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Abstract. The increasing complexity of processing algorithms has lead to the 
need of more and more intensive specification and validation by means of soft-
ware implementations. As the complexity grows, the intuitive understanding of 
the specific processing needs becomes harder. Hence, the architectural imple-
mentation choices or the choices between different possible software/hardware 
partitioning become extremely difficult tasks. Automatic tools for complexity 
analysis at high abstraction level are nowadays a fundamental need. This paper 
describes a new automatic tool for high-level algorithmic complexity analysis, 
the Software Instrumentation Tool (SIT), and presents the results concerning 
the complexity analysis and design space exploration for the implementation of 
a JPEG2000 encoder using a hardware/software co-design methodology on a 
Xilinx Virtex-II™ platform FPGA. The analysis and design process for the im-
plementation of a video surveillance application example is described. 

1   Introduction 

The evolution of digital silicon technology enables the implementation of signal proc-
essing algorithms that have reached extremely high levels of complexity. This fact, 
among others, has two relevant consequences for the system designer. The first is that 
processing algorithms cannot be specified in ways other than developing a reference 
software description. The second important consequence is that the understanding of 
the algorithms and the evaluation of their complexity have to be derived from such 
software description. As consequence of the greatly increased complexity, the generic 
intuitive understanding of the underlying processing becomes a less and less reliable 
design approach. Considering that, in many cases, the complexity of the processing is 
also heavily input-data dependent, the system designer faces a very difficult task 
when beginning the design of a system architecture aiming at efficiently implement-
ing the processing at hand. 

This difficulty is evident when considering for instance the case of hard-
ware/software co-design for System-on-Chip integration. A typical design flow for 
this implementation case is shown in Fig 1. All the relevant information must be 
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extracted from the software description; indeed, the analysis of the complexity of 
single functions does not give any information without the knowledge of the inter-
connection, occurrence and actual use of all functions composing the algorithm. 
Some other traditional styles of design, such as complexity analysis based on “pencil 
and paper” or worst-case applied to some portions of the algorithm, not only become 
more and more impractical for the required effort, but can also results in very inaccu-
rate results for not taking into account the correct dependency of the complexity on 
the input data. 

 

Fig 1. Typical simplified design flow of a hardware/software embedded system 

It can be noticed that for hardware/software co-design [1], [2], a large variety of 
tools is available at all levels. Conversely no suitable automatic tools are available to 
assist the fundamental task partitioning stage or to gather detailed and reliable infor-
mation on the computational complexity of the algorithm for optimizing the imple-
mentation, starting from the generic software description. 

All these considerations, although relevant for most of signal processing imple-
mentation problems, become fundamental for video, still image, audio and multime-
dia coding, where the latest generation of compression standards (i.e. MPEG-4 [3] 
and JPEG-2000 [4]) reaches a very high level of complexity that is also extremely 
sensitive to the encoder optimization choices and strongly data-dependent. 

This paper presents a new approach to complex system design by means of a tool-
assisted high-level algorithmic complexity analysis based only on the pure software 
description of an algorithm. This analysis is carried out by means of the Software 
Instrumentation Tool (SIT) [5], an automatic tool allowing the extraction of relevant 
information about the complexity of the algorithm under study. The dependencies on 



the underlying architecture and the compilation process used to verify and analyze the 
algorithm are not taken into account, because only the software description of the 
algorithm is relevant for the analysis and not how it is compiled and run on an archi-
tecture chosen for verification purposes only. Furthermore, the analysis is performed 
in real working conditions on real input data, to take into account the input-data de-
pendency of the performance and the complexity of signal processing algorithms. 

Section 2 gives a brief overview of current state of the art methods in complexity 
analysis and of their drawbacks for complex systems design. Section 3 presents the 
new design approach by means of the Software Instrumentation Tool. Section 4 
shows how the new design approach was applied to the implementation of a motion-
JPEG2000 encoder for a video surveillance application, using a hardware/software 
co-design methodology applied on a Xilinx Virtex-II™ [6] platform FPGA. Section 5 
presents the main details about the implementation example. 

2   Complexity Analysis and System Design 

An in-depth understanding of the algorithm complexity is a fundamental issue in any 
system design process. Questions such as how many operations? of which type? on 
which type of data? how many memory accesses? on which memory architecture? 
which processing functions are necessary to correctly perform the algorithm? are 
fundamental for the design of efficient processing architectures that aim to match the 
processing requirements. Having this information in advance and as a reliable support 
to the hardware/software task partitioning and task optimization can reduce or even 
eliminate the need of the costly and time-consuming redesign iterations shown in Fig 
1. The same type of analysis is also useful for other system optimization tasks such as 
data-transfer and power consumption minimization that require several methodologi-
cal steps starting from a generic algorithm specification [7]. 

2.1   State-of-the-Art Approaches to Complexity Analysis 

Depending on the specific goals of the desired complexity analysis to be performed, 
very different approaches and tools can be chosen [8]. All these approaches are per-
fectly suited for their specific applications, but they present serious drawbacks when 
applied to the design of complex systems. The most common approaches can be clas-
sified into the following categories: 

− Profilers, modifying the program to make it produce run-time data [8]. Profilers 
can basically provide two types of results: number of calls of a given section of a 
program and execution time of that section. The results provided by profilers 
strictly depend on the architecture on which the code is executed and on the com-
pilation optimizations. These results cannot therefore be easily used for complexity 
analysis concerning the implementation of the same algorithm onto another archi-
tecture and they could even yield misleading complexity evaluations. 



− Static methods. For these methods state of the art solutions rely on annotation at 
high-level programming language so as to determine lower and upper bounds of 
resource consumption [9]. The main drawback of these techniques is that the real 
processing complexity of many multimedia algorithms heavily depends on the in-
put data, while static analysis depends only on the algorithm. These approaches are 
better suited for real-time control applications for which strict worst-case analysis 
is required. Moreover restricted programming styles such as absence of dynamic 
data structures, recursion and bounded loops are required. 

− Hardware Description Languages and Hardware/Software Co-Design tools, al-
lowing describing (at different abstraction levels), synthesizing and simulating 
hardware or heterogeneous hardware/software systems [1], [2]. Through synthesis 
and simulation, these approaches allow gathering very reliable results about the 
implementation complexity and performance of the described algorithm. However, 
the analysis can only be performed at the end of the design cycle, after all architec-
tural choices have already been taken. If it is realized that the a priori architectural 
choices are not appropriate for the desired performance constraints, a costly redes-
ign of the system is necessary. 

3   The Software Instrumentation Tool (SIT) 

It is assumed that a software implementation of an algorithm is available and that it 
can be run in realistic input data conditions. The goal is to measure the complexity of 
the algorithm, whose performance can be data-dominated. In other words, the interest 
is not only about the measure of complexity of the algorithm itself, but also about its 
dependencies on specific input-data. Moreover, the software implementation is a 
high-level description of the algorithm whose complexity has to be measured inde-
pendently of the underlying architecture on which the software is run for verification 
purposes. This approach is fully in line with methodological approaches, aiming at 
optimizing data-transfer and memory bandwidths at a high-level description of the 
algorithm [7]. 

The implementation of the Software Instrumentation Tool (SIT) [5] is based on the 
concept of the instrumentation of all the operations that take place during the execu-
tion of the software program. Instrumenting code by overloading C++ operators has 
been already proposed in literature, but it has always been considered an approach 
presenting severe practical and functional limitations [8]. Major drawbacks were 
considered the applicability only to C++ program, the impossibility to instrument 
pointers and other data types such as structures and unions, resulting into not accurate 
analysis of data-transfer oriented operations and to an extensive manual rewriting of 
the original code. All known functional and practical limitations of the operator over-
loading approach have been overcome with SIT. The current version of SIT is able to 
instrument a C program by translating it into a corresponding C++ program by means 
of an automatic tool: both programs have the same behavior but, by substituting C 
simple types with C++ classes and by substituting all C operators with C++ over-
loaded operators, standard C operations can be intercepted during the execution and 
counted. The great advantage of this approach is that no manual code rewriting is 



necessary. Moreover, SIT allows associating an appropriate and customizable mem-
ory model to the algorithm, in order to complete the complexity analysis with data-
transfer analysis. 

The results gathered with SIT are presented on a per-context basis, which can be 
chosen to correspond to the function call tree or to be extended to the single com-
pound statements for a more detailed analysis. The results of the computational com-
plexity analysis are in terms of executed operations within a context node and are 
collected on the two axis operations and data-types. The operations axis is an exten-
sion of the C operator set (+, +=, etc.) as well as the data-types axis is an extension of 
the C data type set (int, float, struct, etc.). The results of the data-transfer 
analysis depend on the simulated memory model, which may include the simulation 
of cache hierarchies. 

In order to validate the SIT methodology, a real-world design example was used. 
The chosen design was a JPEG2000 encoding system for video surveillance applica-
tions. 

4   Hardware/Software Co-Design of a Motion-JPEG2000 Encoder 

JPEG2000 standard [4] includes a specification for the encoding and storage of mo-
tion sequences [10]. Whereas well-known video standards such as MPEG-2 and 
MPEG-4 [3] use inter-frame dependencies and motion compensation, motion-
JPEG2000 involves encoding each frame independently. 

Whereas the standard specifies the bitstream to ensure interoperability between en-
coder and decoder systems, it leaves the actual implementation open. This section 
presents the implementation of a JPEG2000 encoder system capable of handling 
video data rates, created using a hardware/software co-design methodology on a plat-
form field programmable gate array (FPGA). A cohesive and programmable hard-
ware/software co-design is created. 

The targeted video surveillance application involves a low-grade video coding sys-
tem coding. The frame size is 640 × 480 × 24 bits and the rate is 15 frames/sec. High 
compression of the video data is expected as quality is not of high importance. 

 

Fig 2. Block diagram of motion-JPEG2000 system 



Fig 2 shows the block diagram of the designed JPEG2000 encoder system. After 
the frames are captured and the data is DC shifted, the user can decide to perform a 
component transformation on the three components for each pixel as specified by the 
standard [4]. A 2-D DWT is then performed on each tile within each frame. It was 
decided to have each frame be a single tile in order to eliminate the tiling effects. That 
is, the DWT is performed on the entire frame, and the number of decomposition lev-
els performed is decided by the user (for the designed system, up to five levels is 
supported). The 5/3 DWT kernel was chosen for the implementation. The sub-bands 
of the DWT results are then divided into code-blocks and the Tier-1 coder operates 
on each code-block independently. The code-block size for this system was chosen to 
be 64x64. Tier-2 coding then involves adding the appropriate headers, compiling the 
compressed data into packets, and delivering the data as a complete codestream. 

4.1   Complexity Analysis 

For initial system definition, the JPEG2000 encoder system was defined in ANSI C. 
This gives an excellent starting point for the eventual co-design, provides a reference 
and test bed for verification, and allows numerous modes and parameters available 
from the standard to be tested. For an initial complexity assessment, this software was 
analyzed with SIT. This software JPEG2000 encoder implements only lossless cod-
ing, while the targeted video surveillance application is based on lossy coding, aiming 
to an average compression ratio of 20:1. For these reasons, the results for the Tier-1 
and Tier-2 blocks were respectively scaled by 1/3 and 1/6.5 [11], while the perform-
ance of DC Shift, Component Transformation and 2-D DWT is unaffected by the 
coding type. 

The results of the complexity analysis with SIT, concerning the encoding of one 
frame, are summarized in Table 1, which shows how the computational complexity 
and data-transfers are distributed over the main processing blocks of Fig 2. With 
SITview, the graphical visualization tool of SIT, the results for the computational 
complexity (operation counts) were mapped onto the instruction set of the targeted 
Xilinx MicroBlaze™ 32-bit RISC soft processor by means of a set of weights repre-
senting the latencies of the operations [12]. Therefore the results in the “Operations” 
columns of Table 1 are an estimate of the clock cycles required by the targeted core to 
perform the processing of each block, without taking into account the data-transfers. 

Table 1. Computational complexity and data-transfers of the main blocks of the encoder 

 Operations Data-Transfers 
 Tot Tot [%] R R [%] W W [%] 

DC Shift & Comp. Transf. 1.72e7 8 % 3.69e6 7 % 3.69e6 23 % 
2-D DWT 8.33e7 37 % 1.95e7 37 % 9.77e6 62 % 
Tier-1 1.22e8 55 % 2.96e7 56 % 2.12e6 13 % 
Tier-2 2.64e5 < 1 % 5.49e5 1 % 1.78e5 1 % 
All Blocks 2.23e8 5.33e7 1.58e7  

 



As with the results of the computational complexity analysis, the results of the 
data-transfer analysis were mapped onto the MicroBlaze instruction set, taking into 
account the latencies of the load and store instructions of the core [12]. By summing 
the results of this mapping with the results of the computational complexity analysis 
and multiplying the obtained total by the desired frame rate of 15 frames per second, 
an estimate of the required processing power was obtained in term of clock frequen-
cies, as shown in Table 2. This estimate represents the clock frequencies at which the 
MicroBlaze core should run in order to perform the processing of each block of Fig 2. 

Table 2. Estimation of the minimum clock rate of the MicroBlaze core required to perform the 
processing of each block at the desired frame rate of 15 frames per second 

DC Shift & Comp. 
Transf. 2-D DWT Tier-1 Tier-2 

479 MHz 2126 MHz 2786 MHz 26 MHz 
 
Considering that the maximum clock frequency for the MicroBlaze core is ap-

proximately 125 MHz for a Xilinx Virtex-II™ FPGA, the results in Table 2 clearly 
show that only the Tier-2 coder can be implemented in software, while for all the 
other blocks a hardware accelerator is necessary. 

4.2   Hardware Software Co-Design 

The target platform for implementing the system is the Xilinx MicroBlaze Multime-
dia Demonstration Board designed around a Xilinx Virtex-II XC2V2000 FPGA, 
which is the heart of the user-defined video processing engine. The FPGA is sup-
ported with five independent banks of 512K × 36-bit ZBT RAM with byte write ca-
pability. These memories may be used as microprocessor code/data storage or as 
video frame buffers. The microprocessor supported is a soft 32-bit RISC processor 
(MicroBlaze™) which can utilize IBM Power PC™ peripheral busses and IP. Micro-
Blaze is a pre-synthesized soft core implemented in the FPGA fabric and can be in-
cluded in the FPGA design source as a black box. The MicroBlaze design supports 
full 32-bit operands, 32-bit data paths and 32-bit registers to provide high perform-
ance. 

According to the results of the complexity analysis, the three blocks targeted for 
hardware acceleration were the DC shift & Component Transform, the 2-D DWT and 
the Tier-1 coder. The MicroBlaze core was targeted for the software implementation 
of the Tier-2 coder, as well as for mastering the whole processing by handling the 
interrupt requests from the hardware blocks and scheduling the different tasks. Fur-
thermore, the data-transfer results of SIT Memory Simulation (Table 1) clearly show 
that DC Shift & Component Transform, 2-D DWT and Tier-1 are the most I/O inten-
sive tasks, accounting for about all the read and write operations. Mapping only the 
I/O operations onto the MicroBlaze instruction set, similarly to what previously done 
for obtaining the global results of Table 2, yields an estimate of the impact of the I/O 



operations only on the clock frequencies required by the MicroBlaze to sustain the 
desired frame rate, as shown in Table 3. 

Since the maximum clock frequency of the MicroBlaze core is about 125 MHz, the 
results in Table 3 clearly show that the modules for the DC Shift & Component 
Transform, 2-D DWT and Tier-1 tasks, targeted for hardware implementation, must 
access their respective input and output data independently of the MicroBlaze core. It 
is therefore necessary to provide hardware-controlled memory access so that each 
hardware block has direct access to the off-chip memory and the processor is not 
involved in these transactions. For this reason, it was decided to dedicate to the 
aforementioned hardware modules three of the five independent banks of ZBT 
SRAM. A Multi-Memory/Multi-Port ZBT Interface was created in hardware (Fig 3, 
Fig 4), in charge of round-robin interfacing, frame after frame, the three hardware 
accelerators to the three dedicated ZBT SRAM banks; thanks to the round-robin in-
terfacing scheme and to the fact that the ZBT SRAMs can be accessed independently, 
the three hardware accelerators work independently and concurrently on their respec-
tive data, without charging the MicroBlaze core of any extra data-transfer load. 

Table 3. Impact of I/O operations on the estimated performance of the MicroBlaze core 

 DC Shift & Comp. 
Transf. 2-D DWT Tier-1 Tier-2 

Read 111 MHz 584 MHz 888 MHz 16 MHz 
Write 111 MHz 293 MHz 64 MHz 5 MHz 
Total 221 MHz 877 MHz 952 MHz 22 MHz 
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Fig 3. Round-Robin connections between the hardware accelerators and the dedicated ZBT 
RAMs for two successive frames, as managed by the Multi-Port/Multi-Memory ZBT Interface 

The DC Shift & Component Transform tasks only rely on a single pixel value for 
their computations. For this reason it was decided to integrate them into the frame 
capture streaming data path, resulting in a straightforward implementation and in 
reducing the overall bandwidth of the corresponding hardware module, since the 
memory accesses for the temporary intermediate results are eliminated. 



The second block that was targeted for hardware acceleration was the 2-D DWT 
function. Since the DWT is being performed on the entire frame as a single tile, it 
becomes unreasonable to store an entire tile on chip. The DWT was implemented 
using a line-based design so that it can accept a stream of input data, while the output 
results are written over the already-read values off-chip; line buffers can easily be 
implemented using the many on-chip 18Kbit BlockRAMs that Virtex-II provides, 
thus reducing the bandwidth toward the external ZBT SRAM by avoiding storing the 
temporary data between horizontal and vertical filtering. 

The last block that was hardware accelerated was the Tier-1 coder. This coding in-
volves bit/context modeling and arithmetic coding. A hardware core was designed to 
accept a single code-block containing up to 4096 words (as specified by the stan-
dard), perform the modeling and arithmetic coding on that code-block, and store the 
compressed byte stream. Three Tier-1 coders were implemented to operate in parallel 
and guarantee the required processing power for the desired frame rate. As with the 
other hardware modules, the bandwidth from the ZBT SRAM buffer was optimized 
by re-scheduling the operations on temporary data in order to reduce of the corre-
sponding I/O accesses. 

5   System Implementation 

 

Fig 4. Block diagram of the motion-JPEG2000 system on multimedia board 

Fig 4 shows the motion-JPEG2000 encoder system as implemented on the multimedia 
board using a Xilinx MicroBlaze soft processor. Note that two of the five off-chip 
ZBT SRAMs are utilized by the processor for data and instructions, while the other 
three are used for storage of intermediate frame data. First, the frame capture block 
grabs the YCrCb data from the NTSC camera, performs de-interlacing and conver-
sion to RGB, and also performs the DC shift and component transformation for the 



JPEG2000 encoder. This data is stored in one of the ZBT buffers. Secondly, the 2-D 
DWT block performs the required transformation on all three components for a user-
specified number of decomposition levels. Lastly, the DWT coefficients are read and 
processed by three Tier-1 coders in parallel, with each coder operating on a 64x64 
code-block. The output byte streams of each of these code-blocks is transferred to the 
processor data memory, where the compiling of the codestream (i.e., Tier-2 coding) is 
performed by the MicroBlaze processor. The three tasks: frame capture, DWT, and 
coding are all given a frame time to complete their job. This gives an overall latency 
of the system of three frames. 

6   Conclusions 

This paper presented a new approach to hardware/software co-design based on high-
level algorithmic complexity analysis and showed how it was applied to a real design 
case of a motion-JPEG2000 encoder for a video surveillance application. The target 
architecture was based on an FPGA with an embedded RISC core, providing an ex-
cellent platform for a hardware/software co-design. A software representation of a 
JPEG2000 encoder was analyzed by means of an automatic tool, the Software In-
strumentation Tool, in order to extract relevant information about the algorithmic 
complexity of the encoder, such as the number of operations and data-transfers. The 
results of the complexity analysis were applied to the design of the encoder, allowing 
a fast evaluation of the system implementation requirements as well as of the hard-
ware/software partitioning constraints. 
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