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Abstract

The increasing complexity of processing algorithms has led to the need of more and more intensive specification and

validation by means of software implementations. As the complexity grows, the intuitive understanding of the specific

processing needs becomes harder and harder. Hence, the architectural implementation choices or the choices between

different possible software/hardware partitioning become extremely difficult tasks. Moreover, it is also desirable to

understand and measure the algorithm complexity at the highest possible level near to the algorithmic level so as to be

able to take the more appropriate actions. Automatic tools to perform such analysis become nowadays a fundamental

need.

In this paper, the requirements of a suitable algorithmic complexity evaluation technology are discussed, with a

particular emphasis to the problem of the analysis of multimedia systems and signal processing algorithms. A brief

review about limitations and weaknesses of existing tools is given, specifying the characteristics of ideal ‘‘complexity

evaluation systems’’. A new approach is described, called here Software Instrumentation Tool, SIT, yielding an auto-

matic software tool able to extract information not depending on the simulation platform, keeping into account specific

input data and resulting in a good and useful measure of the desired high-level algorithmic complexity.
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1. Introduction

1.1. Goals

The evolution of digital silicon technology enables the implementation of signal processing algorithms

that have reached extremely high levels of complexity. This fact, among others, has two relevant conse-

quences for the system designer. The first is that processing algorithms cannot be specified in ways other

than developing a reference software description. The second important consequence is that the under-

standing of the algorithms and the evaluation of their complexity have to be derived from such software
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description. As consequence of the greatly increased complexity, the generic intuitive understanding of the

underlying processing become a less and less reliable design approach. Besides, considering the shortening

of time to market, it is not possible to design a new processor from scratch without a massive investment

and a group of hundreds of motivated engineers [12]. Considering that, in many cases, the complexity of the

processing is also heavily input data dependent, the system designer faces a very difficult task when be-

ginning the design of a system architecture aiming at efficiently implementing the processing at hand.
This difficulty is evident when considering for instance the case of software/hardware co-design for

system on chip integration. Fig. 1 shows a typical design flow for this implementation case. All the relevant

information needs to be extracted by the software description that might be constituted by several thou-

sands of computer program lines. Indeed, the analysis of the complexity of single functions does not give

any information without the knowledge of the interconnection, occurrence and actual use of all functions

composing the algorithm. Some other traditional styles of design such as complexity analysis based on

pencil and paper or worst case processing applied to some portions of the algorithm, not only become more

and more impractical for the effort required, but can also results in very inaccurate results for not taking
into account the correct dependency of the complexity from the input data to be processed.

The results of this problematic preliminary analysis are then used for the software/hardware task par-

titioning. This is the initial step of the design flow where the final step is a full blown simulation of the

resulting optimized software/hardware embedded system. All these steps involve considerable efforts, and

due to a lack of precise initial information, erroneous preliminary task partitioning is done, generally

leading to inefficient or sub-optimal design results. For this reason, costly iterations through the design

process are needed to achieve good results.

It can be noticed that for software/hardware co-design, i.e. for synthesis and simulation with hardware
description languages, instruction-level simulation and software optimization on embedded processors

[2,4,23,28,38] and the overall modeling, design and simulation of heterogeneous systems [5,7,9,10,34,35,37],

a large variety of tools is available at all levels. Conversely no suitable automatic tools are available to assist

the fundamental task partitioning stage or to gather detailed and reliable information on the complexity of

the algorithm for optimizing the implementation, starting from the generic software description.

All these considerations, although relevant for most of signal processing implementation problems,

become fundamental for video–audio and multimedia coding, where the last generation of compression

standards (i.e. MPEG-2 [6], MPEG-4 [8]) reaches a very high level of complexity that is also extremely

Fig. 1. Typical simplified design flow of a software/hardware embedded system.
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sensitive to the encoder optimization choices and strongly data dependent. The content of the video–audio

material and the coding options used to compress the data produce, indeed, results with very large ranges of

complexity. Hence the analysis of the decoding process for a compressed bit-stream must be performed on a

solid statistical basis. Such analysis is feasible only by means of automatic tools able to measure all the

relevant aspects of the algorithm complexity, when the algorithms are applied to process meaningful input

data sets.
Since, obviously, an in-depth understanding of the algorithm complexity remains a fundamental issue in

any system design process, for the lack of suitable tools at this level it is not a surprise that system designers

nowadays face great difficulties in extracting information about the complexity and structure of algorithms.

For instance questions such as: how many operations, of which type, on which type of data, using how many

memory accesses, which processing functions and type of data are necessary to correctly perform the algo-

rithm, are definitely not easy to be answered. However, they are fundamental for the design of efficient

processing architectures that aim to match the processing requirements. Fig. 2 illustrates that having this

information in advance and as a reliable support to the software/hardware task partitioning and task
optimization can reduce or even eliminate the need of costly and time consuming re-design iterations.

Obviously, having precise and reliable information about the process that has to be implemented, the

initial architectural decisions and/or software/hardware task partitioning step can be greatly facilitated.

Decisions can be drawn from algorithmic complexity evaluations based on inter-module bandwidth, shared

memory bandwidth, operation and data type statistics. The same type of analysis is also useful for other

system optimization tasks such as memory and power dissipation minimization that require several

methodological steps starting from a generic algorithm specification [3,26]. An automatic tool supporting

the designer skills is the solution to the main drawback of such approaches, constituted by the efforts and
design time to accomplish the necessary steps.

Unfortunately, measures of these quantities on specific general-purpose hardware architectures used as

simulation support might not be useful to understand the real processing needs and could be, for some

aspects, even misleading. Measures of algorithmic complexity are needed at a pure algorithmic level. In-

formation based on an analysis at assembly language level after the compilation on specific hardware ar-

chitectures with all related compiler optimizations and specificities are certainly much less useful and

relevant at the beginning of the architectural design flow.

Fig. 2. One goal of the SIT approach presented in this paper is to provide the right information for a ‘‘tool assisted’’ initial software/

hardware partitioning and task optimization, reducing or even eliminating the need of re-design iterations in the design process loop.
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2. State-of-the-art approaches to complexity analysis

Depending on the specific goals of the desired complexity analysis to be performed, very different ap-

proaches and tools can be chosen [16]. These can be roughly classified into five categories.

• Profilers, modifying the program to make it produce run-time data [11,13,17].

• Compilers, applying result-equivalent code replacements [1].

• Static methods, getting information from the source code, such as lines of code or basic blocks for in-

stance. For these methods state of the art solutions rely on annotation at high-level programming lan-

guage for explicit or implicit enumeration of program paths so as to determine lower and upper bounds

of running time over a given processor [18].

• Descriptions by means of hardware description languages such as VHDL or Verilog enable other aspects

of the complexity evaluation.
• Hardware specific tools, providing computational information to some extent.

2.1. Profilers

Profilers can provide two types of results: number of calls of a given section of a program, and/or ex-

ecution time of that section. The program is first initialized with a series of calls to data collecting routines.

These data are then interpreted to provide the overall results in terms of time spent in a function versus time

spent during the calls to other functions. Making this kind of modification of a program, great care has to
be taken in order to avoid that the execution time of the data collecting part of the instrumented program

influences the resulting statistical information about the algorithm. Most of the time, the data collecting

routines are designed to run in a fixed and constant time, or the time consumed by this collection function is

also given in the evaluation statistic. However, the information provided by such profilers is only available

at a relatively high level, in other words at a function level. Since signal processing algorithms typically

spend the majority of the time in a few functions, more details and reliable statistics about the processing

operations executed by those functions are necessary to assess and understand the complexity of the al-

gorithm. If only function-level information is provided, a complete rewriting of the program code replacing
each elementary operation with a function call is necessary to obtain accurate statistics of the executed

operations. If the timing information is available, an appropriate rewriting of the code could also enable the

estimation of the relative cost of the considered operations. Only a few profilers are able to provide some

relative timing information on a per source-code-line basis. This information is collected, in a statistical

way, observing the program counter register of the processor at regular time intervals, and then mapping

the memory locations to the corresponding source code lines. This information can be placed at a lower

level than function level but it is less reliable, since it is obtained on a statistical basis. Operations that are

frequently executed are accurately described, because the statistical evaluation is performed on a large set of
samples. Less frequently used functions may lead to erroneous information. Furthermore, it is up to the

user of the tool to figure out which operations are executed at high computational costs, basing the analysis

on the statistical data. The automatic part of the tool only leads to a line of source code and not to simple

operations. Therefore, profilers are really suited for program optimization tasks on a given specific ar-

chitecture, as they measure, in fact, the time spent by parts of a program. Furthermore, the number of calls

of a function can help the partial redesign of the program to reduce the number of function calls to costly

functions. However, the information gathered with profilers strictly depends on the underlying machine and

on the compiler optimizations, while a complexity evaluation depending only on the algorithm itself is more
appropriate for high-level system design. At the beginning of the design cycle a generic software specifi-

cation of the algorithm is available and the goal is implementing it on a suitable architecture and not getting

measures on general purpose computers with no relation with the final software/hardware implementation.
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2.2. Compilers

Compiler technology allows performing sophisticated software analysis that is then used for speed or

memory optimization. A compiler typically, as its last step, is able to modify the code, achieving some level

of optimization. For instance, it can analyze and modify a program to reduce the number of operations by
rearranging code parts, or to reduce the memory accesses by optimally using the processor internal reg-

isters. Compiler technology also includes data flow analysis, which can extract constant expressions from

frequently executed code sections, for example, and control flow analysis, which can replace a sequence of

statements by an equivalent one, i.e. producing the same result. Such technology, however, does not lead to

an absolute complexity measure. It enables the comparison between two parts of code, measuring a relative

complexity. A section of code is rewritten into a better one (faster and/or smaller in size), which is then put

into the final program. The main drawback of such approach is that, so as to get good results, all the

features of the underlying processor architecture have to be taken into account. If the goal is to get
complexity results at the highest level of abstraction, without considering any specific architecture, this

approach cannot lead to the desired results.

2.3. Static approaches

The methods based on a static analysis of the source code range from the simple counting of the number

of operations appearing in a program up to sophisticated approaches determining lower and upper running

time of a given program on a given processor [18,29]. While the simple counting technique provides a very
accurate evaluation of the operations, it cannot handle loops, recursion and conditional statements except

for some particular cases. Explicit or implicit enumeration of program paths can handle loops and con-

ditional statements and can yield bounds on run time best and worst case [18,29]. The main drawback of

these techniques is that the real processing complexity of many algorithms heavily depends on the input

data while static analysis depends only on the algorithm. For video coding, for instance, strict worst-case

analysis can lead to results one or two orders of magnitude higher than the typical complexity values

[19,20]. Consequently the range best case-worst case is so wide that results are meaningless. No useful

indications can be extracted about the typical processing needs, which on the contrary can be better de-
termined by including into the analysis statistical considerations and bounds on the input data. Moreover

restricted programming styles such as absence of dynamic data structures, recursion and bounded loops are

required [15]. This means, in many cases, the need to rewrite the program. Although video and multimedia

processing can also be considered as real-time applications, their characteristics differ largely from real-time

control applications that are the main field of these static approaches. Another serious drawback is the fact

that while the high-level language is used to provide annotation, the final analysis is generally performed at

the assembly language level thus implicitly accounting for the host processor system.

2.4. Hardware description languages and hardware specific tools

Hardware description languages (HDL) have now become very popular tools for the design and de-

scription of electronic systems. Automatic synthesis tools are able to generate circuit descriptions corre-

sponding to the algorithms described in HDL. Through synthesis and simulation, such languages allow

gathering very reliable results about the implementation complexity and performance of the described

algorithm. However, such results, which are extremely useful for system design, arrive too late in the design

flow. The algorithms have to be translated from the general purpose language specification into HDL,
implicitly implementing an underlying architecture. An almost complete rewriting of the HDL code might

be necessary if it is realized that the a priori architectural choices are not appropriate for the algorithm at
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hand. In conclusion, a high-level measure of algorithmic complexity cannot be easily obtained by means of

HDL descriptions.

Besides HDL, there are tools which provide instruction-level simulation of DSPs or other type of em-

bedded cores [2,4,23,28,38], allowing to estimate the performance of the implementation of an algorithm on

a given target architecture. Other tools allow the designer to co-design and co-simulate heterogeneous

embedded systems. They provide a more versatile framework in which it is possible to integrate hard-
ware descriptions, software descriptions and instruction-level simulators, at different abstraction levels

[5,7,9,10,34,35,37]. The whole system may be efficiently simulated to measure its performance, yielding

reliable results useful in the optimization tasks whether for each single block or for the communications

between different blocks. Another important advantage of these tools is that co-design and co-simulation

ease the software/hardware partitioning and re-partitioning tasks, thus enabling quick system specifications

and quick system re-design. Although these tools increase the overall productivity reducing both the design

time and the number of re-design iterations, they do not cover the gap between the pure software speci-

fication of an algorithm and a system specification for a heterogeneous implementation of the same al-
gorithm. Algorithms are becoming more and more complex and their specification and verification have to

be performed at a very high level of abstraction, usually with common programming languages such as

C and C++. Because of the previous reasons, such software verification modules are not meant to provide

straight information for a hardware or software/hardware implementation of the algorithm itself or not

even for another pure software implementation optimized for a specific core. Given a software verification

module, the designer has to analyze it in order to fully understand it in depth, focus on critical points,

discover bottlenecks, rewrite parts of the algorithm to optimize them for a specific implementation, etc. No

automatic tool is available to help the designer at this very first stage and the first implementation choices
strictly depend on the experience and skill of the designer. Because of the increasing complexity of algo-

rithms and consequently of the increasing dimension of the corresponding software descriptions, decisions

based on experience need more and more time to be taken and become less and less reliable. Hence the need

of automatic tools able to perform a preliminary hardware oriented complexity analysis of the algorithm

starting from a pure software specification, in order to drive the first implementation choices and reach an

optimal solution with less re-design iterations.

3. Problem statement

A more precise statement of the desired algorithmic complexity analysis can be expressed as follows. The

complexity of a specific implementation of an algorithm has to be measured independently of the underlying

hardware architecture. It is assumed that a software implementation of the algorithm is available and that it

can be run in realistic input data conditions. The goal is then to measure the complexity of the algorithm

whose performance can be data dominated. In other words, the interest is not only about the measure of

complexity of the algorithm itself, but also about its dependencies under specific input data. This approach
is fully in line with methodological approaches proposed for instance in [24,25] aiming at optimizing data-

transfer and memory bandwidths at a high-level description of the algorithm.

Pure algorithmic complexity does not depend on any other factor than the algorithm itself and the input

data. Avoiding input data dependency leads only to worst-case best-case estimations, and these estimations,

even though crucial for e.g. real-time control systems, are not of concern here. Both real-time and non real-

time signal processing and image and multimedia processing are targeted, for which strict ‘‘worst case

analysis’’ is not adequate [21,22]. Furthermore, the complexity evaluation must not depend on the type of

hardware or compiler technology used for the evaluation. The only constant is the specific software im-
plementation itself of the algorithm and the desired measure is the number of operations occurring during

its execution, without taking into account the different ways to produce machine instructions for this
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particular program. The process of compiler optimization can, however, be used to accelerate the evalu-

ation of the number of operations, but it must not interfere with it.

Given the number of operations O occurring during the execution of an algorithm A, the algorithmic

complexity CA is then defined, without loss of generality, as

CA ¼ f ðOÞ
where f ð�Þ is a mapping function. The way the complexity CA is defined depends on the use of the com-

plexity in the design process. It could be a single number, for a very high-level comparison of algorithms,

but it will obviously be of smaller dimension than O. In practice, having a single number is not very useful,

as it has already been shown in the world of benchmarks like MIPS and MFLOPS. Higher dimensions for

CA can be chosen to represent the aspect of complexity needed by the design phase. Thereafter, a mapping

function f ð�Þ can be defined. f ð�Þ is a mapping from a set of measures, indicating algorithmic behavior, to a
set of requirements, indicating what is important for the task. Therefore a universal mapping function f ð�Þ
cannot be provided.

It is then clear that the kind of information provided by CA will heavily depend on the definition of f ð�Þ
but, more importantly, the reliability of this complexity information will directly depend on the reliability

of the values in O. The goal is the faithful evaluation of the algorithm�s operations O.

In software/hardware co-design, for instance, the most important issues can be classified into four

categories:

1. type of operations (addition, multiplication, etc.);

2. type of data (integer, floating point, fixed point, etc.);

3. memory architecture;

4. memory accesses/bandwidth.

The goal being to provide a good insight in what an algorithm needs to be performed, O is decomposed

into three components:

O ¼ fOops;Odata;Omemg

where Oops represents the number of operations per type of operation, Odata the number of operations per

data type and Omem the number of memory access operations. This is the most fine grain information that

can be extracted from an implemented algorithm without having to take into account specificities of the

underlying architecture.

Previous work by Shaw [32] on worst-case analysis for time-bounds estimation at the programming

language level has turned out to be inadequate. In defining time-bounds on the different constructs of the

language, they could estimate time-bounds for subroutines, and finally a whole program. Worst-case

analysis has shown to be inadequate because of the difficulty of predicting time-bounds in a high-level
language independently of the context in which it appeared and independently of the compiler and the target

processor. Estimation of the number of operations does not suffer from this, because the measured quantity

(operations) depends only on the algorithm and on the input data with which the algorithm is executed.

To be complete, and because algorithms are usually sequences of smaller steps, the complexity infor-

mation should also contain information about the algorithm�s logical organization. Therefore, function

calls and function relation information should be a constitutive part of the complexity evaluation. This

enables also the measuring of interactions between logical parts of the algorithm. For example, in a straight

implementation of the discrete Fourier transformation (DFT), it could be interesting to know how many
operations are spent in computing the transform coefficients versus the number of operations used to

compute the basis function coefficients W k
n . This indication is also important for algorithm optimizations,

and leads to the use of lookup tables in the case of the DFT.
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4. The proposed instrumentation approach

4.1. Concept

The implementation of the Software Instrumentation Tool (SIT) is based on the concept of the instru-
mentation of all the operations that take place during the execution of the software. Instrumenting code by

C++ operator overloading has been already proposed in literature, but it has always been considered an

approach presenting severe practical and functional limitations [16]. Major drawbacks were considered the

applicability only to C++ program, the impossibility to instrument pointers and other data types such as

structures and unions, resulting into not accurate analysis of data transfer oriented operations, and to an

extensive manual rewriting of the original code. In the approach presented in this paper all known func-

tional and practical limitations of the operator overloading approach have been solved. All type of op-

erators for all type of data can be registered and assigned to a specific group of counters. The current
version of SIT is able to instrument a C program by translating it into a corresponding C++ program by

means of an automatic tool: both programs have the same behavior but, by substituting C simple types with

C++ classes and by substituting all C operations with C++ overloaded operators, standard C operations

performed during the execution of the program can be intercepted and counted, along with other implicit

operations such as memory accesses and data type conversions. This approach has the great advantage that

no code rewriting is necessary to obtain high-level algorithmic complexity information. Moreover, asso-

ciating an appropriate memory model to the processing makes SIT a complete simulation tool for fast

architectural evaluations.
The actual instrumentation of a C program is schematically represented in Fig. 3. By changing the system

executable search path, the standard gcc compiler is replaced by the SIT’s gcc, a script that is in charge of

controlling the overall instrumentation process, from source files to instrumented executable generation.

The instrumentation process is completely automatic and it appears to the user exactly as a normal

compilation with no need of modifying existing source files and makefiles or typing any special command.

First original C source files are instrumented by instrumenting gcc (igcc) which translates each C source file

into its corresponding instrumented C++ version. The instrumented files are then compiled by means of

standard g++ and finally linked with system and SIT�s libraries to produce the instrumented executable,
which can be executed so as to process the corresponding input data. During execution, the instrumented

version of the program registers every executed operation (explicit and implicit) and increments the cor-

responding counter, possibly using user defined contexts. Those counters can be merged in any form in order

to represent the information in a more compact or detailed form depending on the user desires. By default,

this grouping is based on the function call tree of the program. Facilities are provided to make the counting

process time or data dependent. For instance, a program that codes frames of a video sequence might get a

Fig. 3. Schematic diagram of the instrumentation process.
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counter group for each frame. Each counter group would then include all functions needed to decode a

specific frame, so that a complexity analysis on a frame-by-frame basis is possible.

SIT has basically two distinct goals:

• Providing complexity measures to compare different implementations of a given algorithm (abstract

point of view).
• Given the complexity measures at previous point, helping to find out which architectures could help

most in solving the different tasks (mapping and fast simulation point of view).

4.2. Operation count

SIT is able to count all types of operations, along with the data types they are applied to.

Table 1 shows the data types for which operations are counted: while there is a strict correspondence

between C simple types and the corresponding instrumented types, the other data types have to be treated
separately. In the first group, each instrumented type corresponds to a standard C simple type; the second

group accounts for all the operations on pointers and vectors in general; structures and unions need to be

instrumented as well, in order to manage the corresponding instrumented members contained in them, but

all the operation counting is deferred to the instrumented members themselves; the last data type in table,

BOOL, was introduced to count separately the operations in boolean expression because by a hardware

point of view they are operations on bits and not on words like in C.

Exploiting C++ operator overloading SIT is able to intercept and count all the operations performed on

the objects of the classes shown in Table 1. This means that the tool is able to count the operations per-
formed on native C types in the original C description of the algorithm under analysis. A specific operator

Table 1

The instrumented C++ data types: all native C data types are substituted with C++ classes able to intercept and count, with their

overloaded operators, the explicit and implicit operations performed during program execution

Group Native C type Instrumented type C++ implementation of the instrumented type

Simple types long double LDBL Classes

double DBL

float FLT

unsigned long long ULLINT

signed long long LLINT

unsigned long ULINT

signed long LINT

unsigned int UINT

signed int INT

unsigned short USINT

signed short INT

unsigned char UCHAR

signed char CHAR

Pointers and vectors Pointers Pointer<IT,OT> Template classes

Pointers to function FPointer<OFP>

Vectors (any dimension) Vector<IT,OT,SZ>

Structures and unions structs unions STRUCT Classes by means of Template-like macros

Boolean type Not defined BOOL Class

The BOOL type was introduced to count boolean operations separately.
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overloading over all possible combinations of operators and input data types is the key for a correct and

reliable instrumentation and complexity analysis, because it allows both to preserve the native C behavior,

explicitly implementing all the implicit type casting occurring in operations, and to count separately all the

different operations:

• arithmetic operations (+, -, /, etc.);
• binary operations (&, |, <<, etc.);

• assignment operation (¼ ), eventually combined with previous operations (+¼ , &¼ , etc.);

• prefix and postfix increment operations (++, –);

• comparison operations (¼ ¼ , <, <¼ , etc.);

• boolean operations (&&, ||, !);

• pointer dereferencing operations (*, [], ->);

• pointer arithmetic and assignment operations (+, -, ++, ¼ );

• pointer comparison (¼ ¼ , <, <¼ , etc.);
• type casting, both explicit and implicit;

• memory I/O and allocation;

To get the most fine grain information about the executed operations in a system, the operation count

updates one counter for each (operation; data type) couple. This leads to the possibility of an easy mapping

onto any architecture, providing meaningful information at a high abstraction level.

4.3. Memory simulation and data-transfer and storage analysis

In complexity evaluation of systems, the memory bandwidth plays a fundamental role. In multimedia

applications, for instance, most of the power consumption and bus load is due to data transfers and the

optimization of these dominant costs is one of the most critical steps in the development of efficient and

low-power implementations [24,25]. By intercepting the accesses to memory by means of read and write

functions in instrumented classes and associating to the algorithm an underlying memory model, SIT is able

to simulate memory operations and extract relevant information and measurements about memory per-

formance, such as memory usage, cache hits and misses, data flows, etc.
The underlying memory architecture for which measurements are required can be easily specified aside

without limitations and without rewriting the algorithm source code, thus avoiding the main drawback of

systematic approaches to system design [3,26]. The simulated memory architecture is defined by means of

Memory Models (see Fig. 4). The typical structure of a memory model consists of three types of simulation

blocks:

• Memory Manager. It defines the allocation policy associated to the memory model (e.g. dynamic alloca-

tion, stack, etc.). It implements the interface between the memory model and the Simulation Core. Dur-
ing simulation it receives allocation and I/O commands from the Instrumentation Core and drives the

rest of the hierarchy of simulation blocks in the memory model.

Fig. 4. Structure of a memory model for memory simulation. A memory model is composed by a Memory Manager, a Memory and an

optional hierarchy of Caches.
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• Memory. It simulates the storage memory in the memory model and it is the last block in the simulation

block hierarchy. Mainly it defines the size of the simulated memory and receives I/O commands from the

parent simulation block in the hierarchy.
• Cache. An optional hierarchy of caches can be defined between the memory manager and the memory. A

cache receives I/O commands from the parent simulation block and, according to the received I/O com-

mands and the chosen cache policy, generates I/O commands to drive the child simulation block.

A standard set of interfaces is defined for implementing all the blocks in a memory model. These in-

terfaces are meant to provide a standard framework to implement the different simulation blocks, plug

them into each other according to the scheme of Fig. 4 and define the desired memory models to be used

during simulation. Apart from the standard interfaces, the implementation of each block is completely free,
allowing the user to define custom simulation blocks, with custom features and simulation results. That is,

it is possible to simulate (partially or completely) different memory architectures, with different allocation

policies and cache hierarchies, and compare the respective performances.

A variable (or a dynamically allocated block) is assigned to a memory model so that during simu-

lation all the I/O operations on a variable (or on a dynamically allocated block) drive the simulation of

the corresponding memory model. Pointers are the most critical entities in memory simulation, because

they might point to ‘‘any’’ address and consequently it is not straightforward to detect to which

memory model the pointed address is associated. The memory simulation core guarantees that all
pointer operations are correctly mapped onto the ‘‘pointed’’ memory model, independently of the pointed

address.

The simulated memory architecture must include at least four Memory Models, referred to as Default Set

of Memory Models (see Fig. 5), for default assignments of variables and allocated blocks to memory models

(‘‘var-to-mem assignments’’ for short):

• Heap. All the variables dynamically allocated in the heap, e.g. typically large buffers, are assigned to this

model. Its allocation policy must be dynamic.
• Stack. All the static and automatic variables, not of vector type, are assigned to this model. Its allocation

policy must be stack-like.

• Vector Stack. It is the counterpart of Stack model for variables of vector type. Possibly Stack and Vector

Stack can be implemented with one model only. The reason for using two different models for the stack

is that two different types of variables are typically assigned to these models: counters, flags and tempo-

rary results to the Stack model, large buffers to Vector Stack model.

Fig. 5. The simulated memory architecture is composed by the compulsory Default Set of Memory Models and the optional Extended

Set.
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• Temporary memory. All the results of the operations, ‘‘temporary variables’’, are assigned to this model.

This class of variables typically represents registers or even simple wires and this is the reason why they

are associated to a different model for. Its allocation policy is free.

The user can specify, by means of specialized comments in the source code, different var-to-mem as-
signments. Thanks to these custom assignments, the user can assign one or more variables to other memory

models than the ones in the default set, for instance to gather specific simulation results for sensitive data.

The optional memory models for custom var-to-mem assignments are referred to as Extended Set of

Memory Models (see Fig. 5).

5. Technical approach

5.1. Translation from C to C++

To count the operations, a specific code that intercepts the calls to all operations as they occur in the

original program is needed, without interfering with the actual processing under evaluation.

The C++ norm [33] states that any standard ANSI-C program is also a valid C++ program. This forms

the first requirement. A class can be built to behave in the same way of the corresponding C type. Replacing

simple types, pointers, structures and unions with classes, it is possible to intercept, through operator

overloading, all operations performed on data, here including both explicit C operations (sum, multipli-
cations, etc.) and implicit operations (memory accesses).

Special care has to be taken when using classes to replace the original simple data types. With respect to C

simple types, instrumented C++ classes have some extra bytes of information, both because of the func-

tionalities of SIT and because of some additional overhead for class management (e.g. classes� ids). Since

many operations strictly depend on native C representation of data in memory (e.g. pointer type conver-

sions, union management, etc.), the instrumented classes have to completely stick to such representa-

tion and therefore the data memory and the overhead memory must be managed separately. In this way,

not only the same behavior between the original and the instrumented codes is guaranteed, but the ex-
change of data between instrumented and non instrumented libraries, such as standard C libraries is also

possible.

Up to a few exceptions, the translation from a C code to the corresponding C++ instrumented code

consists in replacing the original declarations of variables and functions with new declarations using the

instrumented classes and their constructors. Pointers and vectors are instrumented by means of C++

templates generating different classes depending on the different data type they point to. The main ex-

ceptions concern structure and union declarations and boolean expressions. For each structure and union,

classes with specific constructors and operators must be defined in order to manage correctly the members
in different data structures; such specialized classes are defined with macros and with explicit code gener-

ation for specialized constructors and operators. Since boolean operations have to be counted separately

from other operations on int type, despite of C implementation of boolean expressions, the BOOL in-

strumented type has been defined and during the conversion from C to C++ this data type is explicitly

managed in expressions, while for the other data types no change in the expressions is required.

5.2. Simple types

The list of all implemented simple types is shown in the first section of Table 1. The main constraint that

has to be taken into account is that the set of operations must have the same effect on simple data types as

on their class representation. While C++ overloaded operators have the same precedence as the built-in
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equivalent ones, there is no constraint on their returned data type that, to stick to native C behavior, has to

respect the automatic promotion rules occurring in C operations on simple types. Given that the return

type, according to the promotion rules, depends both on the operator and on the type of the operands, a

different overloaded operator for any legal combination of {first operand type, binary operator, second

operand type} and of {unary operator, operand type} has been implemented. In this way not only the

promotion rules can be respected, choosing the correct return type for each overloaded operator, but also
any overloading ambiguity in compilation can be avoided, because any legal operation can be mapped

directly onto one of the previous legal combinations. The main drawback of this choice is that some

thousands of operators have to be implemented, resulting in a very large source code that, consequently,

would be difficult to maintain and would compromise the performance of the compilation of instrumented

code, both in terms of compilation time and memory usage. Both these two drawbacks have been overcome

by creating a preprocessing tool, called SIT preprocessor (sitpp), able to automatically generate the source

code for instrumented classes as described in the following points (see Fig. 6):

• Operators Template File. Instrumented classes and their overloaded operators are defined in a template

source code of few hundred lines, much more easy to maintain than a code of many thousand lines.

• Native C Rules. The Operator Template File is expanded according to native C rules, e.g. available data

types, available operations, promotion rules, etc., so that all the resulting classes and their overloaded

operators are guaranteed to behave exactly as their native C counterparts.

• Data types and Operators. During instrumentation of each source file, igcc generates, besides the instru-

mented file, the list of necessary data types and operators. The information in this list is used by sitpp

as a filter for the expansion of the Operators Template File, so that for each source file a header file is
adaptively generated, which contains only the minimum set of operators specifically necessary for that

source file (Minimum Operator Set). This minimizes the resources needed for the compilation of the in-

strumented files.

In order to allow data exchange between instrumented and non-instrumented libraries, operators must

be provided to convert instrumented variables into their corresponding native values and vice versa.

Constructors and assignment operators created by sitpp provide all the coercion paths from non-

instrumented types to instrumented types. Problems can appear trying to implement coercion operators
from instrumented types to non-instrumented types for implicit type castings when passing instrumented

parameters to functions. As a side effect, they may cause overloading ambiguities in conversions between

instrumented simple types and pointers and, furthermore, the implicit conversion for which they had been

thought results to be useless when calling functions with variable argument lists, because in this case the

compiler does not know which appropriate type conversion has to be implicitly called. It has been decided

not to implement such operators to avoid overloading ambiguities and to perform such conversion by

Fig. 6. Igcc, sitpp and the instrumentation of a source file. Besides instrumenting the source file, igcc generates also the list of the

required data types and operators, which is processed by sitpp to generate the header file with the ‘‘Minimum Operator Set’’ for

optimized compilation of the instrumented file.
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explicitly calling a conversion member function implemented for all instrumented types; operator() was

chosen for this task because no C data type uses this operator. In the translation from C to C++ this op-

erator must be explicitly called on instrumented data whenever they are passed as arguments to functions.

Here is an example showing how the following section of C code

int a¼10;

int function1(int param) {

return param+1;

}

void function2(int param) {

int a;

a¼function1(param);

a+¼function1(10);

printf(00%inn00,a);
}

is translated into the corresponding instrumented C++ code

INT a(10); // Type substitution in variable

// declarations

int function1(int SIT_param) { // Function prototypes are never instrumented

// for compatibility issues

// with native libraries:

INT param(SIT_param); { // parameters are instrumented

// inside the function

ENTERFUNCTION(00function100); // Macro to register the function and trace

// the accesses to it

return (param+1)(); // Explicit conversion to native C type

}

}

void function2(int SIT_param) {

INT param(SIT_param); {

ENTERFUNCTION(00function200);
INT a;

a¼function1(param()); // Explicit conversion to native C type for

// parameters in function call

a+¼function1(10); // No change needed for non-instrumented parame-

// ters

printf(00%innn00, // Explicit conversion to native C type allows

a() // calling native library functions

);

}

5.3. Pointers and vectors

Pointer operations and pointer arithmetic, as well as vector operations, are often used to implement

iterations over data and to structure the data in a convenient way. The count of their operations is therefore
critical to a sensible complexity analysis of a program.
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Native pointers implement a limited set of operations and among them some specific ones, like dere-

ferencing or bracketing to access an element in the array. Native pointers can be defined for any type, but

the complexity of the operation is always the same. Therefore, only pointer operations are counted ge-

nerically, and not depending on the data type they are working on.

As pointers apply to any type of data, C++ templates were chosen for their implementation. Instru-

mented pointers need information both about the pointed instrumented type, to use the corresponding
instrumented operators when needed, and about the corresponding pointed native type, to know the real

size of the data they point to and manage memory exactly as native C does. The Pointer template needs

then two parameters <class IT, class OT> where IT and OT are, respectively, the instrumented and

the original pointed types. Even though vectors and pointers share mostly the same behavior, some op-

erations on vectors strictly depend on the number of elements in the vector itself and for this reason a

specialized Vector template has been written, needing one parameter more (<class IT, class OT,

size_t SZ>). Pointers to functions represent a special kind of pointers, with no instrumented type to point

to. Actually, even an instrumented function is nothing more than a standard C++ function taking or re-
turning native data types. The template FPointer<class OFP> instruments pointers to functions and

OFP parameter represents the original pointer-to-function type. These three templates––possibly nested to

create multidimensional vectors, pointers to pointers, pointers to vectors, etc.––allow to instrument all

pointer and vector types and their operations and to manage memory exactly as their native C counterparts

do.

The conversion from C to C++ is limited, as with the simple type, to change variable declarations and to

add explicit type castings from instrumented to non-instrumented types:

C code

int *p¼NULL;

long **pp;

int v[5];

long vv[3][4];

char (*f)(float);

. . .

printf(00%pnnn00,p);
C++ code

Pointer< INT, int> p(NULL);

Pointer< Pointer<LINT, long>, long*> pp;

Vector< INT, int, 5> v;

Vector< Vector < LINT, long, 4>, long[4], 3> vv;

// The OT (original type) parameter of outer template is long[4] because

// long vv[3][4] is a 00vector of 3 vectors of 4 long00

FPointer< char(*)(float)> f;

// The parameter OFP (original function pointer) is a native C/C++

// pointer to function

. . .

printf(00%pnnn00,p());
// Explicit type conversion through operator()
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5.4. Structures and unions

The instrumentation of structures and unions needs specific classes for each original data structure like

pointers and vectors. Unfortunately, these instrumented classes cannot be implemented by means of

templates because they need specialized member declarations, constructors and operators depending not on
the structure data type itself but on its member list. More precisely, an instrumented structure is composed

by instrumented members that need to be constructed one by one, and this cannot be carried out with

templates. The problem was solved with macros that mimic the features of templates while still allowing to

add the required specialized code.

To stick to native C memory representation, the instrumented members are constructed by means of the

addresses of their non-instrumented counterparts. The data of the instrumented structure are held in a non-

instrumented structure. The instrumented members hold no data but simply intercept accesses and opera-

tions on the members of the non-instrumented structure. Unions are instrumented exactly like structures:
their instrumented members being initialized with the addresses of their non-instrumented counterparts, data

superposition of unions is automatically implemented without any change with respect to structure in-

strumentation.

The instrumentation of these data structures is rather more complicated than the instrumentation of

previous data types but it is limited only to data type declarations and explicit conversions from instru-

mented to non-instrumented data structures.

Without getting into detailed explanations about the instrumented code, the following example shows

how the declaration of a structure type and the instantiation of a variable of that structure type

struct myStruct {

int i;

char c;

float *fp;

};

struct myStruct ms;

are instrumented:

struct myStruct{

int i;

char c;

float *fp;

};

// Structure instrumentation by means of SIT_STRUCT_STEPxxx macros

// and members� instrumentations
SIT_STRUCT_STEP1(SIT_type_myStruct,struct myStruct)

SIT_INT i;

SIT_CHAR c;

SIT_Pointer<

SIT_FLT,

float

> fp;

SIT_STRUCT_STEP2(SIT_type_myStruct,struct myStruct)

:SIT_STRUCT_STEP2_L(i)
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,SIT_STRUCT_STEP2_L(c)

,SIT_STRUCT_STEP2_L(fp)

SIT_STRUCT_STEP3(SIT_type_myStruct,struct myStruct)

SIT_STRUCT_STEP3_L(i)

SIT_STRUCT_STEP3_L(c)

SIT_STRUCT_STEP3_L(fp)

SIT_STRUCT_STEP4(SIT_type_myStruct,struct myStruct)

SIT_type_myStruct ms;

Structures and unions with bit fields are not supported in the current SIT implementation.

5.5. Boolean type

By the hardware point of view, boolean data are 1 bit data while Cmanages such data and their expression

using the word-sized int type. Since the goal of SIT is helping the designer figuring out the complexity of an

algorithm, it is more correct to use a specific type, different from int, for boolean data and operations to get

a more reliable complexity measure. For this reason, the BOOL instrumented type, without a corresponding

standard C counterpart, has been introduced.

To properly take advantage of the BOOL type, an extra explicit type casting must be added each time a

variable has to be converted in a boolean value, that is with boolean operators (& &, ||, ?:) or in con-

ditional statements (if, while, for):

x¼a?v1:v2;

if(a) { }

is instrumented as

x¼BOOL(a)?v1:v2;

if(BOOL(a)) { }

The ! operator (logical NOT) needs no explicit type casting because it is implemented as member of any

instrumented class and the type casting can be defined inside the operator itself. While C++ allows to overload

logical operators && and || and the type casting could then be implemented inside the operator as with

operator !, these operators can not be implemented as overloaded operators because of the strict boolean
evaluation rule to which they must obey according to C standard. E.g. in a logical expression involving the 0||0
operator (logical OR), the left operand is always evaluated while the right operand is evaluated if and only if

the first evaluated to false. The same mechanism applies to the 0&&0 operator (logical AND). Overloading the

operator in an instrumented class, the behavior of the operator would change. For instance, the expression

char* p ¼ NULL;

if (p && *p¼ ¼ 0a0) { }

which checks if the pointer is NULL and only if it is not the case performs the comparison operation, would

invariably make the instrumented program abort if the pointer is equal to NULL, because calling overloaded
operator&&, not ruled by any strict boolean evaluation, would first result in evaluating both its arguments.

Logical operators && and || are therefore instrumented as extending the corresponding native expression by

calling a boolean function responsible only for the counting, but still using native C operators:

Pointer<CHAR,char> p ¼ NULL;

if (count_AND() && BOOL(p)

&& BOOL(*p¼ ¼ 0a0)) { }
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where count_AND() is defined to count the logical AND operation and to return 1 (TRUE) to keep on

evaluating the remaining part of the expression.

5.6. Complexity database construction

The complexity information is based on the counts of the basic operations. This information is produced

during the execution of the instrumented program and is then stored in a file, the complexity database. To

keep the structure of the procedure call tree, the counts are grouped by type of operations, data types and

functions. However, for improved compaction of the information, no time information is kept, as the

counts of operations are summed up through time. Keeping this information would mean keeping one

record per operation. Such a database would be too large to be handled off-line. Functions that are called

from different points in the program are handled separately, so that their contribution to the different

branches in the call tree can be evaluated accurately. Similarly, recursive functions increase the depth of the
call tree, so as to keep the maximum information available. The use of the resulting database is the same as

for other tools used in analysis and optimization (e.g. gprof [11,13]). The execution of an instrumented

program produces a file, which is self-contained in that it has operation counts, call tree and function names

in it. The exploration of this file is then possible by means the graphical tool described in the following

section.

Fig. 7. Results for main function with key length¼ 127.
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5.7. ‘‘SITview’’ graphical user interface

The exploration of the complexity database is done via the special graphical tool ‘‘SITview’’ developed

along with SIT. All illustrations of graphical results in this paper are screenshots of this displaying tool. The

information display is organized in views, each view being a combination of flags for the selection of the
type of graph (bar, pie, table), the grouping of counts (current function, full sub-tree), the graph display

(counts vs. data types, data types vs. counts) and the comparison level (current node, current node�s
children nodes). All these flags may be changed through the interface. This tool displays several types of

information (see for example Fig. 7), all extracted from the complexity database file:

• Global information, as the current function name, database name, and the number of operations per call

in the current function.

• The call tree, shown on the left, which presents multiple branches with the same label in case a function is
recursive, or is called from different parent functions (e.g. shifter).

• The graphical representation of the currently selected call tree node and view (function main in Fig. 7).

The comparative evaluation of several runs of the same program or of different programs is possible, as

several databases may be loaded at the same time into the displaying tool. For external evaluation of this

information, exportation of the numbers as well as printing facilities are also available.

6. Results

This section reports two examples of the complexity analysis with SIT. The first example gives a global

overview about the results that can be collected with SIT and how they were used to extract useful in-

formation about an encryption system. The second example focuses on the results of the memory simu-

lation and data transfer analysis on an image processing algorithm.

6.1. Application example no. 1: analysis of an encryption system

An example of the application of SIT is provided by the complexity analysis of a public key crypto-

system based on Diffie–Hellman algorithm [30,31]. This algorithm is based on the exponentiation of two

numbers in finite Galois Fields. The exponentiation operation is reduced to recursive polynomial reduc-

tions and recursive shifts on state registers. The generically optimized C implementation is based on dy-

namic data structure and recursion.

Figs. 7 and 8 report the results of the overall number and type of operations for the public key gen-

eration in case of two different key bit-lengths. On the left, the program function call tree is shown and, on
the right, the number of operations for the selected node in the tree (function main in this figure). The

program includes recursive functions and dynamic data structures.

The exploration of the call tree immediately shows the different complexity of specific functions versus

the two different key-lengths as depicted in Figs. 9 and 10. It is very clear that the function prod_pol is the

most sensitive function to the length of the key.

These results have been obtained without any rewriting of the code, thus in case of software/hardware

partitioning, the generically optimized C code is ready for embedding on a host system, while hardware co-

processing options can be rapidly evaluated. By means of the SIT it has been possible to rapidly determine
the key length boundary for which the calculation of used polynomials is more convenient than accessing

memories storing pre-computed polynomials. Another information extracted was the estimation of the

variance of the various operation numbers versus keys containing different fractions of ones and zeros.
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Conversely strict worst case–best case bounds obtained by path enumerations, but not corresponding to

reasonably probable conditions, would lead to extremely large intervals.

6.2. Application example #2: analysis and implementation of an image processing algorithm

For several real time image-processing applications a fast and adaptive image acquisition stage is the key

feature to achieve the required speed for the application requirements. In general, with sensors and ap-

plications based more and more on high resolution and super high resolution image content, the acquisition

stage and the basic image processing capabilities become fundamental so as to reach real-time performance.

CMOS sensors are very attractive because they allow adapting the acquisition to the processing as retina

does [14,27]. This section shows the result of the data transfer analysis with SIT of an image processing
algorithm, and its implementation on an embedded co-processor for an intelligent camera based on a

CMOS sensor.

The algorithm was simulated over a memory architecture with a 512 bytes cache for the Heap Memory

Model (see Section 4.3). By finding out the nodes of the execution tree where the cache had a good per-

formance, that is the nodes with a high locality on the processed data, the parts of the algorithm eligible for

data transfer optimization were easily identified. As shown in Table 2, a peak in cache performance was

found in function ‘‘AdaptativeBinarization’’, an implementation of Niblack algorithm for local adaptive

binarization [36], where 93% of the read operations resulted in a cache hit.

Fig. 8. Results for main function with key length¼ 607.

422 M. Ravasi, M. Mattavelli / Journal of Systems Architecture 48 (2003) 403–427



A second simulation with a different memory architecture, revealed that a smaller cache of 128 bytes was

worthless, being the data transfers almost unaffected by the presence of the cache (see Table 3). The optimal

cache size was therefore expected to be between 128 and 512 bytes.
Following the preliminary analysis with SIT, an optimized hardware implementation of the local

adaptive binarization algorithm was derived, with small local cache memories (MB blocks in Fig. 11) re-

ducing the total bandwidth from the image buffer. The total size of the MB blocks is 320 bytes, in line with

the expected range.

7. Conclusions

Current trends in algorithm design lead to complex schemes, most of them having to be specified and

verified by generic software implementations. The intuitive understanding of the underlying processing and

the comparison of their respective complexity are becoming a hard task for the system designer.

This paper has shown the importance of this fact and given an overview of existing complexity evalu-

ation tools. Since all of them present serious drawbacks, an automatic tool is needed to assist the designer in

the implementation of the considered algorithm at high abstraction level.

In the development of the SIT tool a particular attention has been devoted to some fundamental re-

quirements. The first is to avoid the rewriting of the generic code describing the algorithm for extracting

Fig. 9. Results for prod_pol function with key length¼ 127.
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measurements. The second is the ability to instrument any algorithm written in C, without the typical
limitations on operators and data type of classical state of the art approaches based on C++ operator

Fig. 10. Results for prod_pol function with key length¼ 607.

Table 2

Memory simulation results for ‘‘AdaptiveBinarization’’ function with a cache memory of 512 bytes

AdaptiveBinarization Read RHits RHits% RMisses RMisses%

Heap{DynMgr} 1209070316

Heap{TestCache: 512} 1209070316 1200010076 93.0 9060240 7.0

Heap{RAM} 9060240

The very good performance of the cache reveals that the data transfers within this function can be optimized.

Table 3

Memory simulation results for ‘‘AdaptiveBinarization’’ function with a cache memory of 128 bytes

AdaptiveBinarization Read RHits RHits% RMisses RMisses%

Heap{DynMgr} 1209070316

Heap{TestCache: 128} 1209070316 1140232 0.9 1207930084 99.1

Heap{RAM} 1207930084

This cache does not optimize the data transfers as the 512 bytes cache.
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overloading. With this purpose a technology that translates C it into an instrumented C++ code, which

intercepts and counts all the operations, has been developed. The set of operations and data types has been

taken from the definition of C itself. The SIT tool is capable of producing, in a multistep process trans-

parent to the user, an executable that can be run as the original program, producing the same output plus

an additional data-base consisting of the complexity analysis results about the explicit and implicit oper-

ations performed during the processing of the input data.
Finally, the analysis capability of the tool for detecting critical implementation issues has been shown by

means of two examples of true design cases.

Further work is currently devoted to improve SIT functionality, in particular:

• for the development of a module for measuring the critical path and, consequently, providing an esti-

mate of the potential operation and data parallelism;

• for the measurement of the working set in order to estimate the memory size requirements at different

levels in the memory hierarchy (registers, caches, RAMs).

Another extension under study is the development of a tool to instrument C++ code thus supporting any

system specification based on C and/or C++ modules.
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