently of the data
access and the problem does not exist.
However, the third mechanism provides much
of the same code and syntax that would be used,
in particular, the token exchange could be
identical, but with an internal gatekeeper
process communicating ~ with attribute
authorities etc.

5. Discussion

One key area where NDG differs from other
security solutions is the use of role mapping.
The discussion here focuses on this area of the
security model.

The role mapping function is performed by
AAuthorities with current implementations in
both DEWS and NDG having the role mapping
functionality independent of the gatekeeper’,
however it would not be a major step to merge
that functionality into a gatekeeper. In such a
case, the (standard, non-federated) mapped
attribute certificate would no longer have to
actually exist as a document in its own right,
although the conceptual function would remain.
This would simplify the process of obtaining
attributes since the additional step of obtaining a
mapped attribute certificate would be
eliminated. Even so, with the existing
approach, this problem is mitigated to an extent
by the fact that attribute certificates obtain from
previous access requests are cached in a user’s
Credential Wallet.

Furthermore, there are use cases where the
independence of role mapping from gatekeeper
is useful: not all data providers will want to run
Attribute Authorities, but they might want to
exploit a third party Attribute Authority. This
provides a useful level of functionality for real
virtual organizations: For example, the
constituent universities which make up the
National Centre for Atmospheric Science
(NCAS) may want to run Gatekeepers locally
which bind roles understood by an NCAS
Attribute Authority deployed at the BADC to
resources which they deploy locally.

From a client side perspective, in the process
to broker access to a resource the additional step
of obtaining a mapped Attribute Certificate adds

" In some cases the gatekeeper is a standalone
process, in others it is simply a module within
the application.

complexity. This could be exacerbated in the
case where a request covers resources across
multiple organizations.

Another consideration in the use of role
mappings in the security architecture is their
long-term maintenance and their use in trust
relationships. If one party changes or deletes a
role name the trust relationship is broken.

Role mapping has the major benefit of
enabling data providers to share their existing
data with other organizations without the need
to change the associated role names. Even so,
there may be exceptions to Principle 3 outlined
earlier. Where new datasets become available
there may be scope for the agreement of
common roles between at least two parties.

The use of role delegation may present a
useful alternative for role mapping as a model
of trust for NDG security of which PERMIS
[10] DIS (Delegation Issuing Service) [3] is a
practical implementation. Role delegation for
NDG could work as follows, an SoA (Source of
Authority) - in terms of NDG a data provider -
adds trusted administrators of other trusted
organizations to their Attribute Assignment
Policy (AAP) so that the administrator may
allocate roles to selected users of their
organisation. This would eliminate the need for
role mapping since users from the trusted
organization are delegated the role needed to
access the given resource. A discrete AAP
would be needed over and above NDG’s nearest
analogue, the role mapping file held by each
NDG Attribute Authority. Role delegations
need to be validated.

One area where the use of role mapping
could be developed would be to enable multiple
levels of mapping. Currently, this is restricted
to a single level. However, it is clear now that
there are use-cases, particularly for international
collaborations, where a second level of mapping
from “federation attribute authorities” would be
helpful. A future version of NDG security
would allow one further mapping from specially
designated federation servers.

6. Plans for the Future

The NDG team has no ambition to sustain a
complete security package into the indefinite
future, particularly given the range of activity in
this area (e.g.[11]). At the same time, it is
necessary to deploy NDG-security now, with as
many applications as possible. This section
addresses these two conflicting requirements.
All security paradigms consist of effectively
three stages: secure credential acquisition
followed by secure production of the credentials

in response to, or in anticipation of, a challenge,
concluding with the handling of those
credentials in the challenge. Hence plans for
incremental change are based around handling
these independently as well as addressing what
it means to be “secure” while doing so.

There are two key protocols for credential
establishment garnering widespread acceptance:
OpenlD and Shibboleth. It should not be too
difficult for NDG-security to produce modified
Login Servers that can support either protocol
by verifying identity and then generating one-
time certificates (perhaps based on Version 3 or
later of MyProxy which now supports the
ability to generate certificates on demand).
However, before that is undertaken, there will
need to be: (1) acceptance by attribute
authorities in terms of supporting roles for
individuals not actually registered at known data
providers, and (2) gatekeepers which provide
resources for such roles.

The most likely use cases for this class of
acceptance is in those cases where security is
being implemented to limiting access because of
resource constraints, or simply to log access. It
is less likely in the short term that either will be
acceptable where the security constraints are
based on imposing licensing or scientific
constraints, where detailed data dependent roles
will need to have been matched to individual
users at some stage by a human.

There are a number of key applications that
will need to be modified to utilise NDG-security
before there is general acceptance of the
benefits. Modifying such applications will
depend on three steps: (1) establishing a
security context either before applications are
invoked, or early within them, and (2) ensuring
that the security context is available
subsequently within those applications, and (3)
passing that context with network calls.

As well as enabling NDG and DEWS
versions of the OGC web services to be NDG-
security compliant, two other key applications
that will be addressed in the near future are
Thredds® and OpenDAP’. Both are in common
use in the Met-Ocean community, primarily
because of their ease of use with NetCDF
archives, and providing access control to those
tools would open up a large user community.

Finally, once one entertains handling
digitally signed tokens as a security mechanism
for regular HTTP GET transactions, the
opportunity to completely remove the
dependency on SOAP becomes possible.

8 www.unidata.ucar.edu/projects/ THREDDS
 www.opendap.org

Methods of doing this include using the
HTTPsec'® emerging standard, or given that
signed tokens are all that is really needed if
encryption is not important, one could use
simple (agreed) modifications of the HTTP
headers (as is done by Google''). Given the
paucity of existing HTTPsec implementations
deploying the latter would be a pragmatic first
step. That, along with Shibboleth, would result
in a much simpler easy to maintain security
system with only the attribute authorities and
session managers as unique components.

7. References

[1] Lawrence, BN, Ray Cramer, Marta Gutierrez,
Kerstin Kleese van Dam, Siva Kondapalli, Susan
Latham, Roy Lowry, Kevin O’Neill, Andrew
Woolf, 2004: The NERC Data Grid: “Googling”
Secure Data. UK e-Science Programme All
Hands Meeting (AHM2004), Nottingham, UK,
31 Aug - 03 Sept 2004

[2] SAML (Security Assertion Markup Language)

version 2.0, March 2005, http://www.oasis-

open.org/specs/index.php#samlv2.0

Sinnott, RO,DW Chadwick, J Koetsier, O

Otenko, J Watt, TA Nguyen, 2006: Supporting

Decentralized, Security focussed Dynamic

Virtual Organizations across the Grid. 2nd IEEE

International Conference on e-Science and Grid

Computing, Amsterdam, Dec 2006.

[4] Internet2 Shibboleth technology,
http://shibboleth.internet2.edu;

[5] OpenlD, openid.net

[6] MyProxy, grid.ncsa.uiuc.edu/myproxy

[7] Tuecke, S, V Welch, D Engert, L Pearlman, M
Thompson, Internet X.509 Public Key
Infrastructure (PKI) Proxy Certificate Profile,
RFC3820, June 2004.

[8] Web Services Security: SOAP Message Security
1.1 (WS-Security 2004) OASIS Standard
Specification, 1 February 2006, http://www.oasis-
open.org/committees/download.php/16790/wss-
v1.1-spec-0s-SOAPMessageSecurity.pdf

[9] Web Coverage Service (WCS)
www.opengeospatial.org/standards/wcs

[10] Chadwick, DW, A. Otenko, 2003: The
PERMIS X.509 role based privilege management
infrastructure. Future Generation Computer
Systems, 19(2):277-289, Feb 2003

[11] Sinnott, RO, Grid Security: Middleware,
Practices and Outlook, prepared for The JISC for
Support for Research, Nov 2005.

3

[

10 hitp://www.httpsec.org/
http://code.google.com/apis/accounts/AuthFor
WebApps.html#signingrequests

