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Abstract

In this paper a quasi-lossless algorithm for the on-line compression of the data
generated by the Time Projection Chamber (TPC) detector of the ALICE experi-
ment at CERN is described. The algorithm is based on a lossy source code modeling
technique, i.e. it is based on a source model which is lossy if samples of the TPC
signal are considered one by one; conversely, the source model is lossless or quasi-
lossless if some physical quantities that are of main interest for the experiment are
considered. These quantities are the area and the location of the center of mass of
each TPC signal pulse, representing the pulse charge and the time localization of
the pulse.

So as to evaluate the consequences of the error introduced by the lossy com-
pression process, the results of the trajectory tracking algorithms that process data
off-line after the experiment are analyzed, in particular, versus their sensibility to
the noise introduced by the compression. Two different versions of these off-line al-
gorithms are described, performing cluster finding and particle tracking. The results
on how these algorithms are affected by the lossy compression are reported.

Entropy coding can be applied to the set of events defined by the source model to
reduce the bit rate to the corresponding source entropy. Using TPC simulated data
according to the expected ALICE TPC performance, the compression algorithm
achieves a data reduction in the range of 34.2% down to 23.7% of the original data
rate depending on the desired precision on the pulse center of mass.

The number of operations per input symbol required to implement the algorithm
is relatively low, so that a real-time implementation of the compression process
embedded in the TPC data acquisition chain using low-cost integrated electronics
is a realistic option to effectively reduce the data storing cost of ALICE experiment.
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Introduction

ALICE (A Large Ion Collider Experiment) is an experiment that will be held
in 2005 at the LHC (Large Hadron Collider) at CERN [1,2]. The experiment
will study collisions between heavy ions with energies around 5.5 TeV. The
collisions will take place at the center of a set of several detectors, which are
designed to track and identify the particles produced.

One of the main detectors of the ALICE experiment is the Time Projec-
tion Chamber (TPC). The TPC is a large horizontal cylinder, filled with gas,
where a suitable axial electric field is present. When particles pass through,
they ionize the gas atoms, and the resulting electrons drift in the electric field.
By measuring the arrival of electrons at the end of the chamber, the TPC can
reconstruct the path of the original charged particles. The electrons are col-
lected by more than 570 000 sensitive pads where the signal is acquired in the
form of pulses, each corresponding to the passage of one particle. This signal is
amplified by a preamplifier/shaper and digitalized by a 10-bit A/D converter
at a sampling frequency of 5.66 MHz. The digitalized signal is processed and
formatted by an Application Specific Integrated Circuit (ASIC) called AL-
TRO (ALICE TPC Read-Out). At this stage, the overall throughput of the
570 000 channels is around 8.4 GByte/s.

Considering that the duration of the experiment is forecasted in a few months
time lap, it is clear that the amount of data to be collected is expected to be
extremely large. So as to keep the complexity and cost of the data storage
equipment as low as possible, the goal is to reduce the volume of data using
suitable data compression methods. The cost reduction of the data storage
system can be considered roughly proportional to the data compression factor.
Furthermore, it is advisable to implement the compression system in the front-
end electronics at the output of the ALTRO circuit, so that the cost for the
optical links, which carry data out of the chamber to the following stages
of the acquisition chain, is also reduced [3,4]. Equivalently, once dimensions
of optical links are decided, the duration of the experiment can be reduced
thanks to compression: indeed, being the optical links the bottle-neck of the
acquisition chain, they limit the storage bandwidth so that compression will
allow to send the same quantity of information to the storage devices in a
shorter period of time reducing the overall duration of the experiment.

Compression techniques can be classified into lossless and lossy depending on
how the model of the information source defines, or better models, the set of
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events that are then entropy coded. Using a lossless source model the data
can be exactly reconstructed as they were before compression [5,6]. The use
of a lossy source model, justified by the fact that it generally can provide
significantly higher compression ratios compared to lossless models, has the
drawback that an error in the reconstruction of data must be accepted. Lossy
source models have become very popular in the last decade in the field of audio
and video compression for their remarkable performance [7–10]. Lossy models
have been carefully designed so that reconstruction errors are not perceived
using psychovisual or psychoacoustic models or they remain comparable with
the intrinsic signal noise.

Obviously, for physical data psychovisual or psychoacoustic tests are mean-
ingless or even not applicable since the TPC signal is not to be observed by
the human eye or ear. In [11], the compression noise introduced on the sample
values by the described lossy or quasi-lossless techniques has been evaluated
in terms of RMSE of the introduced error. In reality the RMSE, despite being
a simple and well known distortion measure, is not a meaningful measure in
this case. The fundamental information that has to be extracted from TPC
data is not the sample values themselves but the physical quantities that
enable the reconstruction of particle trajectories. In fact, the correct way to
evaluate the importance of the distortion error introduced by the compression-
decompression process is related to the high level information that is carried
by the data. In particular, TPC data are collected with the objective to be
processed by off-line algorithms to calculate particle energy and trajectory.
Therefore, the most effective way to measure the consequences of the com-
pression distortion error, is to observe how the performances of the algorithms
for the extraction of energy and trajectories are affected by the compression-
decompression process. A simple way to obtain these evaluations is to apply
the cluster finding and tracking algorithms on both simulated data and their
compressed-decompressed version and compare performances.

This paper is organized as follows: after a brief description of the nature of the
TPC data that are compressed, the cluster finding and tracking algorithms are
described. Then a rigorously speaking lossy source model, in which, however,
some quantities of physical interest such as the energy (area of the electrical
pulse) and the temporal position of each pulse (center of mass of the pulse)
registered by the TPC pads are preserved without losses, is presented. The
compression performances of the algorithm are reported, and the correspond-
ing computational complexity is briefly discussed, aiming at evaluating a pos-
sible implementation of the system on low-cost electronic devices. Finally, the
effects of the distortion error introduced by the compression-decompression
process is analyzed by comparing cluster finding and tracking performances
on the original data and on their compressed-decompressed version.
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1 The ALICE TPC read-out data format

Before describing the compression algorithm, it is necessary to spend a few
words on the format of data at the output of ALTRO circuit so as to under-
stand how the compression algorithms are applied. Such data are indeed the
input of the compression system [1,12].

In the so-called ALTRO data format, only the samples over a given threshold
are considered, while the others are discarded. This means that, if we call bunch
a group of adjacent over-threshold samples coming from one pad, the signal
can be represented “bunch by bunch”. More precisely, a bunch is described
by three fields: temporal information (temporal position of the last sample in
the bunch, one 10-bit word 1 ), bunch length (i.e., number of samples 2 in the
bunch, one 10-bit word), and sample amplitude values (10-bit words, i.e. a
range between 0 and 1023).

2 Cluster finding and tracking algorithms

For off-line tracking in the ALICE TPC a classical approach was chosen. Before
the tracking itself, two-dimensional clusters in the pad-row/time plane have to
be found. A cluster is a group of non-zero samples which are temporally and
spatially adjacent, so that they belong to adjacent time-bins or adjacent pads
in the same pad row; in other words, one cluster is made of several bunches in
adjacent pads in one pad row. Then the position of the corresponding space
points, which are interpreted as the crossing point between the tracks and
the centers of the pad-rows, is calculated. An additional quantity that has to
be known after cluster finding is the charge deposited in the clusters. This
information is necessary for particle identification by dE/dx measurements. In
this paper two simple variants of the cluster finder are considered.

In the first cluster finder algorithm, “preclusters” are selected, i.e. groups of
adjacent cells in pad-row/time plane whose signal is above the zero-suppression
threshold. Then, for each precluster all local maxima are found. If there is only
one local maximum the precluster is associated to one track. In this case the
center of gravity of the precluster is stored as the reconstructed space point.
If there are several local maxima the precluster is split into the corresponding

1 It may be noted that, for each trigger selected collision, the acquisition process
completes in 88 µs, which implies, at a sampling frequency of 5.66 MHz, a range for
time information between 0 and 499, so that one 10-bit word suffices.
2 Actually, the value transmitted by the ALTRO circuit is the number of samples
plus one [1].

4



clusters in the following way: for each local maximum a group of adjacent
cells with the signal greater than the signal at the nearest saddle point is
selected. Then the centers of gravity of these groups of cells are taken as the
reconstructed positions of the corresponding space points.

In the second approach a cluster is associated to each local maximum and the
center of gravity of the closest 8 cells is taken. This approach is less sensitive
to the fluctuation of the cluster shape and to the track overlaps.

The cluster unfolding could be improved, if tracking and cluster finding are
performed simultaneously in the so called parallel tracking procedure. This
approach is currently under study.

3 Lossy compression of TPC data

The objective of investigating lossy compression of TPC data is to explore the
possibility of increasing the compression ratio beyond the limits achieved by
the lossless compression techniques described in [11] while at the same time
preserving in the compressed signal the quantities that are of main interest
for the experiment. Such quantities are the energy and the temporal and spa-
tial positions of clusters which are calculated by the above described off-line
algorithms on the stored data. Therefore, the main idea is not to preserve
the value of each single signal sample, as it is for the lossless compression
techniques, but to code the information contained in the signal with the low-
est number of bits so that the off-line processing is not affected or, at least, is
only marginally affected. Ideally, an optimal acquisition system would directly
evaluate such quantities on-line and directly code and store them. Unfortu-
nately, the cluster finding and tracking algorithms are computationally too
complex to be performed on-line. Furthermore, this approach would require
data coming from one whole row (from 67 to 139 pads). Although the com-
pression system receives data from up to 4 000 pads, the order in which they
are received is neither geometrical nor fixed, since it depends on the physical
connections of front-end cards to the read-out chambers and on the fullness
of the output buffers of the ALTRO chips. This means that, in order to apply
“row-oriented” algorithms, it would be necessary to buffer data from all 4 000
channels before performing cluster finding, energy and position computation
and coding. This process would introduce delay and memory requirements to
the acquisition system that cannot easily be satisfied.

Therefore, appropriate quantities have been defined which are related to the
signal coming from each pad, i.e. referred to bunches, from which the energy,
the temporal and the spatial position of the clusters can be successively com-
puted. Such quantities are the area (or energy) of a bunch, defined as the
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sum of its samples, and the Center of Mass (CoM), defined as its temporal
position. In the post-processing phase the energy of the cluster can be calcu-
lated as the sum of the energies of the bunches it contains, and the positions
as the weighted averages of the bunch positions. More complex is the case
of overlapped clusters, in which contributions from different traces must be
separated before processing.

It has to be noticed that the area and the CoM of the bunches are coded
losslessly; this means that, even if the compression does not preserve the sin-
gle values of the samples, it does preserve these quantities without any loss.
To be more precise, only a quantization error for CoMs temporal position
is introduced, but such error can be reduced below the error of the original
signal.

3.1 Area of bunches

The area of a bunch is simply evaluated as the sum of the values of its samples.
Direct coding on probability distribution is applied to the value obtained. In
future work the quantization of the area could also be considered as a mean
to further improve the compression ratio.

3.2 Center of mass of bunches

The position of the CoM of a bunch is evaluated as the average temporal po-
sition of its samples, i.e. tCoM = (

∑
i si ti) / (

∑
i si), where si and ti are the

values and the temporal positions of the samples of the bunch, respectively.
CoM positions are coded differentially, i.e. their values are substituted by the
distances between CoMs of consecutive bunches. However, the distance infor-
mation cannot be coded as is, i.e. without quantization; indeed, the number
of possible values, although finite, is very large, so that the entropy of such
model is very large. Moreover, direct coding of the exact CoM differential po-
sitions is also useless in practice because such precision gives an error which
is far below the intrinsic quantization noise of the original signal.

Consequently, a quantization stage is appropriate before coding, in order to
reduce the number of possible values that CoMs can assume, and consequently
to reduce the entropy.

Obviously, quantization can be applied with different quantization steps; by
increasing the resolution, i.e. decreasing the quantization interval, the quan-
tization error decreases while the entropy increases. In order to set the quan-
tization step, it makes sense to impose a quantization error comparable with
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the error which is intrinsic to the data.

The intrinsic error of the reconstructed CoM for the ALICE TPC is mainly
given by the electron diffusion along the drift length, the landau fluctuation of
the ionization along the particle trajectory and the gas gain fluctuation; these
contributions are summarized by the following:

σ2

CoM = Kdf

σ2

df Ldr

Nel

+ LF (Npr)
tan2 θ Lpd

12 Npr

+ K2 (1)

where Kdf = 2 is due to the gas gain fluctuation, σdf is the diffusion constant
of the gas, Ldr the drift length, Nel is the number of electrons (proportional
to the bunch area), Npr the number of generated primary electrons, LF (Npr)
a factor depending on the number of primaries and taking into account the
landau fluctuation of the charge deposit along the trajectory, tan θ the tangent
of the deep angle, Lpd the pad length; K2 represents the contribution to the
intrinsic error due to the threshold applied on the sample values and to the
noise introduced by the front-end electronics and the ADC quantization, which
in fact is negligible with respect to the first two addends.

As shown in equation 1, the error on CoMs due to the diffusion and angular
effect depends on the deposited charge (through Npr and Nel); for minimum
ionizing particles (MIP) the typical resolution is about σ = 1.1 mm, while for
high ionizing proton about σ = 0.6 mm. In the time direction, these correspond
respectively to 0.20 Ts and 0.11 Ts, Ts being the width of a time bin, i.e. the
sampling period of the ADCs.

Consequently, a resolution equal to Ts/4 has been chosen; however, it has to
be added that different quantization intervals, and in particular Ts/32 and Ts,
have also been considered in the performance estimations.

3.3 Bunches from overlapping traces

The two parameters considered, i.e. area and CoM, provide a good description
of the bunches in the case of simple bunches. However, such description is not
sufficiently detailed for bunches which result from the superposition of two
traces; in this case, two temporally close pulses are registered by a pad, with
their tails overlapping, so that they are represented by a single bunch in the
ALTRO data format. In this case it is necessary, before evaluating area and
CoM of these bunches, to separate the contributions due to the different traces.

Rigorously speaking, this operation should be performed exactly in the same
way as it is done by the above-mentioned off-line cluster finding and tracking
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Fig. 1. Example of “cut” of a bunch originated by two temporally close traces. A
5-sample bunch is cut into two 3-sample ones.

algorithms. However, since these algorithms operate on one cluster data, which
are, as mentioned above, not all at once available to the compression system,
in the present study a simple technique has been used, since the focus here
is on the possibility of higher compression rate; it is likely in fact that more
specific splitting algorithms do not imply relevant changes in the entropy of
the quantity to code. Specifically, each bunch having a relative minimum is
“cut” in correspondence with the minimum (Fig. 1); two new bunches are then
obtained, and the sample in the intermediate position, i.e. the one of the local
minimum, is divided by two, assigning half of it to each bunch. In terms of
compression performance, this approach, though simple, should yield results
very close to those provided by the future, more sophisticated, schemes.

3.4 Reconstruction of the TPC signal

The compressed signal, represented, as already mentioned, by the area and the
CoM of the bunches, has to be decompressed in form of a standard sampled
signal to be transparent with the standard off-line processing stage, i.e. to be
taken back to the ALTRO data format, in order to be processed by the off-
line algorithms (which are, in fact, designed to process this kind of data). A
procedure has been developed which, starting from the area and the CoM of
the bunch, reconstructs samples; obviously some errors are introduced on their
values if these are compared to the original signal. The precise reconstruction
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Fig. 2. Example of signal reconstruction for a bunch having area equal to 93 and
decimal part of the CoM equal to 1/32.

procedure is described below.

The objective is to capture the average shape of pulses so as to minimize the
sample-by-sample reconstruction error. All the bunches are classified according
to the {Area, CoM} couple 3 and aligned at their CoM, and the mean value
of the samples is computed for each time-bin. Thus, such operation defines
a sort of “average bunch” (AB). Obviously, this AB has the same area and
CoM as the bunches it represents because the computation of the mean value
does not alter these parameters. Moreover, it may be noted that this operation
minimizes the mean square error between the actual and the mean samples.
What is obtained is a “library” of ABs, each characterized by a different
{Area, CoM} couple.

The procedure then associates to each {Area, CoM} couple the corresponding
AB, and re-builds the temporal sequence of samples using the samples of the
ABs. In this way, the reconstructed signal, though having possibly different
samples with respect to those of the original one, is made of bunches having
same area and CoM of those of the original signal, and with minimum error
between each original and reconstructed sample (Fig. 2).

4 Simulation results

In this section, simulation results related to the described compression algo-
rithms are reported. The bit rate after compression is estimated by evaluating
the entropy of the quantities to be coded. Therefore, the sensibility of the
cluster finding and tracking algorithms to the error introduced by the lossy
model is measured by comparing performances of these algorithms on some
simulated data and on the same compressed-decompressed data.

3 Actually, only the decimal part of the CoM is considered. The integral part, in
fact, does not carry any information about the sample values, i.e. the shape of the
bunch, but refers only to the global shift of the bunch itself.
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4.1 Estimation of compression factors using entropy measures

In Fig. 3 the results for the lossy technique, with several quantization levels,
are compared with the ALTRO data format and the best lossless technique
presented in [11]. It may be noticed that with the quantization level equal to
Ts/4 the volume of data is reduced to 27.9% of its original size; the perfor-
mances for the resolutions Ts/32 and Ts are reported too and are 34.2% and
23.7% respectively.

4.2 Effects of the reconstruction error on cluster finding

As mentioned above, in order to measure the effect of the error due to the
compression and decompression process to the calculations performed by the
off-line cluster finding and tracking algorithms, the most effective way to pro-
ceed is to directly apply these algorithms both on a set of data generated by
a Monte Carlo simulation and on its compressed-decompressed version. This
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is done with CoM resolutions corresponding to Ts/32 and Ts/4 quantization
intervals. Results are shown in Table 1. It might be noted that, independently
from the version of the cluster finding algorithm, the loss in tracking efficiency
is on the order of 2%, a slight loss if we consider the increase in number of ob-
servation that can be stored thanks to the improvement in compression ratio
obtained by the lossy model with respect to a lossless one. The main source
of the slight decrease in efficiency is the smoothing of the overlapped clusters.

5 Complexity of the compression algorithm

Finally to evaluate the feasibility of the real-time implementation of one of
the proposed compression technique the number of operations per symbol and
per second that have to be executed by the compression system has been
estimated (see Table 2). Such operations mainly consist in evaluating the area
and CoM values. The computations for the entropy coding step has also been
taken into account; for this, the arithmetic coder presented in [13] has been
adopted.

The number of operations per second is evaluated by assuming the worst case,
in which one compression system will have to process up to 4 000 channels
and 0.28 GSymbols per second. The frequency distribution tables will need
4 kBytes of memory and operations will be performed in 32 bit precision
arithmetic.

The numbers obtained show that the described compression system can be
easily implemented in real-time, either on DSPs, field programmable gate ar-
rays, or ASICs. It may be worth noticing that even lower operation counts
can be obtained by using more sophisticated arithmetic coders, such as those
presented in [14,15], which do not need multiplications nor divisions, but only
additions and shifts, or Huffman coders as in [16,17].

6 Conclusions

A lossy compression approach for the data generated by the TPC chamber in
the ALICE experiment has been investigated. The main idea is to preserve
the two quantities that, at a pad level, are most related to the particle energy
and position which are of interest for the experiment; these are the area and
the center of mass of bunches that are coded without loss by the proposed
compression system. This approach achieves a reduction of the data rate to
27.9% accepting a quantization noise on the CoM position and errors on the
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sample by sample values, that in principle do not affect the results on physical
quantities of interest for the experiment.

The compression algorithm can be implemented using an arithmetic coder;
the overall computational complexity turns out to be reasonable, so that a
real-time implementation of the system on off-the-shelf electronic devices or
on simple ASICs is feasible.
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Clustering
algorithm
version

Compression
resolution

Tracking
efficiency

φ resolu-
tion

[mrad]

θ resolu-
tion

[mrad]
∆p/p

v.1 No compression 91.29% 2.81 1.42 2.23%

Compression 1/32 89.26% 2.71 1.46 2.19%

Compression 1/4 89.18% 2.78 1.48 2.23%

v.2 No compression 89.07% 2.33 1.33 2.12%

Compression 1/32 87.36% 2.42 1.57 2.15%

Compression 1/4 86.98% 2.46 1.58 2.15%

Table 1
Effects of compression on cluster finding and tracking.

sums
multipli-
cations

divisions jumps
memory
accesses

Area and CoM (op/symb.) 1.9 0.27 0.21 0.48 0

Arith. coding (op/symb.) 69 8.2 0.85 11 1.7

Total (op/symb.) 71 8.5 1.1 12 1.7

Area and CoM (op/s) 516 M 75 M 58 M 133 M 0

Arith. coding (op/s) 19 G 2.2 G 0.23 G 3.1 G 0.47 G

Total (op/s) 20 G 2.3 G 0.29 G 3.2 G 0.47 G

Table 2
Evaluation of the complexity of the algorithm for lossy compression. The number
of operations per second refers to the worst case processing of up to 4 000 channels
and 0.28 GByte/s.
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