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Faculté des Sciences et Techniques de l’Ingénieur
EPFL†

Implementation of MPEG-4’s
Subdivision Surfaces Tools

Yannick Maret

Tutors

Prof. Touradj Ebrahimi†

Prof. Francisco Morán‡

Prof. Narciso Garćıa‡
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Objectives

The MPEG (Moving Picture Experts Group) of the ISO (International Organ-
isation for Standardisation) has produced several standards so far, of which
MPEG-1 and MPEG-2 deal with the efficient coding of video (including any
associated audio) and MPEG-4 (ISO/IEC 14496) with that of interactive, mul-
timedia content. All these standards are divided into several ‘parts’, namely
video, audio, systems, etc. Unlike in MPEG-1 and MPEG-2, in MPEG-4 a RS
(Reference Software) is developed to demonstrate how a decoder could be im-
plemented, and is released as one of the Parts of the standard after an extensive
testing for maturity — but not necessarily for efficiency! At the beginning of
2003, ISO will release MPEG-4 Part-16: AFX (Animation Framework eXten-
sion), which contains a set of tools produced by the SNHC (Synthetic/Natural
Hybrid Coding) subgroup. Among these tools, higher order approximations to
3D surfaces, such as NURBSs (Non-Uniform Rational B-Splines) and SSs (Sub-
division Surfaces), have deserved special attention, as they allow to compactly
represent piecewise smooth 3D shapes, which are the ones most frequently en-
countered in practice.

The objectives of this Project, which Yannick Maret will work on at the GTI-
UPM: Grupo de Tratamiento de Imágenes - Universidad Politécnica de Madrid,
with Francisco Morán and Narciso Garćıa as his advisors, are the following:

• To gain a general understanding on 3D surface modelling paradigms, and a
more specific one in what concerns SSs.
• To implement (in C or C++) a software decoder for the two kinds of SSs

considered in the AFX toolset: “plain” SSs and wavelet/detailed SSs. This
decoder will evidently be inspired in the one which deals with SSs inside
MPEG-4’s current RS, but will hopefully be simpler and more efficient, yet
integrated seamlessly with the rest of the RS.
• To design a “demo” to illustrate how the (possibly view-dependent) hier-

archical transmission of a 3D shape coded thanks to SSs compares to the
progressive 3D mesh transmission considered in MPEG-4 version 2.
• If time permits, to propose improvements on AFX’s SSs-based tools, which

could be taken into account for their inclusion in future versions of MPEG-4.
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Abstract

This work is about the implementation of a MPEG-4 decoder for subdivision
surfaces, which are powerful 3D paradigms allowing to compactly represent
piecewise smooth surfaces. This ‘study’ will take place in the framework of
MPEG-4 AFX, the extension of the MPEG-4 standard including the subdivi-
sion surfaces. This document will introduce, with some details, the ‘theory’
of subdivision surfaces in the two forms present in MPEG-4: ‘plain’ and de-
tailed/wavelet subdivision surfaces. It will particularly concentrate on wavelet
subdivision surfaces, which permit progressive 3D mesh compression.

The first chapter begins with an overview of MPEG-4, more particulary of
MPEG-4 Visual. Then, the AFX extension and the role of subdivision sur-
faces within it are introduced. The second chapter presents the mathematical
representation of discrete surfaces and some associated properties, enabling a
‘smoother’ explanation of subdivision surfaces.

The third chapter introduces ‘plain’ subdivision surfaces. Some of their prop-
erties, such as hierarchical relationships or convergence, are also explored. Ulti-
mately, an example (based on Loop scheme) and the MPEG-4 implementation
are discussed.

The fourth chapter describes wavelet subdivision surfaces. It also gives a
general overview of wavelet theory and its relation with subdivision surfaces.
In continuation, a brief summary of different 3D mesh compression methods
(both progressive or not) is done. A section then explains, more adequately,
wavelet details compression through a hierarchical tree partitioning algorithm.
It permits to introduce MPEG-4 wavelet subdivision surfaces implementation,
and to propose the addition of a new (and simpler) AFX tool for progressive 3D
mesh compression (without view-dependency, and correcting some discrepancies
of the current tool concerning progressive transmission).

A fifth chapter presents the data structures and the program general struc-
tures. It also describes some algorithms used in the actual implementation.

The last chapter is a summary of the work done. It also states some of
the future work that could be done in this domain, and ends with a short
conclusion.
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Notations

S represents a set;

{si ∈ S}i explicits an unordered set;

(si ∈ S)i explicits an ordered set, a sequence or a vector;

[si ∈ S]i explicits a circular sequence, that is the last element of set
is ‘followed’ by the first one and vice et versa;

|S| gives the cardinal of a set;

p represents a N -D point or vector;

M represents a matrix.
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Chapter 1

MPEG-4

This chapter presents the MPEG-4 standard and the role of AFX1 and sub-
division surfaces within it. First, an overview of MPEG-4 followed by a more
detailed description of the visual part is given. Then, AFX is presented and
finally, the subdivision surfaces are introduced. This chapter is highly inspired
by the following papers [6][11][9], which treat each particular point in more
details.

1.1 Introduction

MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts
Group), the committee that also developed the standards known as MPEG-1
and MPEG-2. These standards made interactive video on CD-ROM, DVD and
Digital Television possible. MPEG-4 is the result of another international ef-
fort involving hundreds of researchers and engineers from all over the world.
MPEG-4 (formally: “ISO/IEC 14496”) was finalised in October 1998 and be-
came an international standard in the first months of 1999. The fully backward
compatible extensions under the title of MPEG-4 ‘version 2’ were frozen at the
end of 1999, to acquire the formal international standard status early in 2000.
Several extensions were added since and work on some specific items are still
in progress.

One important thing to mention about MPEG standards, is that they ad-
dress the decoder side of the application and never the encoder, which enables
companies to develop their own competitive compression engines.

MPEG-4 was created using the framework of interactive applications: graph-
ics/audio, multimedia or digital TV. It is a set of compression formats and
streaming technologies for multimedia content, which can operate over a large
spectrum of bitrates. Since its beginning, it was created to address the fol-
lowing issues: interoperability, transport layer independence, decompression of
rich media, interactivity, scalability and profiles. MPEG-4 goals are threefold:

• for the authors: multimedia contents with reusability, content protection;
• for the service provider : transparency for the network, quality of service;

1extension (also know as “part-16”) of the standard containing, among others enhance-
ments, the subdivision surfaces
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• for the end-user : higher level of interaction with the content.

They are achieved by providing tools for:

• compact representation of visual/audio, audiovisual objects (natural or syn-
thetic);
• composition of these objects into scenes;
• multiplexing and synchronisation of data.

MPEG-4 is thus divided in several parts (corresponding to the above toolboxes):
systems (describing the two last points), visual and audio (covering the first
one). Each of them describes a great number of tools, but in order to allow
effective implementations of the standard, subsets of MPEG-4 toolboxes have
been identified. These subsets are called profiles and limit the “tools set” a
decoder has to implement for a specific application. Additionally, one or more
levels have been set for each of these profiles, restricting the computational
complexity.

Each version of MPEG-4 is backward compatible with precedent versions.
That is, existing tools and profiles from any version are never replaced in sub-
sequent versions; technology is always added to MPEG-4 in the form of new
profiles. There also exist extensions adding functionalities the original MPEG-4
did not have, or enhancing existing ones. There are currently different ones al-
ready completed2 or underway:

• IPMP extension (access control);
• the Animation Framework eXtension, AFX;
• Multi User Worlds;
• Audio extensions.

1.2 Visual Standard

In MPEG-4, visual objects can either be of natural or synthetic origin. The
tools for objects of natural origin are first described. Then, the ones of synthetic
origin (which AFX is part of) are presented, with a little more detail.

1.2.1 Natural Textures, Images and Video

The tools for representing natural video in the MPEG-4 visual standard pro-
vide standardised core technologies allowing efficient storage, transmission and
manipulation of textures, images and video data for multimedia environments.
These tools allow the decoding and representation of atomic units of image and
video content, called “video objects”. An example of a video object could be a
talking person (without background and sound), which can then be composed
with other audio-visual objects to create a scene.

1.2.2 Coding of Textures and Still Images

Efficient Coding of visual textures and still images (e.g. to be mapped on ani-
mated meshes) is supported by the visual texture mode of the MPEG-4. This

2the last three of the list
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mode is based on a zerotree wavelet algorithm that provides very high coding
efficiency over a very wide range of bitrates. It also provides spatial, quality
scalabilities and arbitrary-shaped object coding. The wavelet formulation pro-
vides scalable bitstream coding in the form of an image resolution pyramid for
progressive transmission and temporal enhancement of still images.

1.2.3 Synthetic Objects

Like those of other computer graphics specifications, MPEG-4 synthetic objects
are organised in a scene graph based on VRML97 [8], which is a direct acyclic
tree where nodes represent objects and branches their properties, called fields.
As each object can receive and emit events, two branches can be connected by
the means of a route, which propagates events from one field of one node to
another field of another node. As any other MPEG-4 media, scenes may receive
updates from a server that modify the topology of the scene graph. MPEG-4
supports the following visual synthetic objects:

• parametric descriptions of synthetic face and body;
• static and dynamic mesh coding with texture mapping;
• texture coding for view dependent applications.

Mesh Coding Standards

MPEG-4 capabilities for mesh coding include:

• efficient generic coding of 3D polygonal meshes. The coded representation is
generic enough to support both manifold and non-manifold meshes;
• incremental representation enables a decoder to reconstruct a number of faces

in a mesh proportional to the number of bits in the bit stream that have been
processed;
• error resilience enables a decoder to partially recover a mesh when subsets of

the bitstream are missing and/or corrupted;
• level of detail scalability enables a decoder to reconstruct a simplified version

of the original mesh containing a reduced number of vertices from a subset
of the bit stream. Such simplified representations are useful to reduce the
rendering time of objects which are distant from the viewer. It also enables
less powerful rendering engines to render the object at a reduced quality.

View-Dependent Scalability

The view-dependent scalability enables to stream texture maps, which are used
in realistic virtual environments. It consists in taking into account the viewing
position in the 3D virtual world in order to transmit only the most visible
information. Only a fraction of the information is then sent, depending on
object geometry and viewpoint displacement. This fraction is computed both
at the encoder and decoder side. This approach greatly reduces the amount
of transmitted information between a remote database and a user, given that
a back-channel is available. This scalability can be applied both with DCT
(Discrete Cosine Transform) and wavelet-based encoders.
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Note that the view dependent scalability of ‘basic’ MPEG-4 is limited to
mesh textures. The AFX standard addresses this issue by providing tools like
wavelet subdivision surfaces, which permit to have view dependency at mesh
geometry level.

1.3 The Animation Framework eXtension, AFX

The Animation Framework extension (AFX - pronounced ‘effects’) provides an
integrated toolbox for building attractive and powerful synthetic MPEG-4 en-
vironments. The framework defines a collection of interoperable tool categories
that collaborate to produce a reusable architecture for interactive animated
contents. In the context of AFX, a tool represents functionality such as a BIFS
node, a synthetic stream, or an audio-visual stream.

AFX utilises and enhances existing MPEG-4 tools, while keeping backward-
compatibility, by offering:

• higher-level descriptions of animations (e.g. inverse kinematics);
• enhanced rendering (e.g. multi-texturing, procedural texturing);
• compact representations (e.g. piecewise curve interpolators, subdivision sur-

faces);
• low bitrates animations (e.g. using interpolator compression);
• scalability based on terminal capabilities (e.g. parametric surfaces tessella-

tion);
• interactivity at user level, scene level, and client-server session level;
• compression of representations for static and dynamic tools.

Compression of animated paths and animated models is required for improv-
ing the transmission and storage efficiency of representations for dynamic and
static tools.

1.3.1 Subdivision Surfaces in MPEG-4

Why Subdivision Surfaces?

The MPEG-4 standard [10] already included in its version 2 tools for the efficient
coding of 3D surfaces, but they were based in the simplest approximation of a
surface: the one resulting from tiling it with planar facets. The problem with
linear approximation such as these is that hundreds of thousands of elements
(vertices, edges, facets) are easily needed to obtain a reasonable approximation
accuracy. Moreover, the editing or animation of a polygonal mesh is cum-
bersome, because its vertices are semantically unrelated, and must therefore
be moved individually. This is why most CAD (Computer-Aided Design) and
3D modelling commercial applications still use curved patches of the NURBS
(Non-Uniform, Rational, B-Spline) family for tiling 3D surfaces. Patches pro-
vide a compact, convenient method to generate piecewise smooth, higher-order
surfaces from relatively few control points, whose movement deforms locally
the surface. However, patch control grids must be perfectly regular, so mod-
elling objects of arbitrary topology with NURBS introduces non-trivial patch-
stitching and curve-trimming difficulties. Furthermore, when modelling intri-
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cate surfaces, a large number of tiles (either curved or planar) are needed to
describe high-frequency regions, so patches may not provide a much more com-
pact solution than polygons.

Subdivision surfaces [24][5] establish a bridge between polygons and patches,
as subdivision schemes define simple and efficient mechanisms to derive a smooth
surface from an initial control polyhedron of arbitrary topology. Indeed, Sub-
division surfaces are defined as the limit of a refinement process of both the
connectivity and the geometry of a planar mesh which recursively splits each
of its elements (usually its facets) into several ones. If this process is carefully
designed, the mesh tends to a limit surface as smooth as NURBS-based ones.
Subdivision is extremely useful for approximating and manipulating a surface at
different levels of detail. Subdivision surfaces define inherently a multiresolution
model of the limit 3D surface, as the vertex positions at different subdivision
levels are (locally) hierarchically related. It is thus easy to perform large-scale
edits, in which the movement of a few vertices of a coarse control mesh drags a
wide area of the surface, as well as minute detail modifications, in which only
a few vertices of the finest meshes are displaced.

Subdivision Surfaces in MPEG-4

Subdivision surfaces in the AFX toolbox, released as “part-16” of the MPEG-4
standard at the beginning of 2003, come in two flavours, depending on whether
the positions of the new vertices appearing after each subdivision step may be
modified or not before splitting the mesh again. In both cases, a piecewise
smooth limit surface is obtained by subdividing the initial control mesh. But
in the “basic subdivision surfaces setting”, that limit surface is completely de-
fined by the initial control mesh, which is simply smoothed, whereas in the
“detailed/wavelet subdivision surfaces scenario”, the aim is to approximate a
particular target surface with an increasing accuracy thanks to the 3D details
added to the predicted new vertices at each step of the subdivision process.

The MPEG-4 subdivision surfaces tools will be presented in more details in
chapters 3 and 4.
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Chapter 2

Discrete Surfaces

This chapter introduces the theoretical setup of the subdivision surfaces. The
first section presents elementary concepts in discrete 3D models representation,
which is followed by some definitions that will be mainly used during the al-
gorithms presentation. For more information, one can refer to [4] (computer
graphics) or [16] (algebraic topology).

2.1 Introduction

Many 3D shapes can be modelled by a (piecewise) smooth surface and can be
approximated, in its simplest form, by a planar faceted mesh, or discrete surface.
A mesh is described by two distinct settings: its topology and its geometry. The
first one represents an abstract graph onto which the second1 is mapped. Note
that with the same topology, one can describe different surfaces as shown in
figure 2.1. It means that the topology is not directly linked to the surface but
is simply a means to describe the relationship between the 3D points forming
the geometry.

(a) (b) (c)

Figure 2.1: An abstract graph (a) and different geometry mappings, (b) and
(c). While the abstract graph is the same, the two models represented are
quite different!

1points in the 3D space
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2.2 Surfaces Representation

A discrete surface S can be expressed as an ordered set of three components:

S = (V, E ,P) (2.1)

Where:

• V is a set of vertices i = 0, . . . , N −1 where N is the total number of vertices;
• E is a set of vertices couple {i, j} ∈ V2, signifying that the vertices i and j

are connected together, thus forming an edge;
• P is set of points pi ∈ R

3 linked to each vertex i ∈ V.

The model geometry is all included in the set P, while the model abstract graph
G(V, E) is represented by the two sets V and E . There are conditions on G(V, E)
to be actually an abstract graph, which are shown in figure 2.2 and listed below:

• there are no loops and the graph is simple;
• no ‘dangling’ edges are allowed2.

(a) (b) (c)

Figure 2.2: Conditions to be an abstract graph. That is, no loop (a), simple
(b) and no dangling edge (c).

2.3 Definitions and Properties

2.3.1 Facets

A facet or polygon Pj is a circuit of G(V, E) that does not enclose any vertex. It
can be represented by a circular sequence of vertices vk ∈ V and can be written
as:

Pj = [vk | (vk−1, vk) ∈ E ]k . (2.2)

For example the facet 0 of the abstract graph shown in figure 2.4 can be written
as P0 = [5, 6, 7]. The set {Pj}j (or simply P) contains all the facets of the graph
G(V, E).

Note that not all circuits of an abstract graph are necessarily a facet, since
one can want a mesh with ‘holes’.

2i.e each edge must belong to a facet at least (in fact, at most two if the mesh is manifold)
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Theoretically one can use any kind of facets to represent a shape. Practically,
things are quite different and most meshes have an abstract graph composed
either with triangles (by far, the most common occurrence) or quadrilaterals.

There are reasons for this seemingly poverty of choices. First of all, triangles
vertices lie always on the same plane (which is not necessarily the case for
facets with more than 3 vertices), which favours greatly the use of triangles.
Then, most hardware graphic units only process triangles (which enables them
to greatly simplify their logical units, thus reducing cost), which is not too
restrictive because any other facets can be triangulated and thus be represented
by a set of triangles.

A great advantage of quadrilaterals over triangles is that they permit to better
capture the symmetry of human made objects (e.g. a cube) as exemplified in
figure 2.3. However, the rest of this document will mostly treat about triangular
meshes, although some comments will be made about quadrilateral meshes...

(a) (b)

Figure 2.3: Triangular meshes against quadrilateral meshes. Figure (a) shows
a cube mapped on a quadrilateral abstract graph, while figure (b) presents the
same cube geometry but mapped on triangular abstract graph. Both have been
rendered in “facet shading mode”, and the difference of quality is quite clear.
Although by using more sophisticated shading schemes it could improve, the
triangular mesh will never be as good as the quadrilateral one.

2.3.2 1-Ring

The 1-Ring Ri associated to the vertex i is given by the set:

Ri = {rk | (i, rk) ∈ E}k . (2.3)

A 1-Ring can be ordered if each facet incident to the vertex i has one or two
neighbouring facet(s) incident to the vertex i. In the ordered 1-Ring, each
neighbour of rk, as in the above definition, belongs to the same facet. The
ordered 1-Ring can be represented by a circular sequence (for interior vertices)
or by an ordered set (for boundary vertices). An interesting property of the
ordered 1-Ring is that for an interior vertex the first and last elements also

8



belong to the same facet, thus allowing ‘easy’ boundaries detection. Figure 2.4
shows the 1-Ring (b) associated with the vertex 5 of the abstract graph (a), the
ordered 1-Ring can be written as R5 = [0, 6, 7, 8, 4, 2].

2.3.3 Valence and Crease Degree

The valence of a vertex i is the number of elements in its associated 1-Ring, i.e.
|Ri|.

One can also define the crease degree of a vertex, which is the number of
facets in the 1-Ring. For an interior vertex, the crease degree and the valence
are equal, but for a border vertex the crease degree is one unit less than the
valence.

2.3.4 Interior and Boundary Edges

An edge belonging to one and only one facet is said to be a boundary, while
one shared by two facets is labelled interior. A mesh without any border edge
is called closed and one with at least one border edge is said to be open. For
example the meshes in figure 2.1 are closed while the one in figure 2.7 is open.

P0

P1

P2

P3

0

1

2

3

4
5

6

7

8

0
2

4
5

6

7

8

(a) (b)

Figure 2.4: Example of 1-ring. Figure (a) shows and abstract graph while figure
(b) shows the 1-ring associated with vertex 5.

2.3.5 Extraordinary and Regular Vertices

A vertex can be regular or extraordinary depending on its valence. This denom-
ination comes from the regular tiling of a plane (cf. figure 2.5) by an abstract
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planar graph. Regular tiling with triangles gives a valence of 6 for interior ver-
tices and 4 for border ones; while with quadrilaterals theses values are of 4 and
3, respectively.

(a) (b)

Figure 2.5: Tiling of the plane. Figure (a) shows the regular tiling of the plane
with triangles while the figure (b) shows the same but with quadrilaterals.

2.3.6 Manifoldness

A mesh can be manifold or not, this propriety is very important and summarised
as follows (and illustrated on figure 2.6):

• a manifold mesh cannot have edges shared by more than two facets;
• and every 1-ring of the mesh can be ordered.

(a) (b)

Figure 2.6: Non-manifold meshes. Figure (a) shows a non-manifold vertex (the
1-Ring cannot be ordered), while figure (b) presents a non-manifold edge (edge
shared by more than two facets).

2.3.7 Orientability

A discrete surface S is said to be orientable if the normals associated with the
facets can be defined consistently. That is, if one can ‘walk’ counter-clock wisely
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on the boundaries (for open mesh) of S and constantly having the surface on his
left. This process can also be extended to the facets of the discrete surface. It is
the reason why vertices are usually ordered in a counter-clock wise manner when
listing them to describe a facet or a ordered 1-ring. For example, a Moëbius
ring is not orientable as it can be seen on figure 2.7.

Figure 2.7: The Moëbius ring (ring with only one face!) is a non-orientable
surface.

2.4 Mesh Computer Representation

One way to store the abstract graph of mesh is to use the indexed faces set
method. In this method, the graph is stored facet by facet3, by listing (generally
counter-clock wisely) the vertices of each facet. Each vertex v is represented by
a number4, which points to the corresponding coordinate triple in a coordinate
list. This representation is generic enough to permit coding meshes that are:

• manifold or not;
• open or closed;
• made of different types of facets (providing the facets are separated by a

‘marker’, e.g. −1).

3which makes sense since 3D rendering is usually done facet by facet
4a positive integer ranging from 0 to N − 1 where N is the total number of vertices
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Chapter 3

‘Plain’ Subdivision Surfaces

The first part of this chapter furthers the introduction of subdivision surfaces
from chapter 1. It is followed by a section detailing ‘plain’ subdivision surfaces
and some of it properties. Finally, the corresponding MPEG-4 tool is presented.

The presentation of ‘plain’ subdivision surfaces is done through an example,
the method chosen is Loop’s scheme [13], which is an approximating scheme
(thus permitting to present both edge and vertex rules). To have an idea of how
interpolating schemes work, one can refer to the well-known butterfly scheme
[2]. A theoretical analysis of the limit surface is first presented, followed by
an extension of the ‘basic’ Loop’s scheme able to produce piecewise smooth
surfaces. Finally, MPEG-4 subdivision surfaces are introduced.

While many concepts introduced here are not really necessary for the imple-
mentation of the MPEG-4 subdivision surfaces tools, they describe a few key
points that help us understand the ideas behind subdivision surfaces.

3.1 Introduction

The basic idea behind subdivision surfaces is to recursively refine both the
topology and geometry of a discrete surface towards obtaining a desired limit
smooth surface (no more discrete). From the base mesh S0 (also called initial
control hull), a sequence of finer meshes Si =

(

V i, E i,P i
)

is obtained. The
(piecewise) smooth surface is the limit of the refinement process and is denoted
S∞. Figure 3.1 shows an example of subdivision surfaces.

‘Plain’ subdivision surfaces permit a designer to easily produce a visually
pleasing1 model. First, an initial mesh is manually created with associated tags
‘describing’ the subdivision methods of its different pieces. The designer can
control the results directly, modify the initial mesh and tags accordingly to the
limit surface she/he aims at. To retrieve the limit surface, one needs: the base
mesh, the tags, and the minimal number of subdivision steps to apply2. Note
that ‘plain’ subdivision surfaces were developed in a geometry framework.

1generally it means smooth, hence a high number of polygons
2for obtaining a visually ‘pleasing’ approximation of the limit surface
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S0 S1 S2 · · · S∞

Figure 3.1: Modelling of a sphere with ‘plain’ subdivision surfaces. The left
mesh is the initial control hull, the two first subdivision steps are presented in
the centre and the limit smooth surface (the targeted sphere) is shown on the
right.

3.2 Subdivision Surfaces: ‘Modus Operandi’

All subdivision methods can be decomposed in two steps. The splitting step,
making the topology richer, is common to all (primal) methods. They mainly
differ only in the refinement step, where the vertex positions are modified. The
next two subsections present these two steps for for primal schemes in some
details. Dual schemes will not be furthered more than the example shown
in figure 3.2 as they are far less common than primal ones, though they are
conceptually very interesting and hold some very interesting properties such as
an inherent vertices hierarchy, for more information, one can refer to [25].

Figure 3.2: Hexagonal dual scheme. This figure shows a possible hexagonal
dual scheme. In dual scheme, new facets are created around old vertices. Note
the arrows, showing that each old vertices ‘produces’ three news ones during
the subdivision step.

3.2.1 Facets Splitting Step

In this step, the abstract graph is made richer by splitting each polygon into
several others. There are various ways of proceeding, the most common being
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the midpoint splitting where each edge is split in two by the adjunction of a new
vertex at its midpoint. On the nomenclature side, the newly created vertices
are labelled as odd while the old ones (from the previous subdivision step) are
called even. Examples of splitting step for triangular and quadrilaterals meshes
are shown if figures 3.3 and 3.4, respectively.

In the case of triangular abstract graphs, the three new vertices created by
splitting the edges of a triangle are connected together to form four new trian-
gles (as shown in figure 3.3). The number of vertices at a given step i is then
given by the simple relation:

∣

∣V i
∣

∣ =
∣

∣V i−1
∣

∣+
∣

∣E i−1
∣

∣ , (3.1)

and similarly the number of faces is:

∣

∣P i
∣

∣ = 4i ·
∣

∣P0
∣

∣ . (3.2)

Figure 3.3: Primal Subdivision Abstract graphs splitting (triangles). This figure
shows a triangular abstract graph splitting. White circles indicate vertices from
the precedent step, and the ones splitting edges are marked by a black dot. Note
that facets are split in primal schemes, while it is vertices in dual ones.

Now, regarding quadrilateral abstract graphs: another new vertex is added
inside the quadrilateral, to which the new edge vertices are connected in order
to form four new quadrilaterals (as shown in figure 3.4). The number of vertices
at a given step i is then given by the simple relation:

∣

∣V i
∣

∣ =
∣

∣V i−1
∣

∣+
∣

∣E i−1
∣

∣+
∣

∣P i−1
∣

∣ , (3.3)

and the number of faces is given by the same relation as for triangular meshes.

A very interesting property of the splitting step is that all added vertices are
regular. It means that original extraordinary vertices become more and more
isolated in an otherwise regular meshing, as it can be seen in figures 3.3 and
3.4 (the original extraordinary vertices are separated by a growing number of
regular ones). Note that the splitting step only operates on the sets V and E ,
the topology of the model.
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Figure 3.4: Primal Subdivision Abstract graphs splitting (quadrilaterals). This
figure shows a quadrilaterals abstract graph splitting. White circles indicate
vertices from the precedent step, the ones splitting edges are marked by a black
dot, the ones splitting facets are shown in grey. Note that facets are split in
primal schemes, while it is vertices in dual ones.

3.2.2 Refinement Step

The refinement step aims at smoothing the surface (i.e. to reduce the angle
between adjacent facets) and only operates on the set P, that is, the geom-
etry of the model. There are two principal schemes in the refinement step:
interpolating and approximating. The main difference between them is that in
interpolating schemes, even vertex positions remain fixed while they are moved
in approximating ones.

In plain subdivision surfaces, there are two different sets of rules: vertex rules
and edge rules. The first ones modify even vertex positions (in approximating
schemes) while the second give odd vertex positions. The positions are given
using weighted sums of neighbouring vertex positions at the precedent level of
subdivision, through the help of weighting masks named stencils: an example
for Loop’s method (which is approximating) is given in figure 3.5.

10/161/16

1/16 1/16

1/16

1/161/16

1/8

1/8

3/8 3/8

(a) (b)

Figure 3.5: Loop’s subdivision stencils. Figure (a) shows the stencil for regular
interior vertices and figure (b) the one for interior edges.

3.2.3 Complexity

It is important to realise that subdivision is an exponential process, in terms
of computational complexity and memory requirements, since the number of
polygons is multiplied by four at each subdivision step (as shown by equation
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3.2). Fortunately, few steps are usually needed to obtain a visually smooth
surface, while an ‘infinity’ of subdivision step are actually required to obtain
the real smooth surface.

3.3 Hierarchical Relationships in Primal Subdivisions
Surfaces

Let us first define the terms offspring and descent. The offsprings of an element
c of a hierarchical set H, are elements ci ∈ H directly ‘issued’ from p (like
a parent-children relationship). The descent of an element c is the transitive
closure of the relation “is offspring of”, that is: a set recursively including all
the offsprings. Figure 3.6 gives an example of hierarchical set, for instance, a
has three offsprings: b, c and d; and ten descendants: b to k.

a b

cd

e f

g

h

i
j

k

a

b dc

h i f ge

j k
(a) (b)

Figure 3.6: Hierarchical Set. A hierarchical set can be seen in (a), and the
corresponding tree is presented in (b).

As shown in figures 3.1 (highlighted triangles) and 3.3, subdivision surfaces
inherently exhibit a facets-based hierarchy (for primal schemes). This hierarchy
is organised like a forest of trees, with each base mesh facet being the root of
one tree and the last subdivision level facets being their leaves! In a facets tree,
every node has exactly 4 offsprings (except for the leaves, which have none).

Moreover, subdivision surfaces also define an edges-based hierarchy (at least
for triangular and quadrilateral meshes), as shown in [12]. In the subdivision
of the two adjacent triangles shown in figure 3.7(a,b), it is quite evident that
the two edges (‘0’ and ‘1’), resulting from the splitting of the highlighted edge
in figure 3.7(a), are its offsprings. What is less evident is that the two other
edges (‘2’ and ‘3’) are also part of its offsprings; the reason being that, locally,
they are the only ones being topologically ‘akin’ to the edge in figure 3.7(a).
Note with this definition, each edge in figure 3.7(b) “is offspring” of one and
only one edge on figure 3.7(a). With some precaution, this offsprings definition
can be extended for quadrilateral meshes, as shown in figure 3.7(c,d). As for
the facets-based hierarchy, the edges-based hierarchy is also organised like a
forest of trees, with each base mesh edge being the root of one tree and the
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last subdivision level edges being their leaves! In an edges tree, a node (that is
not a leaf) could have 3 or 4 offsprings, depending on wether the corresponding
edge lies on a boundary or not (respectively).

0

1

2 3

(a) (b)

(c) (d)

Figure 3.7: Edges hierarchy. This figure shows the hierarchical relationship
between edges in triangular (a,b) and quadrilateral meshes (c,d).

It is possible to define a ‘vertices’-based hierarchy by remarking that odd
vertices at subdivision level i + 1 are one to one onto edges at subdivision
level i (for triangular meshes). And since edges, at different subdivision level,
are hierarchically related (as shown above), so are the odd vertices! But it is
important to note that this vertices-based hierarchy does not take in account
at all base mesh vertices: while the vertices hierarchy is organised like a forest
of trees, the trees roots are the odd vertices issued from the first subdivision
step. The last subdivision level odd vertices are the tree leaves. This hierarchy
will be used for the “set partitioning sorting algorithm” as shown in [12] and
section 4.4.

3.4 Convergence

One way to analyse the existence and the tangent plane continuity of the limit
surface is to write the subdivision rules into local subdivision matrices. This
subsection will only present the method for regular vertices, but for irregular
ones the idea is the same (if a bit more involved).

Let Pi be a column vector as Pi =
(

pi pi
0 pi

1 . . . pi
5

)T
. Where pi is

the position of a given vertex during the subdivision step i and the pi
j are the

positions of the vertices contained in its corresponding 1-ring Ri.
It is then possible to represent the evolution of the vector Pi (as shown in
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the figure 3.8) in a matrix form. After one subdivision step3:

Pi+1 = S ·Pi, (3.4)

where (for Loop’s scheme):

S =
1

16
·





















10 1 1 1 1 1 1
6 6 2 0 0 0 2
6 2 6 2 0 0 0
6 0 2 6 2 0 0
6 0 0 2 6 2 0
6 0 0 0 2 6 2
6 2 0 0 0 2 6





















The first row represents the vertex rule of Loop’s scheme (as presented in figure
3.5a), while the following rows are the edge rules corresponding to each new
vertex in the new 1-ring (cf. figure 3.5b).

pi,pi+1 pi
0

pi
1

pi
2

pi
3

pi
4

pi
5

p
i+1

0

p
i+1

1
p

i+1

2

p
i+1

3

p
i+1

4
p

i+1

5

Figure 3.8: Evolution of the 1-Ring: two generations of the 1-Ring around the
same vertex are shown.

Equation 3.4 can be reiterated from P0 for k subdivision steps4:

Pk = Sk ·P0. (3.5)

It is evident that the components of the vector Pk will tend to the same value
if the scheme is well defined (the 1-ring positions pk

j should shrink around the

analysed vertex position pk). A way to analyse further the convergence of the
vector Pk is to rewrite equation 3.5 using the eigenvectors and eigenvalues of
the matrix S, that is:

Pk = Sk ·P0 =
6
∑

i=0

λk
i eiqi, (3.6)

3note that pi
j always represent the position of the vertex in the 1-ring at the current

subdivision level!
4The notation could be a bit confusing: Pk signifies the vector P at subdivision step k,

while Sk stands for the square matrix S to the power of k
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where λi are the eigenvalues of S (ordered such that λ0 ≥ λ1 ≥ . . . ≥ λ6), ei

the corresponding eigenvectors and qi the expression of P0 in the basis formed
by the ei.

It is now obvious that Pk converges to a non trivial point if, and only if, at
least one eigenvalue is equal to 1 and the others ones are strictly inferior to 1.
In fact it was shown in [25] that the subdivision scheme is convergent and affine
invariant if λ0 is equal to 1 and the remaining eigenvalues are strictly inferior
to 1. It is also possible to analyse the tangent plan continuity by looking at the
equation 3.6 with only the subdominant eigenvalues.

One interesting insight given by the above analysis5 is that the limit position
(in the limit smooth surface) of a given vertex is only determined by P0 (i.e.
the positions of a few neighbouring vertices and itself). Subdivision surfaces
schemes are thus totally locally determined, which is a very important property.
Imagine for a moment the case of non-locally determined subdivision surfaces,
where a designer trying to modify the surface at a given location incidently
changes the shape of the surface at another unexpected place (or even the
whole shape)...

3.5 Tags: a Way to Piecewise Smooth Surfaces

Figure 3.5 shows the stencils used for repositioning the even regular interior
vertices and the ones for creating new interior vertices. These kind of rules
only permit to produce smooth surfaces6 (figure 3.10b), but one may want to
have sharp edges (figure 3.10d) or corners (figure 3.10f) in order to be able to
model a wide variety of objects. To represent these shapes with subdivision
surfaces, the idea is to divide the mesh in several smooth parts, called patches,
that meet in sharp edges or creases.

One method to create these creases is to tag edges of the initial control hull,
as proposed in [1]7: that is, to tag them as crease or not. Note that, boundary
edges are ‘automatically’ tagged as crease, so the presented rules will not make
mention of boundary or interior conditions, only that of crease or not. A crease
line is a sequence of crease edges that separates two smooth patches, the crease
line itself ought to be smooth while the ‘separation’ between patches should be
sharp. To achieve this, the crease edge tags define, in turn, associated tags on
the vertices, that is:

• a vertex incident to one and only one crease edge is tagged as dart ;
• a vertex incident to exactly two crease edges is tagged as crease;
• a vertex incident to more than two crease edges is tagged as corner.

A crease vertex is a vertex which is along the crease line, its position should be
independent on the geometry of the neighbouring patches but not on the geom-

5that could have been (more easily) found by others means
6closed or open
7beside piecewise smooth surfaces (that were already introduced in other papers), this

article addresses the continuity problem that can appear next to extraordinary boundary
vertex with Loop’s original rules. It also enables the designer to exactly control the shape
at corner (that can be convex or concave) by specifying a crease angle. However, for brevity
sake, these two improvements will not be presented here.
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etry of the crease line. A dart vertex ends a crease line (merging it smoothly
into a patch), its position must depend at the same time on the geometry of the
crease line and of the smooth piece. At a corner vertex several crease lines are
joined, the position of this vertex depends only on the crease lines geometry.

1 − kββ

β β

β

ββ

1/81/8 3/4

(a) (b)

1/8

1/8

3/8 3/8

1/21/2

(c) (d)

Figure 3.9: Tagged Loop’s vertex and edge stencils (crease edges are represented
with a ticker line). (a) is used to reposition a vertex that is not on an edge
or tagged as corner; (b) to reposition a vertex on a crease edge. (c) is used to
split an untagged edge with one dart end; and finally (d) to split a crease edge
(without end tagged as dart).

Figure 3.9 shows the stencils used for the piecewise smooth Loop subdivision
surfaces. For β, Loop proposed (k is the crease degree of the vertex):

β =
1

k

(

5

8
−

(

3

8
+

1

4
cos

2π

k

)2
)

(3.7)

Warren latter proposed to have (which amounts to having the same value for
k = 3 and k = 6 than Loop’s β):

β =

{

3/16 if k = 3
3/(8k) otherwise

(3.8)

Vertex rules are the following:

• in absence of tag, or if the vertex is tagged as dart, stencil a is used;
• if a vertex is tagged as crease the stencil b is applied;
• at a corner, the vertex position is never moved.

Edge rules are the following:

• if the edge is not a crease edge, stencil c is applied;
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• if a crease edge is split there are two cases:

– if no edge ends is a dart vertex then the stencil d is used;
– otherwise the stencil c is applied (allowing the crease line to blend smoothly

into the surface).

(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Tags example. The initial control hull is on the left, the edges
tagged as crease are noted with thicker lines. The associated tags on the vertex
are shown with dot (corner), triangle (crease) or square (dart). The mesh after
two subdivision steps is shown on the right.

3.6 MPEG-4 Implementation of Subdivision Surfaces

As already seen in chapter, MPEG-4 (through its AFX extension) provides
a toolbox for ‘plain’ subdivision surfaces. This toolbox is represented by a
new node in the scene graph tree: SubdivisionSurface, which is based on an
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already existing node (IndexedFaceSet). Different subdivision surfaces scheme
are supported, that is:

• for triangular meshes: Loop, modified butterfly and midpoint ;
• for quadrilateral meshes: Catmull-Clark ;
• for arbitrary meshes: extended Loop.

All schemes supports tags (crease, corner and dart), and additional informa-
tion about corners could be added through the Sector node. Loop scheme is
based (with some minor modification) on [1], that is with continuity correction
and exact geometry control at corner. Butterfly follow the modified butterfly
introduced in [25], with support of crease, dart and corner tags. While the
extended Loop was a work proposed by the company Superscape, and gives a
total control on the resulting triangulation of the final surface.
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Chapter 4

Wavelet Subdivision Surfaces

This chapter introduces wavelet subdivision surfaces, which are more or less
an extension of ‘plain’ subdivision surfaces. First some differences between
wavelets and ‘plain’ subdivision surfaces are introduced. Then wavelet trans-
forms and their general properties are presented followed by a rapid presentation
on the link existing between subdivision surfaces and wavelets. Then, a more
‘in depth’ presentation of efficient wavelet coefficients coding is done. Finally,
the wavelet subdivision surfaces node within MPEG-4 AFX is introduced.

4.1 Introduction

The followed path of wavelet subdivision surfaces is the reverse of the ‘plain’
subdivision surfaces: a very fine mesh, approximating a possibly complex sur-
face1, is recursively simplified to find a sequence of coarser meshes. During
this simplification process, different sets of wavelet coefficients, permitting to
retrieve the finer meshes, are created. To reconstruct the very fine mesh, one
needs the coarsest mesh (or base mesh) and the wavelet coefficients associated
with each subdivision level.

Moreover, wavelet subdivision surfaces could be used to enhance ‘plain’ sub-
division surfaces, with which it is not possible to have fine details on the final
mesh. That is, wavelets subdivision surfaces provides a framework in which
one can create a synthetic object and performs a fine scale edit adding details
as fine as the last subdivision levels permits (which is not possible with ‘plain’
subdivision surfaces).

Wavelet subdivision surfaces are akin to signal processing, which makes some
conceptual difference with ‘plain’ subdivision surface, at least in the way things
are presented (as it can be seen below for the refinement step).

4.1.1 Refinement Step (in Wavelets Subdivision Surfaces)

First, even vertex position are set to the values they had on the precedent level
of subdivision, and odd vertex positions to 0. Then a low-pass filter is applied
to the base mesh (also given through the form of a weighting mask). Another

1e.g. obtained by ‘3D scanning’ of a physical shape
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mesh, detail mesh, is created (with the same topology) with odd vertex positions
having the value of the wavelet coefficients and the even ones being set to 0,
to which a high-pass filter is applied. Finally the vertex positions of the two
meshes are added to form the final mesh for this subdivision step. Note that
the result after the low-pass filtering the base mesh can be exactly the same as
for ‘plain’ subdivision surfaces if the wavelet used is derived from the method
used in the ‘plain’ scheme. A low-pass filter using Loop’s wavelet is shown in
figure 4.1 where it can be seen that the used filter is exactly equivalent to Loop’s
subdivision surfaces. In wavelet nomenclature, the splitting step together with
the first setting of vertex positions is called up-sampling.
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Figure 4.1: Loop’s wavelet low-pass reconstruction filter (to not surcharge the
figure the coefficients c are the numerators of the fraction c/16). Figure (a)
shows the Loop’s low-pass filter. Figure (b) and (c) explicit the same filter but
centred on an even or odd vertex, respectively (the coefficients falling on odd
vertices are hidden).

4.2 Overview of Wavelets

One step of a wavelet transform on a discrete data set s0i produces two new
data sets which together contain the same number of elements as the original
set. The first one contains the scaling coefficients s1k, which defines a lower
resolution2 representation of the original data. And the other one contains
the wavelet (or detail) coefficients c1k, which define the necessary information
to retrieve the original data from the low resolution data set. The wavelet
coefficients could, thus, be seen as the coding of the details lost while passing
to a lower resolution. The wavelet transform recursively performs the above
operation on the low resolution data set. After N transformation steps, one
has N wavelet coefficients sets {cji}j and one scaling coefficients set sN

i , but the
total amount of coefficients still being the same than in the original data set.
These different sets are also called subband analysis. Figure 4.2 shows a generic
wavelet transform, also called analysis. The scaling and wavelet coefficients are
obtained through the recursive application of the same two analysis filters H

2lower resolution in the sense that the global ‘shape’ is equivalent but with less elements,
thus fewer details
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and G, respectively. The ↓ signs shows the decimation step (suppression of
some samples) applied after each filtering in order to have the same amount of
elements3.
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Figure 4.2: Forward wavelet transform

The inverse transform (also called synthesis) is essentially the same as the
forward transform but with the inverse operations. A generic inverse transform
is shown in figure 4.3. The synthesis filters H̃ and G̃ are used to invert the
effect of the analysis ones, the up-sampling (↑) step adds zero elements where
samples have been suppressed during the analysis phase.
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Figure 4.3: Inverse wavelet transform

4.2.1 ‘Analysis’ of Wavelets

Beside the mathematic framework in which they are often presented, wavelet
transform can be seen from others different points of view, which can help
to better understand the reason of their ‘successes’ by highlighting a few key
points.

For example, one can see wavelets as a predictive data coding process where
the couple up-sampling and synthesis filter H̃ represents a predictive model,
and the the prediction errors are the data obtained after the application of the
synthesis filter G̃. The main advantage of wavelet over other predictive coding
is the hierarchical representation of the transformed data inherently presents
in the wavelet transform (which is the necessary element to enable the use of
the genial SPiHT4 algorithm), while hierarchical representation is not always
available in a predictive data coding scheme.

3Note that the filters H and G must have some special properties so that no information
is lost during the decimation step...

4see section 4.4.2, or [20][5]

25



It can also be seen as a filters bank, which in fact they are. The difference,
and advantage, between a wavelet filter bank and a generic filters bank is that
the filters in the wavelet one are linked to a multiresolution analysis (see the
next section).

One can also add that wavelets are a powerful tool for data decorrelation, it
means they can capture the essential features of the data set in few important
scaling and wavelet coefficients. The reason of this prodigy lies in properties
shared by most organised data set5:

• the first one could be called local scale invariance, meaning that they tend
to have locally the same characteristics from any scales they are looked at;
• the second (which is in fact derived from the first one) states that if a certain

characteristic is not present in a certain area at a given scale, it will likely
(i.e. with probabilities ≈ 1) also not be present in the corresponding area at
finer scales.

Following the first property, wavelets are then an appropriated analysis tool6

for organised data sets since they use refinable basis function (meaning that
some overall characteristics are kept common between all scales). The second
property of organised data sets is important because it enables the use (in
conjunction with wavelets) of the SPiHT algorithm in a efficient way.

Finally, one can have the best analyse tool ‘in the world’ but if it cannot be
used in finite time (and preferably in the shortest possible time) this fabulous
tools will not be very attractive. Luckily, the fast wavelet transform permits to
compute a wavelet transform in a time linear with the length of the data (and
also linear with the length of the filter).

4.2.2 Multiresolution Analysis Framework

There are two basic ingredients to set a multiresolution analysis. The first one
is a infinite chain of nested linear function spaces, and the second one is an
inner product :

V0 ⊂ V1 ⊂ V2 ⊂ . . . (4.1)

〈f, g〉,∀f, g ∈ Vj(j <∞). (4.2)

The inner product is used to define the orthogonal complement Wj of Vj :

Wj :=
{

f ∈ Vj+1|〈f, g〉 = 0, g ∈ Vj
}

. (4.3)

Then f ∈ Vj+1 can be uniquely represented as f j+1 = f j + hj with hj ∈ Wj .
The scaling functions are the basis of Vj , and are written φj

i (x). And the

wavelets are the basis of Wj and are denoted ψj
i (x).

The low-pass filter H associating the scaling functions between to adjacent
scales is defined as:

φj
i =

∑

i

hj
iφ

j+1
i . (4.4)

5e.g. pictures, music, video, 3D-mesh, etc.
6provided that the adequate wavelet is used, i.e. with properties akin to the analysed data

set
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This means that each scaling function can be written as a linear combination
of scaling functions on the next finer level. The high-pass filter H is defined
equivalently as:

ψj
i =

∑

i

gj
iψ

j+1
i . (4.5)

There are different types of wavelets: the fully orthogonal wavelets are the

strictest form of wavelets where 〈ψj
i (x), ψj′

i′ (x)〉 = 0 ∀(i, j) 6= (i′, j′).
It was shown that it was impossible to have at the same time locally sup-

ported, fully orthogonal and symmetric wavelets. It is why the semi-orthogonal

wavelets were introduced, 〈ψj
i (x), ψj′

i′ (x)〉 = 0 ∀j 6= j′.
The least restrictive form of wavelets are the bi-orthogonal wavelets where

the orthogonality is totally dropped and Wj is only some complement of Vj in
Vj+1.

4.2.3 Subdivision Surfaces and Wavelets

The First generation wavelets define the scaling and wavelet functions through
the dilatation and contraction of some mother function. In conjunction with
Fourier transformation (where dilatation and contraction become algebraic op-
eration) it enables to ‘easily’ create a setup for multiresolution analysis. The
problem is that this construction is not easily adaptable to non-trivial topology
(e.g. manifolds) or irregularly sampled data sets. It is the reason of the ap-
parition of the logically termed second generation wavelets, in which the scaling
and wavelet functions are defined with other means7.

The work in [19] first showed the construction of wavelets on a sphere with the
help of subdivision surfaces. Subdivision surfaces were then formally linked to
wavelets with the fundamental work presented in [14], which first showed that
it was possible to build a multiresolution analysis over a surface of arbitrary
topology type by using subdivision surfaces. Finally, in [21] it was shown that
wavelet on subdivision surfaces as defined in [14] are a special case of the lifting
scheme. The lifting scheme is a very smart way of building a multiresolution
analysis, where one starts with a very simple one (like lazy or Haar wavelets8)
and enhance it through ‘lifting’.

Decimation in Meshes

In regularly sampled data set (in 1D or 2D), the decimation step is quite ob-
vious: data are usually ‘suppressed’ each two samples. The situation is a bit
more complex for non-trivial meshes because mesh connectivity is usually not
regular. However a mesh presenting a subdivision surfaces connectivity can be
consistently decimated as shown in figure 4.4. Subdivision surfaces connectiv-
ity means that the abstract graph is equivalent to one which would have been

7note that also prevent the use of the Fourier transform, which anyway could not have
been extended to all cases covered by second generation wavelets

8which can be defined on surfaces of arbitrary topological type
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through various steps (at least one) of subdivision9. As meshes abstract graphs
do not ‘naturally’ present this connectivity, meshes are usually remeshed be-
fore the wavelet forward transform. Several techniques exist, for more details
one can refer to [3] (for automatic remeshing), or [15] (for partially user driven
remeshing). Note that remeshing is somewhat reasonable in piecewise smooth
surfaces: the mesh being a linear approximation of a target surface, there are
no particular reasons against the existence of another linear approximation as
good10, but with the desired connectivity.

(a) (b)

Figure 4.4: Mesh Decimation. In (a), a mesh with subdivision surfaces connec-
tivity is presented: white circles represent the vertices to be kept after decima-
tion, and black dots the ones to be suppressed. While (b) shows the same mesh
after decimation.

Also note that quadrisection as presented in section 3.2.1 is actually a form
of upsampling.

Computation of Details Coefficients

There are different ways of computing the details coefficients for meshes. One
can use the lifted transformation for schemes like butterfly (as shown in [19]),
where finite filters can be found for both reverse and forward transforms. How-
ever, there is no lifting scheme corresponding to Loop wavelet (i.e. the analysis
and reconstruction filters cannot be both finite). Thus one need to resolve a
linear equations system (linking the details coefficients and the coarser mesh
with the finer mesh through inverse transform) in order to actually find the
coarser mesh and the detail coefficients, as shown in [12]. This makes the Loop
wavelet analysis of meshes computationally more complex than for butterfly
wavelet (where both forward and reverse time can be done in time linear with
the number of vertices). However the synthesis complexity is only slightly more
important than for butterfly.

9that is, most vertices are regular, while a few isolated ones (corresponding to base mesh
vertices) are irregular, cf. figure 3.3.

10with same number of vertices, equivalent approximation error, etc.
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4.3 Short Mesh Compression Roundup

This section introduces ‘pointers’ to some of the current state-of-the-art mesh
compression methods.

Compression for mesh can be done on the two independent components of a
mesh (cf. section 2.2): the geometry, and the abstract graph (or connectivity
information). The compression on the geometry is quite ‘classical’11, while the
one applied on the abstract graph is a bit more ‘original’. It is, mainly, methods
applied for compression of the connectivity information that are introduced in
this short roundup.

4.3.1 General Considerations on Compression

There are two main families of data compression: lossless and lossy. With the
first family, data can be integrally retrieved after transmission and decompres-
sion, while with the second one only an approximate version of the data can
be retrieved. Of course, lossy compression is only usable where to have the
exact data is not necessary: e.g. sounds, images, 3D meshes intended to be
visualised. That is, where the data will be ‘interfaced’ with human senses that
are not sensitive (or not very) to small variations in the data set.

Compressed data transmission can also be classified (independently of lossy
or not) in two categories: progressive or not. In a progressive compression
scheme, it is possible to decompress a subset of the compressed data and still
be able to recuperate the data (in a coarser way, for more details, see section
4.4.1); while all the compressed data are needed in a non-progressive scheme.

4.3.2 Progressive Compression Methods

Progressive Mesh

This method [7] is based on the principe of vertex split and edge collapse (where
two triangles, three edges and one vertex are added or suppressed from the
mesh, respectively), shown in figure 4.5. During the compression step, the
original mesh is recursively simplified through a sequence of edge collapses to
find the base mesh: a coarser version of the original mesh. The decompression
step is the dual operation: an inverse sequence of vertex splits is applied to
the base mesh in order to obtain the original mesh. Vertex positions can be
interpolated as a continuous function from their initial common location to their
respective final ones, which enable visually smooth transition between each edge
collapse or vertex splits. The progressive granularity proposed by this method
is maximal, since one can stop the decompression after any one of the vertex
split steps, hence controlling the mesh enrichment vertex by vertex. According
to its author, this method allows to code meshes with around 35 bit/vertex for
a good approximation of the input mesh.

11wavelet transform for decorrelation, predictive techniques, quantisation, entropy coding,
etc.
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vertex split

edge collapse

Figure 4.5: Vertex Split and Edge Collapse. This figure presents the duality
existing between the operations of edge collapse and vertex split.

Compressed Progressive Mesh

This relatively simple triangular abstract graph compression method [17] bap-
tised ‘edgebreaker’ is based on an edge conquest method. At each stage, com-
pression produces an op-code describing the topological relation between the
current triangle and the boundary of the remaining part of the mesh. De-
compression uses these op-codes to reconstruct the entire incidence graph.
The paper claims that mesh compressed with this method require as less as
1.5 bit/vertex to compress the connectivity information. Also, because edge-
breaker’s compression and decompression are independent of the vertex loca-
tions, they may be combined with a variety of geometry-compressing techniques
that exploit topological information about the mesh to better estimate vertex
locations.

Progressive Geometry Compression

This method [12] is based on wavelet subdivision surfaces. First the input mesh
is remeshed in order to have a mesh with subdivision surfaces connectivity.
Then the manifold mesh is simplified through wavelet analysis, to finally find
a coarse mesh (or base mesh). The main contribution of this paper is the
proposition of an edge-based details hierarchy (cf. section 3.3), which enables
the use of the beautiful SPIHT algorithm (cf. section 4.4). The total bitrates
can be estimated to be around 10− 15 bit/vertex for a good approximation of
the input mesh.

Note that the method proposed in [5] is very similar, the main difference
being that it has a face-based details hierarchy and that it does not need explicit
remeshing of the input mesh.

4.3.3 Non-Progressive Compression Methods

Many of the progressive methods mentioned above need to transmit a base mesh
and then information to retrieve the finer meshes. But they do not address the
particular task of compressing the base mesh. It is where single resolution
compression methods are interesting.
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Topological Surgery

In this method [23], a spiralling triangle tree is constructed to cover the input
mesh (like peeling an orange, as shown in figure 4.6) and in such a way that the
connectivity information can be very compactly coded. A vertex spanning tree
(interlocked with the triangle tree) is also created to define a vertices traversal
order, which enables the uses of predictive techniques to code the geometrical
information12, thus around 8 − 12 bit/vertex only are needed to code the co-
ordinate. The total bitrates (geometry and connectivity information) can be
estimated to be around 20 bit/vertex for a good approximation of the input
mesh.

(a) (b) (c)

Figure 4.6: “Orange Peeling”. Figure (a) shows the original mesh, (b) the
‘peeled’ one and (c) the spiraling triangles tree.

Note that this method was has adopted, practically without modifications13,
for the MPEG-4 version 2 (1999) standard.

Triangle Mesh Compression

This method [22] sweeps the mesh with an edge conquest mechanism which
generates (for each conquered vertex) a valence code; and an exception code in
presence of boundaries (or other irregularities of the mesh). The ordered list
of those valences and exception codes is then entropy coded to yield extremely
low bit counts for connectivity information (as low as 1.5 bit/vertex). In fact,
this technique is currently considered to be the best single resolution 3D mesh
coding technique in terms of compression ratio, especially for mostly regular
meshes. According to the authors, this method allows to code mesh with around
15− 20 bit/vertex for a good approximation of the input mesh.

4.4 Efficient Compression of Detail Coefficients in
Meshes

Embedded zerotree wavelet coding, introduced by Shapiro [18] is a very effective
and computationally simple technique for image compression. Later, Said and
Pearlman [20] extended this technique and gave an alternative explanation of
its excellent performance, based on set partitioning in hierarchical trees. This

12because unknown vertex locations can be estimated based on the ones of previously visited
vertices

13the only significant addition was the one of an error resilience technique
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subsection will first summarise this explanation and ‘upgrade’ it to mesh coding,
to then introduce its place in MPEG-4 wavelet subdivision surfaces tool.

4.4.1 Progressive or Embedded Mesh Transmission

The idea in progressive transmission is to transmit a mesh in such a way that
the bitstream (in which the mesh details are coded) can be stopped at any
point and the mesh can still be decompressed and reconstructed. Moreover,
the more bits are transmitted the less ‘different’ is the decoded mesh from the
original mesh. This is the strong point of this transmission method: a single
bitstream can be used for various bitrates; that is, without needing to code the
mesh details again.

The basic idea is to first transform the original mesh S with an unitary
hierarchical subband transformation Ω (e.g. a wavelet transform), that is:

C = Ω(S). (4.6)

The transformed model C is composed of two parts (cf. figure 4.2): the base
mesh B and the sets Dj of detail coefficients dj

i (corresponding to subdivision
level j). Note that this section is only about the coding of the detail coefficients
and not about the base mesh coding (which is supposed to have been already
coded14 and transmitted). After reception and decoding, the decoded detail sets
are denoted D̂j (which could be exactly or approximately Dj), and finally the
reconstructed mesh is noted as Ŝ.

First let us remark that the transform being unitary, its Euclidean norm is
invariant. It means that the mean square error between the geometry of S
and Ŝ is the same than between dj

i and d̂j
i (as the base mesh is supposed to

be transmitted without error). This means that the greatest coefficient of Dj

should be transmitted first, in order to have an embedded bitstream.

Detail Vectors Handling

For a mesh, detail coefficients are vectors. But, as the different components
of a coefficient are ‘independent’, there are different possibilities to deal with
this ‘problem’: separate streams for each component of the vector, components
interleaving in one stream or vector ‘scalarisation’ (cf. [5]). In the chosen
method (i.e MPEG-4), the SPiHT algorithm is applied independently on each
component of the detail vectors. This means that on the following explanation
of the algorithm, one has to read “component [x,y,z] of the details coefficient”
instead of ‘coefficient’.

Binary Representation of Coefficients

Moreover, since the coefficients dj
i are real numbers, they need to be transformed

into a fixed point representation. First, the maximal absolute value dmax of all

14cf. section 4.3.3
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the coefficients in
(

Dj
)

j
is found:

dmax = max
i,j

∣

∣

∣d
j
i

∣

∣

∣ . (4.7)

Then, each detail dj
i is linked to an integer cji (i.e. quantised), and coded on

N + 1 bits15:

cji =

⌊

(

2N − 1
)

· dj
i

dmax

⌋

, (4.8)

where ⌊•⌋ denotes the floor operation, and where the binary representation of
the cji is:

cji = (−1)s ·
(

bN−1 · 2
N−1 + bN−2 · 2

N−2 + . . .+ b1 · 2 + b0
)

, (4.9)

where s and the bk are bits of the encoded representation.
Note that some information is lost during this step: during the floating point

coding of dmax; and essential under the details quantisation process (floor oper-
ation and choice of N). This makes the SPiHT coding of real numbers a lossy
compression method.

Naive Embedded Bitstream

A naive way of constructing an embedded bit stream containing the quantised
coefficient cji is to transmit these coefficients bit plane by bit plane16. That is,
transmitting first all s, then all bn−1, etc. (as shown in figure 4.7). It would
effectively produce the desired embedded bitstream.

b0

b0

b0

b1

b1

b2

b2

b3b4

(0) 0 1 2 . . .bit plane n

s

s

sc0

c1

c2

Figure 4.7: Bit plane organisation. This figure shows the bit plane organisation
of some integer ci, the greyed zone means bits with value 0.

The reason of the poor performance17 of that naive algorithm lies in the
following reasons: the wavelet decorrelation property (cf. section 4.2.1) means
that a great deal of the transmitted bit were actually zeros. Moreover offspring
coefficients have great probabilities to be actually smaller than their parents,
which could be used to improve this naive algorithm. The SPiHT algorithm
uses these properties (and the odd vertices hierarchy) to define a very smart
way of transmitting the dj

i coefficients.

15i.e. one sign bit and an absolute value ranging from 0 to 2N
− 1

16note that, the parameters max and n need to have been previously transmitted
17poor in the sense: “something much better exists”
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4.4.2 Set Partitioning in Hierarchical Trees

The basic idea behind SPiHT is to start transmitting the bits concerning a
coefficient only when this one is significant (that is, not to transmit the greyed
zone in figure 4.7). It also means that an order has to be set through a sorting
algorithm. One of the mean features of the SPiHT algorithm is to not explicitly
transmit the dj

i coefficients order. Instead, it is based on the fact that in
any algorithm, the execution path is based on the comparison results at its
branching points.

Let first define the significance S (at a bit plane n) of a given set T of
coefficients dj

i :

Sn(T ) =







1, max
dj

i∈T
dj

i ≥ 2n,

0, otherwise.
(4.10)

If Sn(T ) = 1, it simply means that at least one coefficient dj
i in the set T is

significant (i.e. at least equal, in absolute value, to 2n).
The beautiful idea of the SPiHT algorithm is to partition the coefficients in

such a way that subsets expected to be significant only contain one element,
and subsets expected to be insignificant contain a large number of elements.
When an expected insignificant subset turns out to be significant it is in turn
partitioned the same way. As both encoder and decoder use the same set parti-
tioning algorithm, only the significance test results (on subsets and coefficients)
need to be transmitted for actually retrieve the coefficients order.

Wavelet Subdivision Surfaces Hierarchical Trees

The problem yet to solve is the partition choice. As already shown in section
3.3, subdivision surfaces inherently define hierarchical structures. One of these
structures can be used to define a canonical (i.e. independent of the signifi-
cance) coefficients order. Moreover, as it was explained in section 4.2.1, the
wavelets transform tends to locally yield self-similarities within subband. That
is, if a coefficient is not significant until a certain bit plane n, there are im-
portant probabilities that the corresponding offspring coefficients would not be
significant in the previous bit planes.

It is then straightforward that the hierarchy used is the ‘vertices’-based hi-
erarchy, since wavelet coefficients are linked to odd vertices. A first possible
logical choices for initial partitions are the actual trees of the hierarchy. As
there are great probabilities that the tree roots would be significant for the first
bit plane, let us decide that initial subsets expected to be significant are the tree
roots and the initial subsets expected to be insignificant are their descents. The
subsequent partitioning is now quite evident: if an expected insignificant subset
is found significant then it is separated in a subset expecting to be significant
(containing the ‘root’ of the descent) and in an another subset expected to be
insignificant (the descent of this new root).
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Coding/Decoding Algorithm

Since the order in which subsets are tested for significance is important, a
practical implementation of the aforementioned ideas stores these subsets in
three ordered lists (as presented in [21]):

• LIS: List of Insignificant Sets;
• LIC: List of Insignificant Coefficients;
• LSC: List of Significant Coefficients.

While the LIC and LSC lists stores individual coefficients, LIS could either
represent D or L. To differentiate these two possible entries it is said that the
first one is of type A and that the second one is of type B.

Finally, let us define some sets that will be used in the SPiHT algorithm:

• O(c) is a set of vertex indices of all offsprings of node c;
• D(c) is the transitive closure of the relation “is offspring of” (whole set of

descent of c);
• L = D(c)−O(c);
• H contains every tree roots (node at the highest pyramid level);

The complete coding algorithm is presented below. To find the corresponding
decoding algorithm, one has to replace output by input. Note that refinement
bits are not transmitted for coefficients that have been just found significant
in the previous sorting pass, as a coefficient first significant at a certain bit
p plane means that the corresponding bit bN−p has a value of 1 in its binary
representation (it is thus totally deterministic).

It is also possible to reduce the decoded mesh error for each sign or refinement
bit transmitted. The idea is to always set the value of the current decoded
coefficient to the mean between the maximum and the minimum values it could
take in the future. There are two cases: the initialisation (when the sign bit is
received) and the refinement. For the initialisation, the maximum value could
be 2n − 1 and the minimum 2n−1, which gives an initial coefficient value of:

cn =
2n − 1 + 2n−1

2
= 3 · 2n−2 + 1/2, (4.11)

where n corresponds to the one in algorithm 1. When updating this mean
value (during the refinement pass) the maximum or the minimum values could
change in function of the received bit. If the refinement bit is 0, then the
maximum possible value would change with respect to the precedent bit plane:
cnmax = cn+1

max − 2n−1; if the bit is 1, then the minimum value would change
with respect to the precedent bit plane: cnmin = cn+1

min + 2n−1. Meaning that the
coefficient is updated to:

cn = cn+1 +

{

−2n−2 if refinement bit is 0;
+2n−2 if refinement bit is 1.

(4.12)

Embedded Bitstream Property

A SPiHT bitstream structure for a mesh containing two trees (x and y) could
be (for the first bit plane):

y0x0y1y2x1x2x3y3y4y5y6x4x5x6x7x8x9y7x10y8y9y10x11y11x12 . . .
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Algorithm 1 SPiHT
1. Initialisation
2. output N
3. n = N
4. LSC = ∅
5. LIC = H
6. LIS = H (type A)
7. Sorting Pass
8. for c ∈ LIC
9. output Sn(c)
10. if Sn(c) = 1
11. then move c at the end of the LSC and output its sign
12. for c ∈ LIS
13. if type(c) = A
14. then
15. output Sn(D(c))
16. if Sn(D(c)) = 1
17. then for k ∈ O(c)
18. output Sn(k)
19. if Sn(k) = 1
20. then add k to the end of the LSC and

output its sign
21. else add k to the end of the LIC
22. if L(c) = 0
23. then move c at the end of the LIS (type B)
24. else remove entry c from the LIS
25. else
26. output Sn(L(c))
27. if Sn(L(c)) = 1
28. then add each k ∈ O(c) to the end of the LIS (type A)
29. remove c from the LIS
30. Refinement pass
31. for c ∈ LSC (except those included in the previous sorting pass)
32. output the n-th most significant bit of |c|
33. Quantisation-step Update
34. n = n− 1
35. if n 6= 0
36. then go to Sorting Pass

This stream is used when the SPiHT algorithm is initialised with both roots of
the trees x and y. It is also possible to run two instances of the algorithm, one
initialised with x root, and the other with y if one has access to two separate
streams (one for each tree):

x0 x1x2x3 x4x5x6x7x8x9 x10x11 x12 . . .

y0 y1y2 y3y4y5y6 y7 y8y9y10y11 . . .
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What makes it possible is that only the relative order within a tree is important.
In fact, even the SPiHT initialised with all forest works ‘independently’ on
each tree, only the fact that the bitstream is interleaved makes it work in
an interleaved way. This property can be used to create a view dependent
transmission18 (where only the trees of actual interest would be transmitted),
as each tree corresponds to a particular area of the base mesh.

4.4.3 Vector Decorrelation

In [12][5], it was remarked that the detail vectors were highly correlated with
the surface normal at the corresponding location. This correlation could be
suppressed by defining each detail vector in a local Frenet frame, that is by
having local referential

(

x̂F (c), ŷF (c), ẑF (c)
)

corresponding to each coefficient
c, with x̂F (c) being aligned with the local normal. This mean that the local
xF (c) coordinate will be far more important than the local coordinates yF (c)
and zF (c), which could both be coded on less bits.

x

y

z
x̂F (c)

ŷF (c)

ẑF (c)

n

Figure 4.8: Local Referential

4.5 MPEG-4 Wavelet Subdivision Surfaces

As already seen in chapter 1, MPEG-4, through its AFX extension, provides a
toolbox for ‘wavelet’ subdivisions surfaces. These tools can receive a bitstream
and use it to enhance a base mesh, which can be a simple faces set node or
a subdivision surfaces node. This makes the wavelet subdivision surface node
a very versatile tool. That is, it can be used to enhance a ‘plain’ subdivision
surface by adding details to its (piecewise) smooth surface; or it can be used as
a mesh compression tool. The node supports different wavelets:

• Loop (as introduced in [12]);
• butterfly;
• midpoint.

The two last wavelet types could be also used in lifted mode or not. Moreover,
the details could be transmitted in local or global coordinates (cf. section 4.4.3).

18cf. section 4.5.1
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4.5.1 View Dependency

The wavelet subdivision surfaces tool has been specially tailored to be used
in view-dependent applications. It can be seen in the way the bitstream is
transmitted and stored: each tree could be transmitted separately bit plane by
bit plane. This has a lot of advantages: for instance the client can receive the
bits corresponding to certain specific areas of the mesh (e.g. where the user
is currently looking at) and still display it, it also enables the transmission of
meshes too big to fit in the client memory (or too complex to be processed),
which can be used in mobile application (for example). However, there are
also overheads in this method: information needs to be transmitted concerning
a particular tree bit plane size. Which means a lot of ‘meaningless’ bits are
sent when used in ‘simple’ compression mode (i.e. without view-dependency
enabled).

4.5.2 Really Embedded?

Moreover, there is also another ‘problem’: the different components of the co-
ordinates are totally independent (which certainly leads to a certain flexibility).

In the idea of SpiHT algorithm, the bit transmission order corresponds to the
impact they have on the mean square error. But with the wavelet subdivision
surfaces node of MPEG-4, especially in local coordinate mode, this is not the
case. Imagine an instant that we are in local coordinate mode with max |x| ≫
max |y| ,max |z|: logically x components will be coded on more bits than y or z.
With current MPEG-4 bit plane order, it means that the first transmitted bit
plane corresponds to the most significant bits of x component, but also to the
most significant bits of y and z components, which have a totally different order
of magnitude! However, with the current specification it is possible to hack the
bitstream (on server side) in order to be able to transmit information such as
SPiHT was intended to do, but at a great price (more bits to be transmitted,
bitstream more ‘tortuous’).

4.5.3 Proposed Extension

In the light of the limitation of the current wavelet subdivision surfaces when
used in ‘simple’ compression mode, we19 propose to extend them, perhaps in a
future version of AFX.

The bitstream should be composed of bit planes containing the whole forest,
where each bit plane is stored in one contiguous table (for each component).
Before the transmission of a bit plane, the number of bits in the plane should be
also transmitted (to put in contrast with the actual view dependent MPEG-4
method where the size of the bit planes is transmitted for each tree in the bit
plane).

Moreover, the second problem could also be solved by giving a relative order
to each bit plane: for example, by aligning the least significant bits of each
component on the same last bit plane.

19this proposition is based on a discussion thread over wavelet subdivision surfaces, which
included K. Tack, F. Morán Burgos and P. Gioia
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Chapter 5

Implementation of the
Subdivision Surfaces

This chapter presents the actual implementation of the subdivision surfaces
library. First some general choices are introduced, then the data structures
used in the library are presented. Finally, some algorithms are explained.

5.1 Introduction

The subdivision surfaces library (SS) is written in C++, permitting to easily
create a modular program. It is divided in different classes, which relationships
are shown on figure 5.1. Classes in the same ‘family’ are related through in-
heritance. Classes beginning with ‘ ’ are internal, that is: they are not to be
instantiated directly when using the library. The library is organised by layers,
where each layer adds ‘functionalities’ to the precedent ones.

5.1.1 ‘Plain’ Subdivision Surfaces

The first set of classes implements the ‘plain’ subdivision surfaces. Because each
of them needs the information of the classes ‘below’, they are related through
inheritance. Classes functions are detailed below:

• The class SSsTopo performs the topological subdivision for all subdivision
level i > 0, that is creating the graphs Gi(V, E). It:

– works on triangles and quadrilateral meshes;
– can handles boundaries;
– is based on ordered 1-rings, which construction works on arbitrary mesh

type;
– can detect non-manifoldness or dangling edges;
– can be easily extend to handle quadrilaterals;
– caches the topological subdivision hierarchy, vertices type and 1-ring,

hence saving computation time in animation mode1.

1if control hull abstract graph is not changed

39



SSsTopo

SSsTag

SSsStencil

SSNode

SSsSector

SectorNode

SSsForest

SSsBs

SSsQuant

SSsSpiht

WSSNode

SSsConfig

SSsCommon

Figure 5.1: Classes relationships. Arrows show that a class is dependant of the
pointed class, a bold arrow means a C++ inheritance relationship. The classes
SSsConfig and SSsCommon are in fact related to every internal classes, but
their relationships are hidden not to burden the figure. The sector related
classes are not yet implemented...

• The class SSsTag creates tag tables for all subdivision levels (from initial
tag information and vertices types). It:

– handles MPEG-4 tags entries;
– caches the tags table for the whole subdivision hierarchy, hence saving

computation time in animation mode2.

• The class SSsStencil create the subdivision mask from the subdivided
graphs, the tags and the subdivision type (Loop, butterfly or midpoint).
It:

– handles MPEG-4 stencil rules for Loop, butterfly (modified or not) and
midpoint;

– is independent from geometry (the crease angles are all considered convex
and fixed at π/k, or could be overridden through the subdivision sector
node), thus it is possible to cache the stencils for the whole subdivision
hierarchy, hence saving computation time during in animation mode3;

– can create high-pass Loop’s mask, so it can also be used for wavelet
subdivision surfaces (not yet implemented).

• The class SSNode is the subdivision surface node (i.e. the public class), which
also handles the geometrical subdivision process. It:

– handles the geometrical subdivision processes for both approximating and
interpolating scheme (with optimisations in both cases);

2if control hull abstract graph and initial tags are not changed
3if control hull abstract graph, initial tags and subdivision rules are not changed
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– handles the subdivision process of textures, colours (not yet implemented);
– can add details, process lifting and high-pass filtering (not yet imple-

mented) and thus can be used for wavelet subdivision surfaces.

5.1.2 ‘Wavelet’ Subdivision Surfaces

The next set of classes implements the ‘detailed’ subdivision surfaces. It directly
inherits the tools created for the ‘plain’ subdivision surfaces and adds those
necessary to handle wavelet subdivision surfaces, regrouped in the following
classes:

• The class SSsForest creates the edges offsprings forest. It:

– is based on MPEG-4 offsprings and trees ordering;
– stores the tree in a bi-dimensional table;
– creates a look-up tables establishing relationship between edges and its

corresponding tree, and between trees and their corresponding base mesh
edges.

• The class SSsQuant creates the quantisation look-up tables. It:

– creates two tables: one serving for initialisation (first time a coefficient is
significant) and the other to update the coefficients during the refinement
pass;

– permits to the coefficient values to always be the mean value between the
maximum and the minimum values they could take in the future.

• The class SSsSpiht performs the SPiHT decoding. It:

– can perform it on a single tree, the whole forest, or a part of it;
– can dynamically remove trees from the “forest decoding”, in order to

perform partial decoding on it;
– can dynamically add trees to the “forest decoding”, in order to perform

grouped decoding.

• The class SSsBs performs the generic bitstream decoding. It:

– can extract unsigned (any number of bits), single bit or float from the
stream;

– can also create a bitstream.

• The class WSSNode implements the wavelet subdivision surfaces node. It:

– can decode the wavelet subdivision surfaces “decoder info” and mesh;
– can perform mesh reconstruction after each call to wavelet mesh decoder;
– can perform mesh reconstruction after each/all bit plane(s) and/or after

each tree has/have been received (in partial transmission mode, not yet
tested);

– can perform a full transmission for a few bits plane, switch to partial
transmission mode then switch back (not yet tested).
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5.2 Data Structures

All multi-dimensional data structures use the STL4 container vector. Note
that Visual C++ 6.0 does not support this feature well: in this case, it is nec-
essary to use an auxiliary library like, for example, stlport5. There is a main
advantage in its utilisation: not to require control of dynamic memory usages.
The only disadvantage is its small performance overhead compared to a full cus-
tom memory management, which is easily balanced by the protection it gives
against memory leaks (which can be a source of ‘bugs’ very difficult to locate)
and its ease of use.

The data structures are indexed from 0 to N − 1, where N is the size of the
data set, which permits to be closer to the actual C++ code. Not to surcharge
the description, the exponents (corresponding to the subdivision level) are not
shown.

5.2.1 Vertex Positions

The vertex positions are stored through a vector of coordinate, which is
defined as follows:

ci = (x, y, z) (5.1)

C =











c0

c1

...
cN











(5.2)

The usual operations are defined over the coordinate ci, that is scaling, addi-
tion, substraction and dot product.

5.2.2 Vertices

The vertices are not stored as such, they are the indices i of their corresponding
position ci. These indices are used in facets list (or coordinate index) the to
describe the abstract graph through the listing of its facets.

5.2.3 Facets

The facets are stored as in MPEG-4: in a vector of coordinate indices. The
different polygons are also separated by ‘−1’. The vector looks like (where Np

is the number of polygons):

P =
(

P0 −1 P1 −1 . . . −1 PNp−1 −1
)

(5.3)

The access of a particular element in P is signaled in the algorithms either by
Pk (for the kth element of P), or Pi,j (for the jth element of the ith polygon).

4Standard Template Library, part of C++ standard
5http://www.stlport.com/
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In algorithm descriptions, the circularity propriety is used when saying that the
predecessor of Pi,0 is Pi,|Pi|−1 or that the successor of Pi,|Pi|−1 is Pi,0.

This structure can be advantageously stored in a contiguous memory block,
but one cannot easily access to a particular facet if the mesh is composed of
variable size facets.

5.2.4 Ordered 1-Ring

The ordered 1-rings are stored in a “vector of vector” form. That is:

R =











R0

R1

...
RN











(5.4)

Where Ri is the 1-ring corresponding to vertex i. A particular ring element
access is noted by Ri,j , which means element j of the 1-ring corresponding to
vertex i. The circularity propriety in case of interior vertices simply means that
Ri,0 and Ri,|Ri|−1 are neighbours.

5.2.5 Vertex Types and Tags

The vertex types are stored in the vector T of size N , where each element can
take any of two values: interior or boundary. Note that even vertices type
never change, permitting to have only one vertex types look-up table for the
whole hierarchy.

There are two main families of tags: edge or vertex tags. The edges tags
(crease) are represented for each subdivision level by a vector of rings, with
each element being a boolean saying if the corresponding edge (in the ‘true’
1-rings) is crease or not. For the vertex tags (crease, dart and corner), it is
sufficient to have (for each) only one look-up table for the whole hierarchy.

5.2.6 Stencils

Let first define a weighted vertex index wi = (vi, w), where vi is a vertex index
(pointing to the corresponding coordinate c) and w the associated weight.

A mask associated with a vertex v can then be written as:

Mv =











w0

w1

...
wNv











, (5.5)

where Nv is the number of vertices in the stencil.

5.3 Algorithms

Some algorithms used in the subdivision surface library are presented here.
Some comments will also be made concerning their efficiency and the choice of
a particular algorithm.
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5.3.1 Subdivision

The topological and geometrical subdivision are done in separate procedures. It
permits to separate them and thus be able to cache the result of the topological
subdivision. Not to redo the computation of the subdivision topology hierarchy6

permits to save precious time: this is very important in an animation setup
where final meshes must be delivered ‘quickly’.

The topological subdivision is divided in three parts: the main loop, the
ordered 1-rings construction and the splitting step. The first one is a very
simple loop (only presented for coherence sake), the second and third ones are
more complex and their pseudo-code can also be found below.

The geometrical subdivision is a very simple process once the the 1-rings and
stencils are created; the creation of the last and and a short discussion on the
geometrical subdivision follow the topological algorithms discussion.

Main Topological Loop

This loop is very simple: for each subdivision step the 1-rings are created and
the polygons are spilt. However there are different subtleties to note: the 1-
rings concerning odd vertices are built in the procedure “build 1-rings” while
the ones concerning the even vertices are updated in the ‘split’ procedures,
which means that the odd vertices 1-rings do not need to be created for the last
subdivision step.

Algorithm 2, Main Topological Subdivision Loop
1. Ordered 1-Rings Construction
2. for i← 0 to Nsubdivision − 1
3. Triangles Quadrisection
4. if i < Nsubdivision − 1
5. then Ordered 1-Rings Construction

1-Ring Building

The ordered 1-rings can be used for many things:

• determination if a vertex is on the boundary or is interior;
• an easy construction of the subdivided topology;
• an easy construction of subdivision stencils (even for butterfly);
• easy geometrical subdivision.

Because with the 1-rings, one can easily access (with orientation) to the neigh-
bours of a vertex i: vertices (Ri,j)j or edges (i,Ri,j)j . Moreover, all edges of a
generic abstract graph can be accessed once and only once through the 1-rings,
with the simple loop shown in algorithm 3.

The ordered 1-rings construction is quite simple: first, and for each vertex,
the edges (start point A, end point B) of its 1-ring are listed (as shown in figure

6which is always the same if no topological change are done to the control hull
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Algorithm 3, Edges Listing Through 1-Rings
1. for i← 0 to N − 1
2. for j ← 0 to |Ri| − 1
3. if Ri,j ≥ i
4. then do something on the edge {i,Ri,j}

5.2). Then, they are put back to back, in order to find ordered 1-rings7. The
1-rings are ordered in such a way that if the vertices in a facet were ordered
counter-clock wisely, then the vertices in the 1-rings would also be ordered
counter-clock wisely.

Ak(Pi)
Bk(Pi)

Pi

Figure 5.2: Edges listing. It illustrates the edges (for 1-rings construction)
listing around the vertex Pi, in this example there were already k edges in the
list.

The algorithm complexity is linearly proportional to number of edges in the
abstract graph and to the mean number of elements in its 1-rings.

Splitting Step

This is the core of the topology subdivision. First a new vertex is created for
each old edge, by creating the new 1-rings associated with the even vertices.
Then the old indexed faces set and the 1-rings (both old and new) are used to
create the new polygons.

The complexity of the edges splitting is linearly proportional to the number
of edges (and the mean valence in the mesh), while the polygons splitting is
linearly proportional to the number of facets in the abstract graph.

New Triangles and Vertices Ordering

The orders of triangles and vertices generated from the algorithm 5 are always
the same (which is pretty normal). That is, if the first triangle is given such

7note that the presented algorithm does not reflect the fact that even vertex 1-rings are
built in the splitting step!
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Algorithm 4, Ordered 1-Rings Construction
1. list all edges in the 1-Ring
2. A = (∅)0,...,N

3. B = (∅)0,...,N

4. for i← 0 to |P| − 1
5. if Pi 6= −1
6. then push back successor of Pi in A(Pi)
7. push back predecessor of Pi in B(Pi)
8. order the 1-rings
9. for i← 0 to N − 1
10. Ri = {Bi,0}
11. push back Ai,0 in Ri

12. while A(i) 6= ∅
13. for j ← 0 to |Ai| − 1
14. if Ai,j = Ri,|Ri|−1

15. then push back Ai,j in Ri

16. push back Bi,j in Ri

17. suppress Ai,j

18. suppress Bi,j

19. exit j loop
20. if Ai,j = Ri,0

21. then push front Ai,j in Ri

22. push front Bi,j in Ri

23. suppress Ai,j

24. suppress Bi,j

25. exit j loop
26. if Bi,j = Ri,|Ri|−1

27. then push back Bi,j in Ri

28. push back Ai,j in Ri

29. suppress Bi,j

30. suppress Ai,j

31. exit j loop
32. if Bi,j = Ri,0

33. then push front Bi,j in Ri

34. push front Ai,j in Ri

35. suppress Bi,j

36. suppress Ai,j

37. exit j loop
38. if Ri,0 = Ri,|Ri|−1

39. then suppress Ri,|Ri|−1

40. Ti ← interior

41. else Ti ← boundary

that its first vertex v0 is at index t0 in coordinate indices list Pi:

Pi = (. . . v0 v1 v2 -1 . . .) (5.6)

46



Algorithm 5, Triangles Quadrisection
1. Midpoint splitting
2. R̃i ← Ri

3. Ñ = N
4. for i← 0 to N − 1
5. for j ← 0 to |Ri| − 1
6. v ← Ri,j

7. if v ≥ i
8. then get idx such that Rv,idx = i
9. R̃i,j ← Ñ
10. R̃v,idx ← Ñ
11. Ñ ← Ñ + 1
12. Create the four new triangles
13. for i← 0 to |P| − 1
14. v0 ← P4·i

15. v1 ← P4·i+1

16. v2 ← P4·i+2

17. get v3 such that Rv0,v3
= v1

18. get v4 such that Rv1,v4
= v2

19. get v5 such that Rv2,v5
= v0

20.

P̃i·16 ← v0 P̃i·16+1 ← v3 P̃i·16+2 ← v5 P̃i·16+3 ← −1

P̃i·16+4 ← v1 P̃i·16+5 ← v4 P̃i·16+6 ← v3 P̃i·16+7 ← −1

P̃i·16+8 ← v2 P̃i·16+9 ← v5 P̃i·16+10 ← v4 P̃i·16+11 ← −1

P̃i·16+12 ← v3 P̃i·16+13 ← v4 P̃i·16+14 ← v5 P̃i·16+15 ← −1

Then at the next subdivision step, the triangles generated by the original tri-
angle will be numbered from index 4 · t0 (with v0) in Pi+1 and be ordered in
the following manner (cf. figure 5.3 for abstract graph):

Pi+1 = (. . . v0 v3 v5 -1 v1 v4 v3 -1 . . .
v2 v5 v4 -1 v3 v4 v5 -1 . . .)

(5.7)

The same property holds for any subdivision step, for example for subdivision
step i + 2, the triangles generated by the original triangle will be numbered
from index 16 · t0 (with v0) in Pi+2 and will be ordered in the following manner:

Pi+2 = (. . . v0 v6 v8 -1 v3 v7 v6 -1 . . .
v5 v8 v7 -1 v6 v7 v8 -1 . . .
v1 v9 v11 -1 v4 v10 v9 -1 . . .
v3 v11 v10 -1 v9 v10 v11 -1 . . .
v2 v12 v14 -1 v5 v13 v12 -1 . . .
v4 v14 v13 -1 v12 v13 v14 -1 . . .
v3 v10 v7 -1 v4 v13 v10 -1 . . .
v5 v7 v13 -1 v10 v13 v7 -1 . . .)

(5.8)

Those vertex orders are important and will be used to easily create the offspring
tree needed for the wavelet subdivision surfaces. Also note, that the triangles
are locally ordered in counter-clock wisely way (as shown in figure 5.3b).
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v0

v1

v2

Pk

v0

v1

v2

v3v4

v5

Pk,0

Pk,1

Pk,2

Pk,3

(a) (b)

v0

v1

v2

v3v4

v5

v6v7

v8

v10

v11

v12

v13

v14v15

(c)

Figure 5.3: Three generations of splitting step. The figure (a) shows a given
triangle at the subdivision step i. Figures (b) and (c) shows the triangles
generated from this original triangle at step i + 1 and i + 2, respectively. The
vi represent the vertex indices at the corresponding level.

5.3.2 Stencil Creation

To update the geometry for level i+1, a stencil is created for each vertex (of the
subdivision level i + 1). These stencils give which vertices (of the subdivision
level i) are taken into account (and their corresponding weights) in order to
compute the position of each new odd and even (for approximating scheme)
vertices. They are easily found (even for butterfly) by using the ordered 1-
rings, which permits to find the neighbouring vertices of an edge (or a vertex)
and their relative orientation.

The odd stencil creation uses as main loop the algorithm 3, the stencil for
edge {i,Ri,j} is created using the 1-rings Ri and (for butterfly) RRi,j

.
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Loop’s Stencils

It is quite obvious how one build the stencil for a Loop’s even interior vertex i,
since the stencil is one to one with the 1-rings and the vertex itself. When edge
{i,Ri,j} is split (i.e. for odd vertices), all stencil vertices can also be directly
from the 1-ring Ri, as shown in figure 5.4.

ii
Ri

Ri,jRi,j

Ri,j−1Ri,j−1

Ri,j+1Ri,j+1

Figure 5.4: Construction of Loop’s stencil with 1-rings.

Butterfly Stencils

Stencils construction for butterfly scheme is a bit more complex than for Loop’s
case. The greatest difference is that for building the stencil for edge {i,Ri,j},
one needs the 1-ring Ri and Rk (with k = Ri,j), as shown in figure 5.5. What
costs more, computationally speaking, is to actually find the index l of the
1-ring Rk, such that Rk,l = i.

i,Rk,li,Rk,l Ri

Ri,j , kRi,j , k

Ri,j−2Ri,j−2

Ri,j−1Ri,j−1

Ri,j+1Ri,j+1

Ri,j+2Ri,j+2

Rk

Rk,l+2Rk,l+2

Rk,l−2Rk,l−2

Figure 5.5: Construction of butterfly stencil with 1-rings. On the left, the 1-
rings for the vertices i and Ri,j = k are shown in black and grey, respectively.
The built stencil is shown on the right.
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5.3.3 Geometrical Refinement

Once the stencils are built for each vertex v of the subdivision level j + 1, it
is very easy to create the new coordinates Cj+1. It is sufficient to ‘apply’ the
stencil on the old coordinates Cj . For interpolating schemes, there is no need of
a temporary coordinate since the even vertex positions are not modified, while
for approximating ones the new coordinates must be stored in a temporary
buffer, in order not to replace the even vertices coordinates.

5.3.4 Offsprings Trees Construction

To apply the SPiHT algorithm on a subdivision surfaces mesh, one needs to have
the edges offsprings trees. The aim of this section is to construct these trees.

First of all, some data structures need to be chosen. On the figure 5.3, it
could be seen that the edges at level i are one-to-one with the odd vertices at
level i+ 1. Let us use the notation eij for the edges at level i, with j being the
index of the corresponding vertex at level i + 1 (going from Ni to Ni+1 − 1:
that is, the number of vertices in the mesh at level i and i + 1, respectively).
Since all vertices get different indices j, so do the edges using this scheme, it is
then sufficient to use the index j of an edge (i.e. the vertex index) in the tree
structure.

For example, on figure 5.3a, the edge {v0, v1} corresponds to the vertex v3,
and thus would be noted eiv3 (figure 5.3b) and its offsprings are the edges cor-
responding to the vertex indices v6, v11 and v13, i.e. ei+1

v6
, ei+1

v11
et ei+1

v13
(figure

5.3c).
This seemingly complex choice holds two important advantages:

• first, the storage of such trees is memory efficient and very simple (see figure
5.6);
• there is no need of a proxy to translate edges at subdivision level i onto their

corresponding vertices at subdivision level i + 1, since the data structure
inherently contains this information.

0 N0 − 1 N0 N1 − 1 N1 N2 − 1 N2 NS−2 − 1

dummy

· · ·· · ·· · ·· · ·

offsprings

Figure 5.6: Offsprings trees storage structure. In this figure, the N i correspond
to number of vertices at subdivision level i and S correspond to the total number
of subdivisions. Note that there is no edge corresponding to the vertices 0
to N0 − 1, and that edges on the last subdivision level (S − 1) do not have
descendants and are not represented.

MPEG-4 Edges Offsprings Ordering

The MPEG-4 standard specifies rules for ordering the offsprings and the trees
permitting to have offsprings trees independent of the subdivision algorithm
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used. The order of the first apparition of the edges in the coordinate index P0

gives the trees transmission order. The first level of offsprings gives a certain
‘topological’ orientation for each offsprings tree. That orientation needs to be
conserved along all offsprings in the corresponding tree. The MPEG-4 rules
for offsprings orientation (on the first level) are shown in figure 5.7, the thicker
edges shown in (b) represent the offsprings of the thicker edge marked in (a),
while the associated number gives the offsprings ordering. The rules are quite
simple:

• the ‘topological’ orientation of ‘0’ and ‘1’ is given by the facts that the left
triangle appears before the right one (in the coordinate index) and that its
vertices are listed as shown by the arrow (here counter-clock wisely);
• while the ‘topological’ orientation of ‘2’ and ‘3’ is simply given by the fact

that the triangle on the left appeared first.

0

1

2 3

(a) (b)

Figure 5.7: MPEG-4 offsprings ordering. The triangle on the left appears first
in the coordinate index and its vertices ordering is shown by the arrow.

Algorithm

The first time an edge appears, a local offsprings orientation tag is associated
with it. It describes the way its offsprings need to be oriented. The tag is
formed by two parts:

• the tag linked with the ‘0’ and ‘1’ orientation can take two values. Namely,
P (arallel) and A(nti-parallel) depending if the offsprings are ordered in the
same direction (or not) as are listed the triangle edges8;
• the tag linked with the ‘2’ and ‘3’ orientation can also take two values.

Namely, R(ight) and L(eft) depending if ‘2’ appears on the right (or left)
of the triangles edges8.

This local orientation and the order of apparition of the vertices (given is
equation 5.8 and shown on figure 5.8) are used to build the offspring trees. First,
there is an initialisation step where the first layer of offspring is built, which
uses the coordinate index produced by the second subdivision step. It permits
to find the vertices v3 to v5, corresponding to the base mesh edges of triangle
Pk. It is also possible to find the edges corresponding to the second subdivision
step triangles (the four Pk,i): edges v7 to v14, which are the offsprings of the
base mesh edges.

8these tags are always associated with the edge appearing first in the coordinate index list
and not to the second one
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v10

v11
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Pk,0 Pk,1

Pk,2

Pk,3

Figure 5.8:

There are two cases in building the offsprings list of v3 (for the two other
edges the description needs to be changed accordingly):

• if the offsprings list of v3 is empty then set it to (v6, v11, v13) and associate
the local orientation PL to all offsprings;
• if the offsprings list of v3 is not empty then add at its end v13 with local

orientation AR.

Note that the local orientation is AR, in the second case, since when the list
is not empty it means that the edge corresponding to v3 has already appeared
earlier in the coordinate index and also because the edge corresponding to v13

will appear first, in the next subdivision level, associated with triangle Pk,2, as
shown in figure 5.8. The algorithm 6 presents a way of implementing the first
level offspring construction. Figure 5.8 shows how the other offsprings level
must be handled, and algorithm 7 presents a way of doing it. We see that with
this construction local orientation could only be AR or PL (it is not possible
to have AL or PR).

Algorithm 6, Offspring Construction 1
1. get (v3, v6, v11, v13)
2. if O(v3) = ∅ (the right ‘main’ triangle is first in the coordinate index)
3. then
4. orient(v3) = PL
5. O(v3) = (v11PL, v6PL, v13PL)
6. else orient(v3) = AR
7. O(v3) = (•, •, v13AR)
8.

5.4 Demonstration Program

The demonstration program is based on RawView, a 3D viewing program devel-
oped at the LTS (EPFL, Laboratory of Signal Processing) by Nicolas Aspert9.

9for more information: Nicolas.Aspert@epfl.ch
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Algorithm 7, Offspring Construction 2
1. get (v3, v6, v11, v13)
2. if O(v3) = ∅ (the right ‘main’ triangle is first in the coordinate index)
3. then if orient(v3) = PL
4. then O(v3) = (v11PL, v6PL, v13PL)
5. else O(v3) = (v6AR, v11AR, ⋆, v13AR)
6. else if orient(v3) = PL
7. then O(v3) = (•, •, •, v13AR)
8. else O(v3) = (•, •, v13PL)

This program has been modified in order to incorporate the subdivision surfaces
library. There is a command-line based interface permitting to chose the input
file and the subdivision surfaces methods to apply to it, then the result is shown
on the screen. Moreover, the base mesh edges are highlighted with little red
spheres. The main interest of the program is the wavelet subdivision surfaces
mode, where three files are taken as entry: base mesh, decoder configuration
and bitstream. Then one can settle a bandwidth limitation and see in realtime
the mesh reconstruction.
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Chapter 6

Summaries and Conclusion

6.1 Results

This work produced a versatile subdivision surfaces library, which can be used
in various applications (either MPEG-4-compliant or not). The two main sub-
division surfaces tools of MPEG-4 were implemented in C++. The supported
functionalities are:

• for ‘plain’ subdivision surfaces:

– Loop, butterfly and midpoint subdivision scheme;
– tags (crease, dart and corner);
– animation functions;

• for wavelet subdivision surfaces:

– midpoint and butterfly wavelets;
– MPEG-4 stream input;
– view-dependency;
– lifting.

Moreover a command-line test program was created, where one can apply
different subdivision schemes to a base mesh and directly visualise the result.
The main test program functionalities are:

• highlighting, on final mesh, of vertices corresponding to base mesh ones;
• possibility to enter crease, dart and corner tags at runtime;
• bandwidth limitation for wavelet subdivision surfaces;
• refinement process visualisation for wavelet subdivision surfaces.

The most important contribution of this work is the clarification of the
MPEG-4 standard it has helped to1. Some clarifications to the (‘plain’) subdi-
vision surfaces node were proposed, and accepted (the list is not exhaustive):

• clarification on tags overriding;
• addition of butterfly and midpoint schemes (to be consistent with wavelet

subdivision surfaces);
• clarification of the special rules (near extraordinary border vertices) for Loop.

1note that this clarification was done in conjunction with K. Tack (IMEC, Belgium) and
F. Morán (UPM, Spain) who supervised the clarification process
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However, the most important clarification process was done for the wavelet
subdivision surfaces node, where a lot of important changes were done (the list
is not exhaustive):

• change in the bitstream loops order;
• clarification of the quantisation process (conversion of the SPIHT integer in

detail floats);
• clarification of the edge offsprings rules;
• correction of the lifting process (suppression of Loop scheme for a possible

lifted scheme);
• correction of some local coordinate details.

Moreover, this work also proposed the addition of new MPEG-4 tool for pro-
gressive 3D mesh compression, which would performs far better for non view-
dependent applications.

6.2 Future Work

There is still a lot to do concerning the created library:

• add a sector node;
• add Loop wavelet;
• add local coordinate support;
• extensive test of view-dependency;
• integration in MPEG-4 reference software.

Also, the proposed MPEG-4 extension needs to be studied in more detail, in
order to propose a competitive tool. Finally, there is still a lot to discover in
the domain of 3D mesh compression, which is only at its hatching process.

6.3 Conclusion

Even if the main goal of the project was implementation of MPEG-4 subdivision
surfaces, this paper can be usefully utilised to introduce subdivision surfaces to
people not specialised in the particular fields of 3D modelling or 3D compression.
Moreover, the created library can be used in a specialised 3D decompression
program or can be integrated in a complete MPEG-4 3D-player.

On a personal point of view, I learned many things with this project. Espe-
cially about subdivision surfaces, which were a totally unknown field to me or
even OpenGL and C++. Also, working in another country was a very appealing
experience, even if it was not always easy. I would also like to thank all the
people that helped me in this “spanish experience”, especially: Carmen, Caro-
line, David, Francisco, José, Maŕıa Jose, Marie Carmen, Nicolas, Sophie, Tore,
Touradj and many others...

Madrid, February 2003,

Yannick Maret
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