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Abstract

In this paper two algorithms for the compression of the data generated by the
Time Projection Chamber (TPC) detector of the ALICE experiment at CERN are
described. The first algorithm is based on a lossless source code modeling technique,
i.e. the original TPC signal information can be reconstructed without errors at the
decompression stage. The source model exploits the temporal correlation that is
present in the TPC data to reduce the entropy of the source. The second algorithm
is based on a source model which is lossy if samples of the TPC signal are considered
one by one. Conversely, the source model is lossless or quasi-lossless if some phys-
ical quantities that are of main interest for the experiment are considered. These
quantities are the area and the location of the center of mass of each TPC signal
pulse.

Obviously entropy coding is applied to the set of events defined by the two source
models to reduce the bit rate to the corresponding source entropy. Using TPC
simulated data according to the expected ALICE TPC performance, the lossless
and the lossy compression algorithms achieve a data reduction respectively to 49.2%
and in the range of 34.2% down to 23.7% of the original data rate. The number of
operations per input symbol required to implement the compression stage for both
algorithms is relatively low, so that a real-time implementation embedded in the
TPC data acquisition chain using low–cost integrated electronics is a realistic option
to effectively reduce the data storing cost of ALICE experiment.
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Introduction

ALICE (A Large Ion Collider Experiment) is an experiment that will be held
in 2005 at the LHC (Large Hadron Collider) at CERN [1,2]. The experiment
will study collisions between heavy ions with energies around 5.5 TeV. The
collisions will take place at the center of a set of several detectors, which are
designed to track and identify the particles produced.

One of the main detectors of the ALICE experiment is the Time Projec-
tion Chamber (TPC). The TPC is a large horizontal cylinder, filled with gas,
where a suitable axial electric field is present. When particles pass through,
they ionize the gas atoms, and the resulting electrons drift in the electric field.
By measuring the arrival of electrons at the end of the chamber, the TPC
can reconstruct the path of the original charged particles. The electrons are
collected by more than 570 000 sensitive pads where the signal is acquired in
the form of pulses, each corresponding to the passage of one particle. This
signal is amplified by a preamplifier/shaper and digitalized by a 10 bit A/D
converter at a sampling frequency of 5.66 MHz. The digitalized signal is pro-
cessed and formatted by an Application Specific Integrated Circuit (ASIC)
called ALTRO (ALICE TPC ReadOut). At this stage, the overall throughput
of the 570 000 channels is around 8.4 GByte/s.

Considering that the duration of the experiment is forecasted in a few months
time lap, it is clear that the amount of data to be collected is expected to be
extremely large. So as to keep the complexity and cost of the data storage
equipment as low as possible, the goal is to reduce the volume of data using
suitable data compression methods. The cost reduction of the data storage sys-
tem can be considered roughly proportional to the data compression factor. It
is advisable to implement the compression system in the front-end electronics
at the output of the ALTRO circuit, so that the cost for the optical links,
which carry data out of the chamber to the following stages of the acquisition
chain, is also reduced [3].

Compression techniques can be classified into lossless and lossy depending
on how the model of the information source defines, or better models, the
set of events that are then entropy coded. Using a lossless source model the
data can be exactly reconstructed as they were before compression. The use
of a lossy source model, justified by the fact that it generally can provide
significantly higher compression ratios compared to lossless models, has the
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drawback that an error in the reconstruction of data must be accepted. Lossy
source models have become very popular in the last decade in the field of audio
and video compression for their remarkable performance [?]. Lossy models
have been carefully designed so that reconstruction errors are not perceived
using psycovisual or psycoacoustic models or they remain comparable with
the intrinsic signal noise.

In this paper, after a brief description of the format of the TPC data that
are to be processed, first a lossless algorithm which exploits the temporal cor-
relation among the samples is described. Then, a rigorously speaking lossy
source model, in which however some quantities of physical interest such as
the energy (area of the electrical pulse) and the temporal position of each
pulse (center of mass of the pulse) registered by the TPC pads are exactly
preserved, is described. Such physical quantities carried by the signal are the
ones of interest for the overall ALICE experiment results [1], i.e. the recon-
struction of the particle trajectories. The performances of the two algorithms
are reported, and the corresponding computational complexity is discussed,
aiming at evaluating a possible implementation of the system on low-cost elec-
tronic devices.

1 The ALICE TPC read out data format

Before describing the compression algorithm, it is necessary to spend a few
words on the format of data at the output of ALTRO circuit so as to under-
stand how the compression algorithms are applied; these data are indeed the
input of the compression system [1].

In the so called ALTRO data format, only the samples over a given threshold
are considered, while the others are discarded. This means that, if we call bunch
a group of adjacent over-threshold samples coming from one pad, the signal
can be represented “bunch by bunch”. More precisely, a bunch is described
by three fields: temporal information (temporal position of the last sample in
the bunch, one 10 bit word 1 ), bunch length (i.e., number of samples 2 in the
bunch, one 10 bit word), and sample amplitude values (10 bit words, i.e. a
range between 0 and 1023).

1 It may be noted that, for each trigger selected collision, the acquisition process
completes in 88 µs, which implies, at a sampling frequency of 5.66 MHz, a range for
time information between 0 and 499, so that one 10 bit word suffices.
2 Actually, the value transmitted by the ALTRO circuit is the number of samples
plus one [1].
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2 Lossless compression of TPC signals

The lossless technique described in this paper is mainly based on an appro-
priate probability model for each data field of the ALTRO data format. More
precisely, specific probability models for each sample in a bunch are developed.
Such models intend to capture both temporal correlation among samples and
the characteristic shape of TPC electrical pulses. For what concerns the time
information, i.e position of the bunches they are not represented as an absolute
value, like in the ALTRO data format, but they are differentially coded using
the number of zero samples preceding the bunch. Finally, the bunch length is
directly entropy coded.

2.1 Sample values coding

This subsection describes a first basic model, and then introduces a more so-
phisticated one that can provide higher performances in terms of compression
efficiency.

2.1.1 Coding model based on the sample position

Data compression can be obtained by directly applying entropy coding to the
sample values without any modeling of the information source (this method
will be referred to as EC, Entropy Coding, in Sec. 4). However, improvements
in compression performance can be obtained by appropriate modeling. A first
improvement has been achieved by observing that the statistics of the signal
sample values depends on the position of the sample itself in the bunch. For
example, Fig. 1 shows a short interval of a TPC signal on a pad, according
to [4]; the signal has been obtained by Montecarlo simulations of the TPC
behavior. Observing the signal, it is clear that, due to the pseudo Gaussian
shape of most of the bunches, the first and the last sample of each bunch
are likely to have a smaller value with respect to those in central positions.
Similarly, small values are also expected for isolated samples, i.e. belonging to
one-sample bunches. Therefore, it resulted to be useful to classify samples into
three classes: one class for isolated samples, one for samples at the beginning
or at the end of multiple sample bunches, and one for samples in the central
positions of a bunch. Such classification is schematically shown in figure 2,
where dots represent samples, and rows relate to bunches classified by length,
(i.e. the first row represents one sample bunches, the second row two sample
bunches, etc.); the regions represent the classes. By using three different prob-
ability distributions for entropy coding, each class results optimized versus the
statistics of the corresponding event (shown in Fig. 3); thus, sample values can
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be coded more efficiently than using only one probability distribution. This
coding scheme will be referred to as SP, Sample Position, in Sec. 4.

2.1.2 Source models exploiting temporal correlation

Generally, an improvement on compression performances can be expected by
also exploiting temporal correlation, i.e. the correlation between consecutive
samples; this can be done by implementing a suitable prediction scheme. For
TPC data, experiments has shown that a simple correlation between adjacent
samples does not provide an efficient prediction of the sample values [5]. How-
ever, a more sophisticated scheme which captures sample correlation can be
derived achieving a further reduction of the overall bit rate. More precisely,
with reference to Fig. 1, it can be observed that large samples are likely to
be followed by samples of the same value range (and, conversely, for small
samples), so that, for each sample, it may be advisable to choose a different
code according to the range of values of the preceding one.

More in detail, the developed approach is explained with an example in figure
4, where a three sample bunch is considered. Let us suppose that the first
two samples have already been coded and that the third one has to be coded.
The code to be used for sample No. 3 may be chosen among eight possible
codes according to the value of sample No. 2. In particular, this is done by
subdividing the range of sample No. 2 (i.e. 0. . . 1023) into 8 intervals, and
associating a different code (for the third sample) to each of these intervals.

It may be noted that, in general, small value samples are more likely to occur
than large values; consequently, so as to optimize the use of the 8 codes, it
is not advisable to use intervals having the same length, because in this case
codes related to large values would be very rarely used. On the contrary, the
range 0. . . 1023 is partitioned in such a way that the probability for the sample
No. 2 to fall into each interval be the same; this leads to have shorter intervals
in the low amplitude side of the available range. In Fig. 5 the 8 possible
distributions of sample 3 are shown (again with reference to the simulated
data [4]) according to the interval which sample 2 belongs to.

This conditioned probability model can be extended to all the samples that
are not in the first position in the bunch, for every bunch length. However, if
real-time implementation constraints are taken into account, and in particular
the need to reduce the memory size of the model, it is not advisable to have an
exceedingly large number of codes. Consequently, samples are partitioned into
only four classes, as shown in figure 6, to keep the complexity of the model low.
This limitation does reduce the efficiency of the model but the reduction is only
of the order of 0.6% [5]. Class 1 and 2 are dedicated to isolated samples and to
samples that are at the beginning of bunches, respectively; a simple probability
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model is applied to each of these classes, because obviously the use of multiple
codes as mentioned above does not apply. Class 3 is for samples in intermediate
position in the bunches, and class 4 for samples at the end of bunches; samples
in these classes are coded exploiting temporal correlation with the conditioned
probability model described above. Eight symbol frequency tables are used for
each of these two classes.

This coding scheme will be referred to as TC, Temporal Correlation, in Sec. 4.

2.2 Time information

As already mentioned, in the so called ALTRO data format time information
is represented as the 10 bit cardinal number of the time-bin of the last sample
of the bunch. This representation can be easily and effectively substituted by
the distance between two consecutive bunches, i.e. the number of zero samples
between the bunches. Entropy coding can then be applied to this distances.

2.3 Bunch length

In the ALTRO data format, the bunch length is represented as a 10 bit number
of samples in the bunch.

Since no apparent correlation with other data (e.g., length of adjacent bunches)
exists and no better model (i.e. a model of events with lower entropy) could be
found, this information has been coded directly using the simple probability
distribution.

2.4 Other lossless coding models

In this subsection, other coding models that have been investigated, but have
not provided sensible improvement for lossless compression of the TPC data,
are briefly described.

Space correlation

In the trial to exploit space correlation, two models have been considered. The
first is based on spatially conditioned probability, the second on a predictive
model.
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The former is the equivalent, in the spatial domain, to what has been done
for time correlation. More precisely, different codes are available to code the
samples; for each sample, the appropriate conditioning is selected according to
the value of the samples in the same time-bin but in adjacent pads. However,
this method resulted in providing poorer performances when compared with
the one which exploits time correlation (the comparison being done using the
same model complexity, i.e. number of probability distributions available in
memory). Moreover, these two techniques can not be easily combined, i.e. it is
not possible to exploit both temporal and spatial correlation at the same time,
because this would require a very large number of probability distributions (i.e.
code tables).

The second method that has been investigated consists in predicting the sam-
ple values from the values of the samples in adjacent pads and coding the error
of this prediction; unfortunately, also for this model performances resulted not
to be very good.

It has also been noted that pulses on one channel often resemble temporally
shifted versions of those in adjacent channels; then, with the aim of improving
performances, both the two methods described above have been modified by
adding a first stage which shifts pulses so as to increase spatial correlation with
adjacent channels. However, although performances have slightly improved,
the increase in efficiency was much lower than expected.

From these experimental results it appears that it is not simple to exploit
spatial correlation (i.e. correlations between adjacent channels). There might
be more sophisticated and complex models able to exploit it, but relatively
simple models seem to fail. It may be noted that an advantage of exploiting
temporal correlation only is that the system remains very simple, since it has
to process only one channel at a time and does not need a large memory area
to store data from adjacent channels.

Models for capturing higher order time correlation

The code for one sample could be chosen according to the value of several
previous samples instead of only the adjacent; however, even for samples which
are two time bins apart the temporal correlation resulted very low, so that
the improvement is so low that the gain achieved is not worth the increase in
complexity of the model given by the increased number and size of codes.

Correlation between bunch area and sample values

Let us define as area of the bunch the energy of the bunch, i.e. the sum of
its samples. It appeared that pulses with same area and length have similar
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shapes; consequently, it could be possible to predict sample values from the
“shape” of the bunch they belong to. More precisely, the idea was to code first
the area of the bunch. Then, each sample value 3 is predicted according to the
length and area of the bunch, and from its position in the bunch; finally, the
prediction error of the sample value is entropy coded.

Experimental results showed that, even if a relevant gain may be obtained
using this coding model, unfortunately this is not enough to compensate for
the cost necessary to the coding of the area.

3 Lossy compression of TPC data

The objective of investigating lossy compression of TPC data is to explore the
possibility of further increase the compression ratio and at the same time to
preserve in the compressed signal the quantities that are of main interest for
the experiment. These quantities are the energy, and the temporal and the
spatial positions of clusters [1], where a cluster is a group of non-zero samples
which are temporally and spatially adjacent, so that they belong to adjacent
time-bins or pads in the same pad row. In other words, one cluster is made
of several bunches in adjacent pads in the same pad row. Energy and posi-
tions of clusters are the quantities by which particle trajectories inside the
TPC are measured, processing the data coming from each whole row of pads
(about 100 pads). Particle trajectories will be calculated off-line, at the end of
the experiment, by appropriate algorithms that are presently being developed
and tuned at CERN using simulated data. The main idea is therefore not to
preserve the value of each single signal sample, but to code the samples with
the lowest number of bits so that the energy and position of the clusters, the
only quantities by which the particle trajectories are measured, are preserved.
Ideally the optimal acquisition system would directly evaluate such quantities
on-line and directly compress these quantities before storage. Unfortunately
this approach would require data coming from one whole row. The compres-
sion system receives data from up to 4 000pads, and the order in which they
are received depends on the physical connections of front–end cards to the
read–out chambers and is not row-by-row. This means that, in order to ap-
ply “row–oriented” algorithms, it would be necessary to store data from all
4 000 channels before starting computation of energy and cluster positions
and coding. This process would introduce delay and memory requirements to
the acquisition system that cannot easily be satisfied.

Therefore, appropriate quantities have been defined which are related to the

3 with the exception of one sample per bunch, which can be easily obtained by
subtraction.
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signal coming from each pad, i.e. referred to bunches, from which the energy
and the temporal and the spatial position of the clusters can be successively
computed. Such quantities are the area (or energy) of a bunch, defined as the
sum of its samples, and the Center Of Mass (CoM), defined as its temporal
position. In the post-processing phase the energy of the cluster can be cal-
culated as sum of the energies of the bunches it contains and its position as
weighted average of the same bunches.

It has to be noticed that the area and the CoM of the bunches are coded
losslessly; this means that, even if the compression does not preserve the single
values of the samples, it does preserve these quantities without any loss. To
be more precise only a quantization error for CoMs remains present, but such
error can be reduced below the noise error of the original signal.

3.1 Area of bunches

The area of a bunch is simply evaluated as the sum of the values of its samples.
Direct coding on probability distribution is applied to the value obtained.

3.2 Center of mass of bunches

The position of the CoM of a bunch is evaluated as the average temporal
position of its samples, i.e. tCoM = (

∑
i si ti) / (

∑
i si), where si and ti are

the values and the temporal positions of the samples of the bunch, respec-
tively. Similarly to what has been done with the temporal information in the
lossless approach, CoM positions are coded differentially, i.e. their values are
substituted by the distances between CoMs of consecutive bunches. However,
the distance information can not be coded as is, i.e. without quantization;
in fact, the number of possible values, although finite, is very large, so that
the entropy of such source is very large. Moreover, direct coding of the exact
CoMs differential positions is also useless in practice because such precision
gives an error which is far below the intrinsic noise of the original signal. Con-
sequently, a quantization step is appropriate before coding, in order to reduce
the number of possible values that CoMs can assume, and consequently to
reduce the entropy.

Obviously, quantization can be applied with different quantization steps; by
increasing the resolution, i.e. decreasing the quantization interval, the quan-
tization error decreases while the entropy increases. In order to set the quan-
tization step, it makes sense to impose a quantization error comparable with
the error which is intrinsic to the data. The CoM, in fact, is affected by an
error that is due to the quantization of the samples performed by the analog-
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to-digital converters (ADCs) in the very first stages of the acquisition chain.
As shown in appendix A, the mean square error on the position of the CoM
introduced by the quantization of the samples is

σ2
CoM = σ2

ε

∑
B

(∑
i (ti − tCoM )2

A2

)/
C(B) (1)

where B is the set of bunches being considered, C(B) its cardinality, ti the
temporal position of sample i in the bunch, tCoM the CoM of the bunch, A its
area, and σ2

ε the mean square error on the sample values (equal to 1/12). For
the simulated data [4] used in this study it may be found that

√
σ2

CoM = 0.0129 · Ts

In table 1 this error is compared with the error introduced by the CoM quan-
tization. It may be seen that for a quantization interval equal to Ts/32, where
Ts is the width of a time-bin, i.e. the sampling period of the ADC, the error
due to the CoM quantization is lower than the error due to the ADC quanti-
zation. Consequently, a resolution equal to Ts/32 has been chosen; however, it
has to be added that bigger quantization intervals, in particular, Ts/4 and Ts,
have also been considered in the performance estimations, due to the moderate
increase in the error with respect to a significant decrease in bit rate.

The two parameters considered, i.e. area and CoM, provide a good description
of the bunches in the case of simple bunches. However, such description is not
sufficiently detailed for bunches which result from the superposition of two
traces; in this case, two temporally close pulses are registered by a pad, with
their tails overlapping, so that they are represented by a single bunch in the
ALTRO data format. In this case it is necessary, before evaluating area and
CoM of these bunches, to separate the contributions due to the different traces.

Rigorously, this operation should be performed exactly in the same way as it
will be done by the above mentioned off-line clustering algorithms. However,
since these algorithms are not completely defined yet, in the present study a
simple technique has been used since the focus here is on the possibility of
higher compressions rate; it is likely in fact that specific splitting algorithms do
not imply relevant changes in the entropy of the quantity to code. Specifically,
each bunch having a relative minimum is “cut” in correspondence with the
minimum (Fig. 7); two new bunches are then obtained, and the sample in the
intermediate position, i.e. the one of the local minimum, is divided by two,
assigning half of it to each bunch. In terms of compression performances, this
approach, though simple, should yield results very close to those provided by
the future, more sophisticated, algorithms.

10



3.2.1 Reconstruction of the TPC signal

The compressed signal, represented, as already mentioned, by the area and the
CoM of the bunches, has to be decompressed in form of a standard sampled
signal to be transparent with the standard off-line processing stage, i.e. to be
taken back to the ALTRO data format, in order to be processed by the off-
line algorithms (which are, in fact, designed to process this kind of data). A
procedure has been developed which, starting from the area and the CoM of
the bunch, reconstructs samples; obviously some errors are introduced on their
values if these are compared to the original signal. The precise reconstruction
procedure is described below.

The objective is to capture the average shape of pulses so as to minimize the
sample by sample reconstruction error. All the bunches are classified according
to the {area, CoM} couple 4 and aligned at their CoM, and the mean value of
the samples is computed for each time-bin. Thus, such operation defines a sort
of “average bunch” (AB). Obviously, this AB has the same area and CoM,
because the computation of the mean value does not alter these parameters.
Moreover, it may be noted that this operation minimizes the mean square error
between the actual and the mean samples. What is obtained is a “library” of
ABs, each characterized by a different {area, CoM} couple.

The procedure then associates to each {area, CoM} couple the corresponding
AB, and re-builds the temporal sequence of samples using the samples of the
ABs. In this way, the reconstructed signal, though having possibly different
samples with respect to those of the original one, is made of bunches having
same area and CoM of those of the original signal, and with minimum error
between each original and reconstructed sample (figure 8).

4 Simulation results

In this section, simulation results related to the described compression algo-
rithms are reported. In the first set of simulations, the bit rate after compres-
sion is estimated by evaluating the entropy of the quantities to be coded. Then,
the actual measure of the data volume is performed on one of the described
lossless compression techniques, using arithmetic coding as entropy coder. Fi-
nally, these performances are compared with those given by a standard loss-
less compression algorithm such as gzip to evaluate the gain in compression

4 Actually, only the decimal part of the CoM is considered. The integral part, in
fact, does not carry any information about the sample values, i.e. the shape of the
bunch, but refers only to the global shift of the bunch itself.
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efficiency achieved using appropriate models instead of existing standard tech-
niques.

4.1 Estimation of compression factors using entropy measures

The results for the lossless compression are shown in figure 9. The first column
(ALTRO) represents the original volume of data in the ALTRO data format.
The second column (EC) shows how this data volume is reduced if entropy
coding is applied to the three fields of the ALTRO data format. The third one
(SP) refers to the method which uses three different codes to code samples
according to their position in the bunch (Sec. 2.1.1). Finally, the fourth column
(TC) reports results of the approach that exploits temporal correlation, using
20 codes according to the position and the value of the preceding sample
(Sec. 2.1.2). It may be noticed that the latter provides a compression of data
to 49.2% of original size.

In figure 10 the results for the lossy technique, with several quantization levels,
are compared with the ALTRO data format and the 20 code TC lossless
technique considered above. It may be noticed that with the quantization
level equal to Ts/32 the volume of data is reduced to 34.2% of its original size.

4.2 Measured compression factors using arithmetic coding

The compression factors presented in the previous paragraphs are estimated
by measuring the entropy of the quantities that have to be coded. In practice,
using a real coding system, performances might be worse than these estimates
depending on the efficiency of the adopted entropy coder. So as to evaluate
the actual performances of the 3-code SP lossless technique presented in sub-
section 2.1.1, the arithmetic coder presented in [6] has been applied, with a
fixed probability model of the symbol source. The resulting bit rate is 30.6
bits/bunch, which is, as expected, very close to the estimated 30.3, obtained
using entropy.

Similar results are expected implementing the arithmetic coder for the TC
technique (subsection 2.1.2); also in this case, a slightly higher bit rate would
probably result with respect to the entropy value.
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4.3 Comparison with a standard lossless compression algorithm

To provide a comparison with a standard lossless compression tool, the same
data considered above have been compressed with gzip, which is an imple-
mentation of the well-known Lempel-Ziv algorithm [7]. With this tool, using
the highest level of compression (i.e., option “-9”) the data is reduced to only
81.5% of its original size. In fact, the Lempel-Ziv algorithm performs well when
strings or substrings repeat frequently in the data stream to be coded, as for
example happens in text files; this, claearly, is not the case for TPC data.These
results show that blind techniques, i.e. techniques that do not require explicit
modeling of the source, are not efficient for our data.

5 Complexity of the compression algorithm

Finally to evaluate the feasibility of the real-time implementation of one of the
lossless techniques proposed, namely the TC one, the number of operations per
symbol and per second that have to be executed by the compression system
have been estimated (see Table 2). Such operations mainly consist in a code
selection step according to the type of symbol (bunch length, time information,
or sample value), to the sample position, and to the previous sample value; the
computations for the arithmetic coder considered above have also been taken
into account. The number of operations per second is evaluated by assuming
the worst case, in which one compression system will have to process up to
4 000 channels and 0.28 GSymbols per second. In table 3 the same results are
shown for the lossy algorithm. The frequency distribution tables will need 40
kBytes of memory for the lossless technique and 4 kByte for the lossy one.
Operations will be performed in 32 bit precision arithmetic.

The numbers obtained show that the described compression system can be
easily implemented in real-time, either on DSPs, field programmable gate ar-
rays, or ASICs. It may be worth noticing that even lower operation counts
can be obtained by using more sophisticated arithmetic coders, such as those
presented in [8,9], which do not need multiplications nor divisions but only
additions and shifts.

6 Conclusions

Lossless and lossy compression approaches for the data generated by the TPC
chamber in the ALICE experiment have been investigated. For the lossless
technique all the samples are entropy coded using models that also can capture
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temporal correlation. For the lossy approach the main idea is to preserve the
two quantities that are of interest for the experiment (i.e. area and center of
mass of bunches are coded without loss). The lossless approach allows a data
compression to 49.3% of their original size using low complexity models such
that real time implementations on low cost electronic is possible. The lossy
approach achieves further compression rates in the range from 34.2% down to
23.7% accepting a quantization noise on the CoM position and errors on the
sample by sample values, that in principle do not affect the results on physical
quantities of interest for the experiment.

In both cases the compression algorithm can be implemented using an arith-
metic coder; the overall computational complexity turns out to be reasonable,
so that a real-time implementation of the system on off-the-shelf electronic
devices or on simple ASICs is feasible.

A Appendix: Error on the evaluation of the center of mass of a
bunch due to sample quantization

In section 3, the temporal resolution of the quantized CoMs according to the
estimate of the intrinsic error in the data is derived. The samples, indeed,
are affected by the error due to the quantization made by the ADCs in the
very first stages of the acquisition chain; this error, obviously, propagates in
the calculation of the CoM. As an example, in figure 11 it is shown how
the quantization error on the samples propagates on the CoM in the case
of a 3-sample bunch. It makes sense to increase the resolution of the CoM
quantization up to the point where the two errors are of comparable energy.

The aim of this appendix is to quantify this error by evaluating its mean value
and standard deviation. Since these quantities depend on the bunch shape, the
average are evaluated on all bunches of the simulated data used in the rest of
this work.

Let si be the non-quantized sample values, ŝi = si + εi the quantized ones
and ti the relative instants of time. Let us suppose that the quantization error
εi of each sample be uniformly distributed in the interval (−0.5, +0.5] and
independent on the errors on the other samples. Then

E[εi] = 0

σ2
ε =1/12

E[εiεj] =




σ2
ε i = j

E[εi] E[εj] = 0 i �= j
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that is, denoting with δi,j the Kronecker symbol,

E[εiεj] =σ2
ε δi,j

The CoM calculated with the non-quantized values is:

tCoM =

∑
i si ti
A

where A =
∑

i si is the area of the bunch; in turn, using the quantized values,
the CoM is:

t̂CoM =

∑
i ŝi ti

Â

where Â =
∑

i ŝi. For tCoM the partial derivatives with respect to si are

∂ tCoM

∂si
=

∂

∂si

(∑
j sj tj∑
j sj

)

=
ti∑
j sj

−
∑

j sj tj(∑
j sj

)2

and the total differential is

dtCoM =
∑

i

∂ tCoM

∂si

dsi

It follows that the error on the CoM due to the sample quantization is

εCoM =
∑

i

∂ tCoM

∂si
εi

=
∑

i

(
ti∑
j sj

−
∑

j sj tj(∑
j sj

)2

)
εi

=

∑
i (ti − tCoM ) εi

A

Its statistics is described by:

E[εCoM ] =E

[∑
i εi (ti − tCoM)

A

]
=

∑
i E[εi] (ti − tCoM)

A
= 0
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σ2
CoM =E[ε2

CoM ]

=E



(∑

i εi (ti − tCoM )
)2

A2




=

∑
i,j E[εi εj] (ti − tCoM ) (tj − tCoM)

A2

=σ2
ε

∑
i (ti − tCoM)2

A2

max(εCoM) =

∑
i 0.5 |ti − tCoM |

A
= 0.5

∑
i |ti − tCoM |

A

By averaging these quantities on a set of bunches B with cardinality C(B), we
get

E[εCoM ] = 0

σ2
CoM =σ2

ε

∑
B

(∑
i (ti − tCoM)2

A2

)/
C(B)

max(εCoM) = 0.5
∑
B

(∑
i |ti − tCoM |

A

)/
C(B)

By evaluating the sums on the set of simulated bunches B provided by CERN
in [4], it results

E[εCoM ] = 0√
σ2

CoM =0.0129 · Ts

max(εCoM) = 0.0293 · Ts
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Fig. 1. Simulated TPC data (according to [4]) showing the possible temporal be-
haviour of the signal on a TPC pad.
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Fig. 2. Classification of samples according to their position in the bunch. In the
figure, different rows refer to bunches having different length. Three classes are
used: isolated sample, first or last sample, and sample in intermediate position. The
entropy and the percentage of the samples belonging to each of the three classes is
also reported; the average entropy of this model is 5.59 bits per sample.

21



0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sample value

P
ro

ba
bi

lit
y

Class 1

Class 2

Class 3

Fig. 3. Probability distributions for the samples belonging to the 3 classes shown in
Fig. 2

22



code 2code 1 code 8

sample 1

sample 3

sample 2

Fig. 4. Example of conditioned probability model exploiting temporal correlation
between sample 2 and sample 3 in a three sample bunch. One out of eight different
codes is chosen for sample 3, according to the value of sample 2.
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Fig. 6. Classification of samples exploiting both position in the bunch and temporal
correlation. As in Fig. 2, different rows refer to bunches having different length. A
total of 20 codes is used: one each for classes 1 and 2, eight for class 3, eight for
class 4, and two for bunch length and time information.
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Fig. 7. Example of “cut” of a bunch originated by two temporally close traces. A
5-sample bunch is cut into two 3-sample ones.
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Fig. 8. Example of signal reconstruction for a bunch having area equal to 63 and
decimal part of the CoM equal to 0.7. A 5-samples bunch is generated.
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Fig. 9. Performances of several lossless techniques compared to the zero suppressed
ALTRO data format. ALTRO: original ALTRO data; EC: entropy coding of sample
values, bunch length, and time information; SP: classification of samples according
to their position (3 codes used); TC: coding technique that exploits temporal cor-
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Quant. step/Ts bits/bunch mean/Ts σ/Ts max/Ts
Rel. no of
zeros (%)

1 5.1 -1.17·10−2 0.2758 0.4998 17.94

1/2 6.1 -2.4·10−3 0.1291 0.2499 20.28

1/4 7.1 -1.9·10−3 0.0658 0.1249 21.24

1/8 8.1 -5.78·10−4 0.0330 0.0625 22.76

1/16 9.1 -1.86·10−4 0.0161 0.0312 23.74

1/32 10.1 -5.28·10−5 0.0081 0.0156 24.29

ADC quantization only 0 0.0129 0.0293 —

Table 1
Mean value, standard deviation and maximum value of the quantization error of
the CoM position for different resolutions and corresponding bit rates, compared
to the intrinsic error due to the ADC quantization (bottom row). The last column
represents the percentage of bunches for which the quantization error is zero.
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sums multipli-
cations

divisions jumps
memory
accesses

Time correlation (op/symb.) 10 – – 8 1

Arithmetic coding (op/symb.) 93 12 2 15 4

Total (op/symb.) 103 12 2 23 5

Time correlation (op/s) 2.8 G – – 2.2 G 0.28 G

Arithmetic coding (op/s) 26 G 3.2 G 0.55 G 4.0 G 1.1 G

Total (op/s) 28 G 3.2 G 0.55 G 6.2 G 1.4 G

Table 2
Evaluation of the complexity of the algorithm for lossless compression. The number
of operations per second refers to the worst case processing of upto 4 kchannels and
0.28 GByte/s.
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sums multipli-
cations

divisions jumps
memory
accesses

Area and CoM (op/symb.) 1.9 0.27 0.21 0.48 0

Arith. coding (op/symb.) 69 8.2 0.85 11 1.7

Total (op/symb.) 71 8.5 1.1 12 1.7

Area and CoM (op/s) 516 M 75 M 58 M 133 M 0

Arith. coding (op/s) 19 G 2.2 G 0.23 G 3.1 G 0.47 G

Total (op/s) 20 G 2.3 G 0.29 G 3.2 G 0.47 G

Table 3
Evaluation of the complexity of the algorithm for lossy compression. The number of
operations per second refers to the worst case processing of up to 4 kchannels and
0.28 GByte/s.
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