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Abstract

While a first generation of video coding techniques proposed to remove the redun-
dancies in and between image frames to get smaller bitstreams, second generation
schemes like MPEG-4 and MPEG-7 aim at doing content-based coding and inter-
activity. To reach this goal, tools for the extraction and description of semantic
objects need to be developed. In this work, we propose an algorithm for the extrac-
tion and tracking of semantic objects and an MPEG-7 compliant descriptor set for
generic objects; together, they can be seen like asmart camerafor automatic scene
description. Some parts of the proposed system will be tested by software.

The tracking algorithm has been laid out so as to follow generic objects in
scenes including partial occlusions and merging. To do this, we first localize each
moving object of the scene using a change-detection mask. Then, a certain number
of representative points calledcentroidsis given to the objects by a fuzzy C-means
algorithm. For each centroid of some current frame, we try to find the closest
centroid in the previous frame. Once we found these pairs, each object can be
labelled according to its corresponding previous centroids.

The description structure is a subset of the DDL language used in MPEG-7.
The main concern was to find a simple, but flexible descriptor set for generic ob-
jects. A corresponding C-structure for software implementations is also proposed
and partially tested.



Chapter 1

Introduction: the MPEG-7
camera

During the whole second part of the twentieth century, mankind proceeded to dig-
itize whatever it had written, composed or painted once. But while no particular
effort was required to store even huge text documents, sound and still images re-
mained a challenge for a long time, and it was hardly possible to dream about
digital video thirty years ago. Around 1970, however, there was an explosion of
interest in the field of image processing and analysis which lent, about a decade
later, to the first mature image data compression techniques. But while still-image
algorithms like JPEG performed rather well, the first video compressors were rudi-
mentary since they processed the stream like a bunch of still images (MJPEG). It
was soon noticed how big the savings would be if one was concerned about the
links between the images of a sequences. This funded a first generation of video
compression techniques, including the well-known H.261 / H.263 and the first two
MPEG standards. It is thanks to these techniques that we can access virtually any
video document on digital media like DVD’s or the internet today.

However, the storing and processing efficiency can be further increased if one
adds some scene understanding to the video system; also, new possibilities for
automatic image classification and retrieval emerge. This is why a second cod-
ing generation has been studied since 1985 and is still under standardization. The
keyword for those new techniques iscontent-based interactivity, which means that
video is not anymore processed in terms of pixels and frames, but of its content.
In a news sequence for example, we would encode the background only once and
then send a “talking head”, or even just its moving parts like the mouth and the
eyes. This does not only save bits, but it facilitates compositing and other visual
effects too. For these techniques to be efficient however, semantically meaningful
information has to be extracted from the input stream with as few human input as
possible; therefore, advanced image analysis and machine vision tools are needed.
Today, the automatic description of even simple scenes remains an unanswered
challenge.
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Starting with this existing coding knowledge, we would like to build a system
to describe generic video scenes in an MPEG-7 compliant format. This means that
semantic objects have to be extracted from the input stream, tracked over time and
finally described and stored textually. The whole system forms a smart camera
which could be used for automatic video surveillance, as an interface with virtual
realities or for coding.

1.1 Objectives and starting point

Some months ago, a camera which is able to describe the position, color and motion
of simple objects moving in front of a uniform background has been presented to
the public. Interacting objects and camera movements were not supported, but the
processing happened in real-time. While the applications field for such a system is
restricted, it is an interesting example of a machine that “understands” what it sees
to some degree. If complex situations including interacting or occluded objects
and camera movements could be handled, the applications would be countless.
Such a surveillance camera may detect and identify fire, intrusions or speeding
automatically; a similar system may also serve as an interface between actors and
computer-generated realities. And of course, TV studios could generate low-bitrate
video streams in an automated way. The generated descriptions can then be stored
and retrieved efficiently using some usual text-based search engine. . .

In our work, we would like to go one step away from the existing real-time
camera towards a system capable of describing generic scenes with some object
deformations and interactions like split/merge cycles and partial occlusions. We
will not however support moving cameras. Such improvements may be part of a
future work and will be briefly addressed at the end of this report. The camera
must describe the scenes in an MPEG-7 compliant way (XML text document) and
has to be fully automatic. While we would like to keep its theoretical conception
as general as possible, some specific aspects will be validated by software, with
processing speed not an issue. The developed algorithms are mainly intended to
be enhanced by semantic databases, self-learning algorithms, human input or other
technologies to form a truly generic smart camera.

Since this subject has already been explored at the EPFL Signal Processing
Laboratory, we will start with a software that was specifically designed for high-
way surveillance [1]. This program detects and tracks cars very accurately, but
is not able to handle merging or deforming objects in a satisfying way, because
it processes objects as one solid entity without any subparts. However, its opti-
cal flow based image segmentation and the object description by centroids makes
it very interesting for our own work. Many of the underlying theoretical aspects
like fuzzy C-means clustering and optical flow estimation were studied by Roberto
Castagno and published in 1998 [2, 3]. To get an insight into the traditional image
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and signal processing techniques that he may encounter in this report (mathemati-
cal morphology, filtering), the interested reader should refer to standard works like
[4, 5].

1.2 Organization of the report

Since our work is closely related to the emerging video coding techniques, we
begin with a historical overview of the MPEG standards and show how they may
serve our camera. Then, we go into the localization and tracking of the objects;
after a detailed summary of the existing highway algorithm, the new improvements
as well as their potential limitations will be described. Since most of the physical
features like color, texture or motion are extracted at this stage, this will also be
addressed. The aim of the improvements is to propose a system for the localization
and tracking of generic data filmed by a non-moving camera; since the software
implementation may bring some difficulties of its own, those will be discussed.

The next chapter is about the textual description of video scenes. Since we
know our target application, a subset of the standardized MPEG-7 descriptors will
be proposed to fit the data provided by the localization & tracking stage, but this set
is again chosen in a way allowing easy extensions or generalizations. To facilitate
the software implementation, a computer specific data-storage structure will be
proposed; the sharp separation between the data storage and the textual description
allows the replacement of our MPEG-7 output module by any other language.

Figure 1.1: The MPEG-7 camera

Finally, our proposition will be validated with different video sequences. Lim-
itations and further improvements will be discussed.

This structure follows the natural path of the visual information through the
camera: after its digitization, which is not part of the present work, semantic ob-
jects are identified and tracked over time. Their physical description is stored in
a specific C-structure and finally translated to DDL or some other description lan-
guage by an output stage. This data flow is shown in a detailed block diagram of
the camera which can be found in appendix A.



Chapter 2

Video coding standards

By standardizing video decoders for diverse applications and making them widely
available, the ITU and ISO groups, with their respective H. and MPEG standards,
contributed notably to the spread of digital video. An apposite by-product of this
process is the development of new image analysis and machine vision techniques.
In deed, the accompanying core experiments often ask for innovations to argue
in favor, or against, some contribution; they are mostly performed with a long-
term vision that is potentially beneficial for many industrial products. Therefore,
a short compression history allows us to recall some important video processing
milestones and outlines some links between our camera and the actual coding tech-
niques.

2.1 Pixel based coding: the first generation

Even though compression ratios of 200 can be achieved by first generation tech-
niques, the underlying idea is very simple: minimize spatial and temporal re-
dundancies by a combination of pixel-based coding schemes like transform cod-
ing, predictive coding, vector quantization or subband coding. The widely used
MPEG-1 (low-quality video, e.g., internet) standard provides a comprehensive ex-
ample of such techniques.

In a first step, the video stream is subdivided into spatially encoded intra-frames
(I), predicted (P) and interpolated (B) frames. Each frame gets further subdivided
into 16 x 16 pixel blocks. The intra frames are encoded exactly like a JPEG image:
each block is decorrelated by thediscrete cosine transform(DCT). The resulting
coefficients are then quantized according to the human perception: more for high
frequencies, not much for low ones. This is the stage where data get lost. After-
wards, the coefficients are zig-zag scanned and entropy encoded. Since I–frames
do not depend on other frames, they can be fully reconstructed even if some data
loss affected the previous frames; therefore, they are often calledkeyframes.

On the other hand, P–frames are partially reconstructed by moving each 16 x



2.2 Content-based coding 5

1 765432

I IBBPBB ...

Figure 2.1: MPEG image frames

16 block of the previous I-frame according to somemotion vector. The difference
between the motion-compensated and the actual frame is intra-coded again and
usually results in a very short stream. To get the motion vectors, each I–frame
block is compared to the current frame in some limited range. The vector with the
shortest mean-square distance is kept.

I-frame P-frame

AA

Figure 2.2: Motion compensation

B–frames finally are bidirectionally interpolated between the P– and the I–
frames. They achieve the biggest compression ratio, but require the prior decoding
of the I– as well as P–frame. While the exclusive use of I-frames results in MJPEG,

(IBBPBBPBB)(IBBPBBPBB)

has proved to be an efficient sequence in many situations.

Even though they were designed for higher image quality/lower bit rates and
support features like half-pixel motion compensation, interlaced video or the 4:4:4
color format, the newerMPEG-2 (HDTV, DVD) or H.263 (very low bit rate cod-
ing) standards are essentially similar to the previous example.

2.2 Content-based coding

Second generation coding differs from the previous technology in that it does not
just decompose the images in square blocks, but rather tries to extractsemantically
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meaningfulinformation from them. The resulting content-based video streams are
not only smaller usually, but also easier to process than the pixel-based ones. We
can imagine a scene with some static background and moving actors: if the actors
are encoded separately, it is easy to remove one of them or to change the back-
ground. Also, when block-based motion compensation is used, the background
pixels that fall in a moving block have to be re-encoded. This is not the case with
content-based video. To illustrate some of the new visual concepts, we will have a
closer look atMPEG-4 [6].

Figure 2.3: Content-based video (example)

As before, the video stream is divided into I–, P– and B–frames. But instead
of forming square blocks, we try to get semantically meaningful entities called
video object planes; each one of those VOP’s is a snapshot of the corresponding
video object(s. figure 2.3). Since such objects can be arbitrarily shaped, the usual
DCT-Huffmann encoding cannot be used anymore. Instead, shapes are encoded
using context-based arithmetic encoding and textures by a shape-adaptative DCT.
The detail of those techniques is beyond the scope of this work, but is thoroughly
explained in the MPEG-4 video verification model [7]. Motion is again encoded by
motion vectors, with the block-based matching techniques having been extended
to arbitrary shapes. The full image is finally reconstructed by VO composition.

But while it is easy for a video decoder to reconstruct an MPEG-4 stream, no
encoder gets the right objects out ofany input sequence so far. In fact, this re-
quires full scene understanding by the machine with limited human support. The
purpose of one part of our work is precisely to get semantic objects out of generic
video scenes, so it can be thought of as of a partial MPEG-4 encoder. It has to
be reminded here that MPEG-4 includes many other aspects which will not be ad-
dressed.
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The second part of our work addresses the description of the scene, which can
again be illustrated by the means of an emerging standard.

2.3 Multimedia databases and MPEG-7

The permanent growth of publicly available data makes it increasingly difficult to
find the wanted information. Powerful search engines have been developed for text
documents, but there is no such thing for images or audio so far. In deed, it is
necessary not only to extract, but also to be able to describe the image content for
retrieval. The recent MPEG-7 work aims at a standardized description of moving
pictures and other image documents. To fulfill this goal, the MPEG has standard-
ized a set ofdescriptorsand description schemeswhich are independent of the
actual video encoding format (MPEG, JPEG, analogue movie, . . . ), but can be
extended at will thanks to the description definition language DDL. Essential ob-
ject characteristics like shape, texture or motion as well as many general features
(sequence name, location, links, etc.) can be described textually and retrieved or
matched with other descriptions, for example one of a sketch, by usual text-based
search engines. Image analysis is also facilitated a lot since it is not necessary
anymore to go back to the actual video data to get some visual information.

This is precisely the interesting aspect of content description for our project. In
deed, if a camera is able to describe fire, intruders or speeding cars so that they can
be matched with a generic description of a similar object, fully automated surveil-
lance becomes possible. And in a gaming application, the relevant features of
the player could be filtered automatically and sent alone, sparing the costly video
transmission. So we will try to select an appropriate subset of the wide descriptor
selection proposed by the MPEG for our application. The goal is to describe any
kind of object without too much overhead and with no necessity for computation-
ally intensive choices, for example ofwhichcolor descriptor to choose.

So the smart camera is an illustrative example of recent video coding tech-
niques and of their practical applications.



Chapter 3

Localization and tracking of
objects

For a video scene to be described, its basic building blocks, the semantic objects,
have to be localized and tracked over time. This is a challenging task, because
physical objects are normally not homogeneous with respect to low-level features
such as color, texture or optical flow. In this chapter, we propose an algorithm
that aims at the automatic segmentation and tracking of scenes including partial
occlusions and interacting objects. Since object features have to be extracted for
the chosen method to work, this issue will be addressed too.

Over the last years and in part thanks to MPEG-4, many segmentation and
tracking techniques have been proposed. Classical methods that are based on
change detection masks combined with an affine or perspective motion model gen-
erally fail to produce semantically meaningful objects and do not provide local mo-
tion since a single parametric motion model is used. Meier and Ngan [8] success-
fully got round those difficulties by using a morphological motion filter together
with a Hausdorff object tracker. However, their work does not track interacting ob-
jects side-by-side. Even more sophisticated algorithms such as the semi-automatic
segmentation presented in [9] use 2-D mesh-based object tracking to follow the
boundary, motion and intensity variations of mildly deforming objects. But while
this method accounts for occlusion, the object boundaries have to be marked man-
ually on some keyframes.

Our work combines an existing change detection mask and object clustering
system [1] with a new centroid tracker. The goal is to track partially occluded
objects accurately. Also, we would like to follow objects that merge and evolve
together independently. The new algorithm will be validated with video scenes
showing people crossing each other or playing volleyball together in front of a
simple background. The highway sequence used in the previous work will also be
used.
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3.1 The existing algorithm

As mentioned, we start with a program that was used to find and track cars in high-
way scenes. This system shows good performance on the scenes it was made for,
but looses track on more complicated videos. Its functionality can be subdivided
into three parts: the object-oriented segmentation, the clustering and the object
tracking. Each one of those parts shall be detailed now.

3.1.1 Object oriented segmentation: the object mask

The purpose of object-oriented image segmentation is to distinguish objects that
could be of interest from the background. To do so, the software uses a change-
detection mask: the current frame is compared with the previous as well as with
the next one. Pixels that change their value between those frames are considered to
be part of an interesting object and adequately labelled. Each closed region of the
change detection mask is then given a unique number in anobject mask. Obviously,
this technique is limited to moving objects, but it could be easily replaced by some
other algorithm relying on an object database for example.

Figure 3.1: A highway scene and its object mask

Also, some pixels may change their value even though they do not belong to
an interesting image part, so post-processing techniques are applied to reduce the
errors. First,shadowsare removed by a simple threshold method (s. figure 3.2):
each object is scanned horizontally; the gray levels of the first and the last scanned
pixels are used to form a threshold line. The pixels located between the reference
pixels which have a lower luminance value than the threshold line (and some se-
curity marginδ) are then considered as shadow pixels. This operation is repeated
vertically and pixels marked as shadows in both scans are removed from the ob-
ject mask. Unfortunately, object pixels which are darker than the threshold line
are removed from the mask too. These problems can be avoided with more so-
phisticated methods. Stauder et al. for example make assumptions on the unknown
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3-D geometry of the scene to model and track shadows independently [10]. Such
improvements however are beyond the scope of this work.

Figure 3.2: Shadow extraction principle

A background image can also help to get better results. If it is compared with
the extracted objects, similar parts can be removed from the object mask. Also,
objects that are smaller than some predefined threshold size may be suppressed.

3.1.2 Feature extraction and centroids: the object clustering

To get a representative description of the objects, the highway software uses centroid-
based clustering. Its purpose is to subdivide each object in one or more subregions
calledclusters, which have homogeneous characteristics with respect to some pre-
defined features. Each cluster is represented by acentroid vectorvj , with j the
index related to the features, representing its “gravity center”. The number of clus-
tersc per object was chosen so as to assign more centroids to large objects than to
small ones. The empirically chosen formula is

c = M(1− e
N
300 ) (3.1)

whereM is the maximum admissible amount of centroids andN the number of
pixels for one object.

To get the clusters, a variant of the hard C-means algorithm calledFuzzy C-
Means clustering(FCM) is used [3]. This algorithm aims at evaluating the parti-
tion that minimizes the functionalJ expressed by

JFCM (U,v) =
N∑

k=1

c∑

i=1

um
ik(dik)2 (3.2)
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with N the number of pixels in the object andc the desired number of clusters.
U is called themembership matrixanduik represents the degree of belongingness
of the feature vectorfk to the classi; uik ∈ [0; 1] ∀i, k and

∑c
i=1 uck = 1 ∀k.

The weighting exponentm ∈ [1,∞) controls the amount of fuzziness,m = 1
corresponding to the hard algorithm. The distance between theith centroid vector
vi and the feature vector corresponding to thekth pixel fk is measured by the
Mahalanobis distance, withF the total number of features:

dik =

√√√√
F−1∑

j=0

(fkj − vij)2

σ2
j

(3.3)

σ2
j is the standard deviation of featurej over the entire image. The fuzzy C-means

algorithm iterates, evaluating new centroids and a new fuzzy partition at each step,
until stability is reached.

In the actual clustering system, the fuzzy algorithm is run two times usinga
priori as well asa posteriori feature reliability measures for its initialization. A
flowchart is given in [1].

3.1.3 Object tracking

The tracking has three main functions:

1. assign the same label to a particular object over the whole sequence

2. detect and take care of new objects

3. detect and properly process disappearing objects.

Even though this looks simple, there are some difficulties. First, an object may
grow or shrink and change its shape over time; the tracking must nevertheless
perform properly. Then, the splitting of an object may form new regions in the
object mask; we have to distinguish this particular situation from an object that
enters the scene. Also, objects may “disappear” because they merge with other
objects or get partially occluded; it is essential to detect this.

The car tracking algorithm projects each object of the previous frame(n −
m) to the current frame(n) by motion prediction. To get the motion vectors, an
estimation method developed by Lucas and Kanade is used. Then, the Euclidean
distance between the objects in frame(n) and the motion compensated objects is
calculated. The object with the shortest distance to the prediction of an objectA in
frame(n−m) is considered to beA in (n).

New objectsare detected using the object mask. In fact, if there are more
objects in the current than in the previous mask, one of them must be new; it is
considered to be the one with its gravity center most away of the projected gravity
centers. There is, however, no distinction between a splitting and a real new object.
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Frame (n-m) Frame (n)

Figure 3.3: Object tracking

Disappearing objectsare also detected with the mask: when an object is missing
in frame(n), it is considered to be the one with its prediction most away from the
remaining objects.

Frame (n-m) Frame (n)

Figure 3.4: Merging detection

Merging is localized using a tricky, but somewhat restricted way. Again, the
objects are projected to the current frame. There, the predicted (red on fig. 3.4)
as well as the actual objects (in black) get an imaginary circle that has the surface
of the object and its origin on the gravity center. If the sum of the actual and the
predicted radii is larger than the Euclidean distance between them, and this for
all the predicted objects, then they have merged. In order to try to track merged
objects side-by-side and not as one unit, apost-segmentationtechnique based
on feature comparison was considered. It basically looks for the old centroids that
look “closest” to the new ones. This will be the basic idea for the improved tracking
scheme.
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3.2 The improved tracking algorithm

As explained earlier, we would like to track objects accurately in generic scenes;
therefore, the tracking scheme has to be adapted. To further improve its efficiency,
we will also refine the object mask and the clustering somewhat. However, dif-
ferent segmentation or clustering algorithms may be substituted to them whenever
needed. The new tracking acts at a different level than the old one: instead of find-

YUV input
file

Improved
Object
mask 

Sub-
CentroidsObject oriented

segmentation
Centroid
tracking

C-means
clustering

Labeled
object mask

Figure 3.5: Overview of the improved tracking system

ing directly the(n) object corresponding to some(n−m) object using their gravity
centers, it tries to track thecentroidsfrom the previous to the current frame. If we
know to which object some centroids belonged in the previous frame and were able
to track them correctly, then we also know where the object is currently located,
because we have labelled its centroids.

3.2.1 The enhanced object mask

Until now, the clustering was performed on each object mask region, so merged
objects could have common clusters. Since one of our primary objectives is to
track merged objects side-by-side, we need to adapt the mask in order to be able to
give independent clusters and centroids to eachsubobject. To do this, we will try to
anticipate the position of merged objects prior to the clustering. This information is
approximately available if each previous cluster is projected to the current frame. If
projected clusters belonging to different previous regions are projected on a unique
object, this one gets further divided into subobjects. Also, the predicted label of
each object and subobject should be stored because it may be reused to give some
reliability to the tracking results. Since motion projection does not necessarily
produce an accurate result, the holes that may be left in the object mask are filled
out by recursive dilatation. The C-means clustering is then performed on each
subregion.

3.2.2 Refined C-means clustering: the subclusters

With the C-means algorithm, it can be that one cluster spans many disparate parts
of an object. This may be problematic when those parts move into disparate direc-
tions, like the parts of a person spreading his arms; in such cases, a centroid could
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have null mean motion while the corresponding parts actually move. To avoid
such situations, we will further subdivide the clusters into homogeneoussubclus-
ters. Each one of those then gets its ownsubcentroid. Doing so, we do not only
decrease the area described by one cluster, but we also increase their number, which
may be helpful for the tracking too.

3.2.3 Centroid tracking

For textual video description, it is of main importance not just to find semantic
regions in one frame, but to be able to follow them during the sequence. Since
we decided to extract some object features by centroid clustering, it seems rea-
sonable to look for similarities between the (sub)centroids of the previous and the
current frame to track them. Unlike the mesh-based approach, centroid tracking is
not bound to the actual shape of an object. In compensation, the hidden shape of
occluded objects is not known, but this is irrelevant for our application.

Before previous and current centroids can be paired, we need to define what
features should be used. At first sight, one may think that the more features are
considered, the better the tracking performs. For example, it would be impossible
to distinguish two similar cars just on their color; position and speed may certainly
improve the result. However, too many features are misleading: in our car example,
it is useless to match the color because it is the same in different objects anyway
and does not help to differentiate them. So features that are similar up to some
threshold in different objects have to be ignored.

For our camera, we propose to select some or all of the following features
depending on the application: position, motion, color and texture. The position
helps to find small disparate objects, but may not be a support for deforming or
overlapping ones. Motion is often very useful, especially to distinguish parts of an
object moving into opposite directions. It is of less help for solid objects going the
same way. As we will see later, the color may be used when the motion cannot be
accurately determined; it is worth to point out here that the used color space may
also affect the result: in the ordinary video color space YUV, perceptually similar
colors result in very disparate numerical component values, which are difficult to
match. Perceptual color spaces like Lab help to avoid these problems. The texture
is less important, but may serve as an indicator for the motion reliability. Of course,
other features can be considered when required.

Then, the previous centroids have to be projected to the current frame. For
the position, we use motion compensation once again. The other features however
keep their ancient value, because it is difficult to plan the evolution of color or mo-
tion without any high-level knowledge of the scene (3-D perspective model).

To form thepairs, it is necessary to find a way to measure the distance be-
tween centroids despite their disparate feature values1. The Mahalanobis distance

1thex andy coordinates are limited by the size of the picture, the color components usually lie
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provides a widely used solution for distance normalization. In our case, it would
also be recommendable to weight the features since one feature may not be able
to differentiate some objects as good as another one. The weighted Mahalanobis
distance between two centroidsu andv is:

duv =

√√√√
F−1∑

j=0

(wujwvj)1/2 ∗ (uj − vj)2

σ2
j

(3.4)

with

σ2
j =

N−1∑

k=0

(fkj − f̄j)2

N
f̄j =

N−1∑

k=0

fkj

N

wkj represents the relative weight of thejth feature in centroidk, F is the maximal
number of features andN stands for the number of pixels in the image.fk is again
the feature vector with respect to thekth pixel.

To define theweights, we suggest a method that was first proposed by Roberto
Castagno in [2]. He noticed that most motion-prediction algorithms perform very
poorly on uniform surfaces, while they show better results on textured parts. There-
fore, the motion should be weighted according to its reliability, which is given by
the eigenvalue product

√
λ1λ2 in the Lucas & Kanade method. Since on the other

hand color information defines uniform surfaces well, it may just be weighted
against motion as shown in fig. 3.6. There is no apparent reason to change the
weights of the position and texture, so they just get some constant value. The
actual values for those weights have to be determined experimentally; Castagno
found that weights of 0.1 for position and texture and a maximal weight of 0.675
for motion showed good results. For the Mahalanobis distance to be accurate, the
sum of all weights has to be 1.

Texture

Position

Color

Motion

λ1λ2

w
e
ig

h
t

Wt
WVmin

WVmax

Wp

Figure 3.6: Relative weights of the available features

between 0 and 255, while the motion may span any interval, depending on the sequence
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During the pairing, it is not sufficient just to attribute the closest previous cen-
troid to each current one, because this would force the appearing centroids of some
new object to be paired with old ones. One possible way, which we use in our
software, is to first take the best one-to-one pairs (current centroid with closest pre-
vious one and vice versa), which are removed from the list of centroids to pair. The
remaining ones are paired again, etc. , until no pair closer than a given threshold
dmax can be formed. The so-formed pairs are stored in a table with the related pre-
vious centroid as well as the corresponding Mahalanobis distance for each paired
current centroid, as shown in 3.1. From those pairs, it has to be determined which
objects belong together.

Current centroid 0 1 2 4 ...

Closest previous centroid 0 1 3 4 ...
Mahalanobis distance 0.18 0.20 0.34 0.12 ...

Table 3.1: Table for centroid pairs (example)

Relating centroids to objects and subobjects

The purpose of this essential part of the tracking is to follow individual objects
through the scene, based on our centroid pairs. The main idea here is that, once we
know to which object some centroids belonged in frame(n−m) and where those
same centroids are in frame(n), we should be able to find the object corresponding
to the(n) centroids and therefore its label from(n−m).

Start Frame (start+m) frame

Obj. 1

Obj. 2

1

1

1

2

2

Obj. 1

Obj. 2

1

1

1

2

2

Figure 3.7: Initialization and first tracking step

This procedure has to be initialized somewhere so, in the first processed frame
(start frame), each centroid gets a label corresponding to its closest object. Then,
the centroids are paired with the ones of the next frame as explained in the previous
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section. In this next frame, we want to label the object mask regions according to
the start frame. To do so, we only consider the centroids that were successfully
paired and therefore got an object label. Each region of the current object mask
gets the label of the centroids that are related to it. Of course, some regions may
not get any centroids so far. The figure 3.7 may help to understand this first step.
In this figure, blue means some given input element while red are values found by
the tracking.

Sometimes, centroids with different labels coexist in a same region. In this
case, objects have eithermergedtogether, or one object gotpartially occluded by
another one. This case can be handled in two different ways: either the resulting
object gets the “majority” or some new label, but then the merging is not visible and
must be stored in the object history; or we try to track the objects ”side by side”. To
do this, we can use the subobjects formed prior to the clustering (s. section 3.2.1).
As we did for the objects, each subobject gets the label from its centroids (fig. 3.8).
Note that it is possible to know which object overlaps which one because the over-
lapping part, known thanks to the motion prediction, gets labelled accordingly too.
Total occlusion results in the loss of the occluded object, but it could be recovered
when it reappears if some memory of its characteristics (storing of its centroids for
example) was added.

Frame (n-m) Frame (n)

1

1

1

1

1

1

2

2

2

2

Figure 3.8: Merging centroids

On the other hand, if centroids with the same label are present in two distinct
regions, the original object hassplit. The event has to be stored in the object his-
tory in order to allow them to re-merge together and get back their old label. The
motion predicted subclusters may help to indicate a splitting.

Thanks to the predicted labels, we can also measure thereliability of the la-
belling. In deed, a label is likely to be reliable if the centroid tracking and the
predicted label are in accordance. On the other hand, less reliability should be
given for contradictory results. To get some numbers, we could look at the per-
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centage of centroids in an object that were paired accordingly to the prediction: if
almost none are, the tracking may be really wrong.

Updating unpaired centroids

Once all objects and subobjects have been labelled, we need to update the labels
of all unpaired centroids so that they can be reused for the next iteration. If some
unpaired centroids are alone in an object mask region, we consider them to belong
to anew object, which gets, as well as the related centroid(s), an unused label. If on
the other hand the region been labelled already, the unpaired centroid is considered
part of a growing object and labelled correspondingly.

Frame (n-m) Frame (n)

Growing object

New object

11

1

11

1

1

1

1

1

1

1

1

2

Figure 3.9: Processing appearing centroids

Once all the current clusters and object mask regions have been labelled, the
algorithm iterates.
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3.2.4 Limitations and software problems

The principles explained so far seem rather simple and should provide better results
than the old tracking in many cases. However, there are limitations which are
inherent to the principle as well as to its implementation. First, the algorithm does
not have any knowledge of the shape of an object, so it may be, for an inexact
object mask or if the cluster projection performs badly for merging objects, that
the resulting regions become meaningless. Also, there is no real way to catch
errors once they occurred. An object database would help out in those cases.

Parameters such as the weights also bring their problems, since centroids may
be paired wrongly. This sometimes results in erroneously labelled (sub)objects.
Therefore, the system has to be carefully calibrated.



Chapter 4

Sequence description

Now that the semantic objects have been localized and their main features ex-
tracted, we have to describe them textually. The descriptors proposed in this chap-
ter try to be as general as possible. Also, instead of translating them directly into
some high-level language (XML), we store the extracted parameters in a C struc-
ture that will be discussed in the second part of this chapter.

4.1 Descriptors

Rather than to reinvent descriptors for our purpose, we tried to stay as close as
possible to the MPEG-7 syntax. General information about DDL can be found in
[11], while the visual descriptors are listed in [12, 13, 14]. Following features shall
be supported (optional descriptors in italic):

FEATURE DESCRIPTOR/DS PURPOSE

Label Object Identifier Label each object in a unique way
Media Locator Specify the location of the object

Shape Region locator Box or polygon shape description
Contour shape Describe a closed contour shape

Color Dominant color Specify a set of dominant colors
Color layout Spatial distribution of colors

Texture Texture browsing Perceptual texture description
Homogeneous texture Structural texture description

Motion Motion trajectory One point motion
Spatio-temp. locator Describes moving regions
Motion activity Qualitative motion descriptor

Table 4.1: Descriptor list
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4.1.1 Main cluster

Since the purpose of the descriptors listed in table 4.1 is to characterize an arbi-
trary image region, we group them together in an entity calledobject. MPEG does
not provide description schemes for generic objects, so we use thedescriptor
collection DS to define them. In fact, the descriptor collection allows to spec-
ify an unordered, unbounded set of descriptor instances. Note that this object can,
but must not correspond to a physical object.

Syntax:s. MDSWD§ 14.1.3

4.1.2 Label

Object identifier

The function of the identifier is to

- label each object in a unique way.

- provide some information about the past of the object (merging and split-
ting).

In order to allow maximal flexibility (multiple merge-split cycles, tracking of side-
by-side objects) with a simple naming scheme, we proceed as follows:

- when a new object appears, for the first time as well as after merging/splitting,
it is namedo# , where # is the smallest number that has not already been
used. This can be done using a simple counter. However, objects that were
already merged and are re-split or vice versa will get back their old names.

- when some objects merge together, the resulting object gets the mention
m(l1,l2,...) in addition to its new name, wherelx are the full labels

of the original objects (e.g.,o5 m(o2 s(o1),o4)) .

- when an object splits in some parts, the resulting objects get the mention
s(l) in addition to their new names, wherel is the full label of the original

object (e.g.,o2 s(o1) ando3 s(o1)) .

Those rules may result in rather long labels (multiple merge / split cycles), but they
allow to fully reconstruct each object’s history (for database applications) and are
independent of the implemented tracking scheme, since for example merge and
split detection can simply be left out. When we display an object, we may only
keep it’s name without the “historical” part, for example justo2 . Some of those
rules are illustrated in fig. 4.1.

Syntax:the identifier goes into the object header

<Object id="ObjectIdentifier">
...

</Object>
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o2_s(o3_m(o1,o2))

o1
o2

o3_m(o1,o2)

o1

o2_s(o1) o3_s(o1)

o1_s(o3_m(o1,o2))
o1_m(o2_s(1),o3_s(1))

Figure 4.1: Some naming rules

Media locator

Media locators are used to specify the location of an object; such information is
essential for scene reconstruction and databases, since it tells which objects belong
together and what scene they come from. In our application, where objects are
usually extracted of a video file, we will use thevideo segment locator .
However, depending on the origin (e.g., internet), other media locators may be
considered.

Syntax:s. MDSWD§ 6.4

4.1.3 Shape

As shown in fig. 4.2, we propose three different shape descriptions: as a box, as
a polygon and contour shape. The first two will mainly be used to get some idea
about an object’s size or dimensions, while the third one allows its reconstruction.
Those descriptors include information about the shape as well as about its absolute
position in the image.

Region locator

The region locator enables a brief and scalable representation of a box or a poly-
gon; the polygon extraction can be performed by the preexisting EPFL tool [16]. It
should be noticed that the region locator may be redundant with thespatio-temporal
locator when both specify a polygonal shape; however, the last one has more
general functionality since it can also describe the deformations of a contour shape,
so we keep them both1.

Syntax:s. VCD§ 10.1

1The encoder will have to prevent conflicts
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Contour shape

The contour-based shape descriptor represents closed shapes in the Curvature Scale
Space (CSS). Holes are not supported, but they can be encoded as another contour
shape if required.

Syntax:s. VCD§ 8.2

Unused descriptors

Even thoughregion shape can describe complex shapes made of several dis-
joint regions, we will not implement it since its purpose, the full reconstruction of
a shape, is mainly the same as for the simpler contour shape. We will also not use
theobject bounding box 2, whose purpose is perfectly the same as the one
of a box region locator.

Very coarse (rectangle)
Coarse (polygon)
Fine (contour)


Figure 4.2: Scalable shape description

4.1.4 Color

Dominant colors

The MPEG standard allows up to 8 dominant colors for this descriptor. This should
be enough for an adequate description of most natural objects, and it permits scal-
able encoding (e.g., when we transmit a scene containing a fire, we can first send
red, then the secondary colors. A video surveillance program may identify the
fire before it receives all the colors). Notice thatcolor space and color
quantization have to be specified in this descriptor. Since it is often used in

2VXM § 7.1
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video files, we will usually define the YUV color space by its linear matrix trans-
formation [15]:
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Syntax:s. VCD§ 6.3 and§ 6.1–6.2 forColorSpace /ColorQuantization

Color layout (optional)

For complex or large objects, it may be desirable to store some information about
the spatial distribution of colors (e.g., for a “person” object with different clothes).
That is the purpose of this descriptor, which can be added if necessary.

Syntax:s. VWD § 6.5

Unused descriptors

The MPEG documents provide many color descriptors.Scalable color and
color structure are based on histograms, which we will not use since we
consider that 8 colors are enough for our application.

4.1.5 Texture

For scalable data transmission, we want to have a qualitative as well as a quantita-
tive texture descriptor.

Texture browsing

This perceptual texture descriptor allows fast image retrieval and very compact
encoding. However, a qualitative description may not be sufficient to represent
natural images (for example when the texture contains some essential information,
like age rings of trees).

Syntax:s. VCD§ 7.2

Homogeneous texture (optional)

This can be added if a more precise texture description is wanted; as pointed out
in the VXM3, it performs well together withtexture browsing for database
retrieval. However, we will not implement it since it addresses pure texture images
rather than object textures. For implementation, one has to decide which part of an
object’s texture he wants to extract.

Syntax:s. VCD§ 7.1

3VXM § 4.1.2.3
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Unused descriptors

Edge histograms can be very effective for natural image mapping based on
texture4, but, since they use square sub-blocks, they are not of much help to de-
scribe object textures.

4.1.6 Motion

We try again to provide some scalability by using a motion descriptor for single
points as well as a more complex one. Additionally, a qualitative motion descrip-
tion can be used.

Motion trajectory

Its purpose is to describe the movement of a single point, for example the gravity
center of an object, through temporal interpolation. Since it includes no informa-
tion about the spatio-temporal location of the trajectory, we need some other means
for this, for example themedia time description scheme5. Notice the presence
of CoordinateSystem andTemporalInterpolation fields.

Syntax:s. VCD§ 9.2 and§ 5.5 forTemporalInterpolation as well as
VXM § 2.2 forCoordinateSystem

Spatio-temporal locator

Localization functionality in space and time as well as shape deformations in time
can be addressed by this description scheme. For the later, it provides two dis-
tinct methods:FigureTrajectory for non-rigid moving object regions, and
ParameterTrajectory for rigid regions. Media time as well region
locator andtemporal interpolation are used.

Syntax:s. VCD§ 10.2 as well as§ 10.1 forRegionLocator , § 5.5 about
TemporalInterpolation and MDSWD§ 6.3.8 forMediaTime

4VXM § 4.3.2.3
5MDSWD § 6.3.8
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Reference Region Reference Region

Motion Motion

Reference Region

Motion



Figure 4.3: Spatio-temporal regions

Motion activity ( optional)

As for texture, it can prove helpful to extract a qualitative description for database
applications. Motion activity describes motion in terms of Intensity of Activity,
Direction of Activity, etc. Those qualifiers rely on relative criteria and need human
input.

Syntax:s. VWD § 9.4

Unused descriptors:

Even thoughparametric motion is more specific than theParameterTrajectory
in a spatio-temporal descriptor, their functionality seems to be very similar (same
parametric models). We keep the more general one.

4.1.7 Reliability and confidence

Feature extraction and object tracking are difficult tasks for a computer and can
produce very rough results. A decoder has therefore to know what importance the
received parameters have, because, if we are looking for a picture containing a tall
man, it would not be advisable to keep an object whose shape extraction was very
uncertain. . .
MPEG provides themodel description scheme for confidence as well as for relia-
bility. Here, reliability refers to the accuracy of the values of the model pa-
rameters, which may take into account the method of extraction, whileconfidence
refers to the values of the model parameters statistically by indicating the degree
of membership in a confidence interval (for example how many percent of a rect-
angular shape descriptor contain the actual shape). Both are optional.

Syntax:s. MDSWD§ 14.2.1
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4.2 C structure for objects

Rather than translating the extracted features into high-level descriptors directly,
we will previously store them in a computer-friendly C structure. Doing so, we
increase flexibility because the translator module can be modified easily (different
languages, . . . ) without affecting the feature extraction or storage. The proposed
structure must store all the variables required by the descriptors as well as their
reliability. For scalable transmission, we will provide another structure with a de-
scriptor priority list.

Clustering &
Tracking Translation module

YUV input XML outputLabeled
Obj. mask

C
Struct

Scene
Description

Figure 4.4: System overview

The data is organized as follows:

- the Object cluster (s. table 4.2) includes one structure for each physical
feature, like color, texture, . . .

- each one of those structures holds a substructure for every MPEG descriptor
listed in subsection 4.1 (thestructnameD substructures).

- in those substructures, there is one variable (scalar, vector, table, . . . ) for
each parameter. Associated to those variables is a table which stores the
reliability (between 0–1) and theconfidence(0–1) of the corresponding pa-
rameter.

parameter reliability confidence

- Finally, a separate and optionalPriority structure lists the data in the
order we want it to be transmitted, down to any needed level (e.g., can give
a priority to a physical feature, a descriptor or even a single parameter).

Note: each feature can be used independently of the other ones, since it con-
tains all the required information (no “differential coding”). Also, we will not
mention the reliability/confidence table in the subsequent structure descriptions,
since its format will always be the same.
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According to those rules, the main object cluster looks as follows (optional
descriptors arenot considered here):

struct object
{ Label label;

Shape shape;
Color color;
Texture texture;
Motion motion;

};

Table 4.2: C structure for objects

4.2.1 Label

Identifier

This is the object name, as explained in 4.1.2. As for the other parameters, a re-
liability measure can be associated to the name, since the given names may be
uncertain in complex scenes (after merging or when an object disappears and reap-
pears later).

Media locator

The proposed structure is laid out for theVideoSegmentLocator DS, but it
can easily be modified for other media locators.

struct MediaLoc
{ VideoSegmLocD videoSegmLoc;
};

Video segment locator

struct VideoSegmLocD
{ Char *video name;
};
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4.2.2 Shape

The shape structure includes two substructures, for theregion locator and
for contour shape .

struct Shape
{ RegionLocD regionLoc;

ContourShapeD contourShape;
};

Region locator

struct RegionLocD
{ Unsigned short box Poly; // 0=box, 1=poly

Int coordref // Optional
Int *coords[2]; // (x,y)

coordinates
Unsigned short inverse; // Inner/outer

region
};

Contour shape

struct ContourShapeD
{ Int numberOfPeaks;

CurvatureVector
globalCurvVector;

// Defined below

CurvatureVector
protoCurvVector;
Float heighestPeak;
Float *peak[2]; // (x,y)

coordinates
};

TheCurvatureVector is defined as follows:

struct CurvatureVector
{ Float circularity;

Float eccentricity;
};
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4.2.3 Color

Stores the dominant colors.

struct Color
{ DomColorsD domColors;
};

Dominant colors

struct DomColorsD
{ ColorSpaceD colorSpace; // Defined below

ColorQuantD colorQuant; // Defined below
Unsigned short size; // # of

dom. colors
Unsigned short
variancePresent;
Unsigned short
spatialCoherency;

// 0--31

DomColorValues *values; // Defined below
};

ColorSpaceD , which is itself a MPEG descriptor6, has this structure:

struct ColorSpaceD
{ Unsigned short colorSpaceType;

Float colorTransMat[3][3]; //
Transform. matrix

};
ColorQuantizationD . This descriptor defines the uniform quantization of

a color space.

struct ColorQuantD
{ Unsigned short component;

Unsigned binNumber;
};

TheDomColorValues , finally, are defined as follows:

6S. VCD§ 6.1
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struct DomColorValues
{ Unsigned short percentage; // % of object

Int colorValueIndex;
Int colorVariance[3]; // Dim(color

space)
};

Low and high spatial coherency are illustrated in the following figure:

Figure 4.5: Examples of spatial coherency for dominant color

4.2.4 Texture

struct Texture
{ TextureBrowsD textureBrows;
};

Texture browsing

This descriptor uses subjective perceptual criteria like “Slightly regular coarse tex-
ture”.

struct TextureBrowsD
{ Unsigned short regularity;

Unsigned short direction[2];
Unsigned short scale[2];

};

4.2.5 Motion

The motion description may look rather complex, since it contains many other
MPEG descriptors. We tried to organize it similarly to the other features.
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struct Motion
{ MotionTraj motionTraj;

SpatioTempLocD spatioTempLoc;
};

Motion trajectory

Since the system must know the time context for this descriptor, we addMediaTime
to this structure; however, we want to keep it as a self-contained descriptor, so we
put it in anotherMotionTrajD substructure.

struct MotionTraj
{ MotionTrajD motionTraj;

MediaTimeD mediaTime;
};

The main structure is

struct MotionTrajD
{ CoordRef coordRef;

SpatialRef spatialRef; // Optional
InterpolationD interpolation;
Unsigned short cameraFollows; // Here not

};

Following substructures have to be defined:

struct MediaTimeD
{ MediaRelIncrTimept timept; // syntax: MDSWD

MediaIncrDuration mediaDur; // ’’
};

struct CoordRef // s. VCD 5.4
{ Unit unit=pixel;

Int pictureHeight;
Int pictureWidth;

};

Note that only the “unit” part of the coordinate system is required;CoordinateMapping
andGlobalImageMotion are not used.
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struct InterpolationD
{ WholeInterval interval;

KeyTime *keyTime;
KeyValue *keyValue;
Unsigned short functionID;
Float functionParam;
Unsigned short numOfKeyPoints;
Unsigned short size;
Unsigned short constTimeInt;
Unsigned short defaultFunct;

};

Spatio-temporal locator

struct SpatioTempLoc
{ FigureTrajectory *figTraj;

ParameterTrajectory
*parameterTraj;

};

struct FigureTrajectory
{ MediaTimeD mediaTime;

Unsigned short figureType;
TemporalIntD temporalInt;

};

struct ParameterTrajectory
{ MediaTimeD mediaTime;

Unsigned short motionModel;
Unsigned short ellipseFlag;
RegionLocD regionLoc;

};

The region locator has already been used to describe shape; its definition
can be found in 4.2.2.
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4.2.6 Priority list

As an optional feature, we provide a structure for priority lists corresponding to
different applications or hardware. A slow network could for example give high
priorities to shape and motion descriptions but low ones for texture, while a fast
network would not attribute any priority.

Object database

Tree 1

Tree 3

Tree 2

House

...

Background

Priority database

Optical network

Telephone

ISDN

...



LAN

DDL
translation module

Channel"House"
for ISDN

Figure 4.6: Priority list application (example)

struct Priority
{ PriorityField *priorityField;
};

with

struct PriorityField
{ Char *feature;

Char *descriptor; // Optional
Char *parameter; // Optional

};
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4.2.7 Notes about the software

The previous sections shall give a comprehensive overview of the data organization
in our project. For simplicity however, some of the actual coding techniques used
in the software do not appear in this document. For example, parameter chains like
the coordinates in theregionLoc descriptor (§ 4.2.2) are noted*coords in this
document; in the software, we use a dynamic structure for them. However, those
simplifications should not affect the understanding of this work in any way.



Chapter 5

Experimental results

To evaluate the proposed tracking and description schemes, we have added cen-
troid tracking as well as a data structure for the storage and DDL output of scene
descriptions to the existing highway program [1]. The resulting package has been
tested on different sequences, each one of them containing some specific tracking
challenges.

After an overview of our actual implementation (s. also appendix A), we will
describe the behavior of our system with each test sequences. While we generally
focus on the tracking performance, one full result (from the input file to the DDL
output) will be given.

5.1 Implementation choices and parameters

One of the core requirements for our system was the ability to track reliably a wide
range of sequences without any human interaction. Therefore, we had to find a
parameter set which does not need to be adapted to each sequence while keeping
errors rare. The performance is mainly influenced by:

1. the features used for tracking,

2. the number of clusters given to each object and

3. the method used for their extraction,

4. the weights of the Mahalanobis distance,

5. the conflict resolution between the prediction and the centroid tracking.

In our program, the user can choose to track based on position, motion, color
and/or motion. However, it would not be wise to fix thefeatures in advance, be-
cause the performance may vary depending on the scene composition (new objects,
different lightning, etc. ). To avoid this, our software measures the distance be-
tween the centroids belonging to different objects for each feature; features which
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are too close1 and therefore unrepresentative are not used for pairing. The Lab
color spacealways performed better than YUV in our tests, and was therefore
used systematically. The reason of its superiority lies in the adequation between
Lab components and the human color perception: similar colors have similar com-
ponents.

As mentioned in section 3.2.2, thesubclustersare obtained by isolating the
homogeneous parts of each FCM cluster. The mean values of the features over the
subclusters provide the corresponding subcentroids. This method allows to take
care of possible local specificities of an object even if its FCM clusters are spread
all over it. In order to limit the number of subclusters, we also tried to group close
ones together, but the tracking results were not affected by this.

Theweightsused in the Mahalanobis distance are given according to Castagno
[2] as shown in figure 3.6. He experimentally got a set of numbers that shows good
performances for centroid pairing:

WV max = 0.675 WV min = 0.025 Wp = Wt = 0.1

with WV max andWV min the maximum and minimum weights for the motion,Wp

the weight for position andWt for texture. In our experiments, it was sometimes
possible to resolve a local problem, for example an undetected splitting, by chang-
ing those weights drastically, but those numbers worked well for the general case.

The most tricky part was to process theconflictsbetween the centroid tracking
and the predicted labels. In deed, the tracking must give themost probablelabel
to each object. Based on our experiments, we decided to keep the predicted result
in conflicting cases. In deed, it sometimes happens that the tracking attributes the
same label to different objects even though no splitting was predicted; after a while,
we may have many objects with the same label. Since we rarely observed the re-
verse situation, our choice was made. Another, more complex solution would have
been to compare the pairing and the projection reliability to make the final decision.

To get thedescriptors, we take advantage of the features that were extracted
for the FCM algorithm by calculating their mean value for each object when it
appears. The mean position is then calculated on each frame to form a trajectory.
This provides some useful information about the object’s position, speed, color and
texture. To describe other features such as the shape, external algorithms like the
one proposed in [16] may easily be added.

1Distance lower than given threshold
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5.2 The test sequences

Our system has been tested on four different video sequences. To provide a clear
idea of its possibilities, we will give the full result, from the input file to the DDL
output, of one sequence. Then, we analyze some specific tracking challenges aid
of the other sequences. This way, we will get some insight into the strengths and
weaknesses of our algorithm.

5.2.1 Full example: the highway sequence

This sequence shows cars and trucks of different kinds and sizes driving on a high-
way, and is a nice example of what a smart surveillance camera may have to de-
scribe.

Figure 5.1: Highway.YUV

To thoroughly test our software, we ran the sequence between the frames 110
and 320. The figure 5.2 shows the trajectories of some of the cars that are detected
these frames. The overall performance on this test was very good since all cars have
been tracked accurately, and both mergings (frame 114 and frame 256) processed
in a satisfying way. One of them will be detailed later.

The DDL output of the truck shall help to understand how a the scene is de-
scribed. Each time a new object appears, it gets a name which, in our software, is
just a number. The truck, which was already present in frame 110, got the label
1. Then, the average feature values of the new objects are calculated; they will be
used askey valuesfor the description. For the truck, we got the following numbers:

The object position is updated each frame, and new key values may be stored
when the old ones differ too much from the actual values. On the next page, we
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Feature X pos. Y pos. X speed Y speed L a b Texture
Value 236.4 92.9 0.4 1.1 148 85 79 5.7

Table 5.1: Feature values of the truck

show the DDL2 output generated for the truck. We suppose that adescriptor
collection for objects as well as the Labcolor space have been previously
defined. For any details about DDL, the reader should refer to chapter 4.

2In fact, we use a simplified “DDL-like” language for our purpose.
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<!-- ##################################################### --!>
<!-- DDL output for object 1 --!>
<!-- ##################################################### --!>

<Object id="1">

<!-- First key values --!>

<DominantColor>
<ColorSpace> Lab </ColorSpace>
<ColorValue1> 148 </ColorValue1>
<ColorValue2> 85 </ColorValue2>
<ColorValue3> 79 </ColorValue3>

</DominantColor>
<HomogeneousTexture>

<TextureValue> 5.7 </TextureValue>
<MotionTrajectory>

<TemporalInterpolation>
<KeyFrame> 110 </KeyFrame>
<KeyPos> 236.4 92.9 </KeyPos>
<KeyFrame> 112 </KeyFrame>
<KeyPos> 234.0 90.9 </KeyPos>
<KeyFrame> 114 </KeyFrame>
<KeyPos> 230.3 88.9 </KeyPos>
<KeyFrame> 116 </KeyFrame>
<KeyPos> 227.4 87.1 </KeyPos>

...
</TemporalInterpolation>

</MotionTrajectory>

<!-- New key values --!>

<DominantColor>
<ColorSpace> Lab </ColorSpace>

...

</Object>



5.2 The test sequences 41

Of course, this description can be refined with the full DDL syntax or some
more features, but the example shows well how a video scene can be translated
into a text. If one added an object database with key values of some known object,
the camera could ideally track and identify objects automatically.
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Figure 5.2: Some trajectories of the full highway test (frames 110–320)

The second point that we want to illustrate with this sequence is the tracking
of side-by-side objects. Between the frames 114–160, a van passes the blue truck.
The tracked object masks in figure 5.3 show what happens: until frame 112, the van
and the truck are in separate mask objects. In frame 114, both merge to become one
object, split into two subobjects by the preprocessing according to section 3.2.1. At
this stage, the subobjects seem to fit the vehicles well. However, as the sequence
continues, not all subclusters are projected accurately, and the van is less and less
present in the object. In fact, the speed of most clusters is under-estimated, and
only a few are still remaining 30 frames after the merging. But even like this, the
separation of both objects is a real improvement over the old object-based tracking,
which was only able to follow separate objects and, in simple cases, the individual
centroids of merged objects.

The progressive loosing of the van’s shape is also not necessarily a problem
for the scene description: if we use the gravity centers of the subobjects as their
position descriptor, we are able to track the van and the car separately nearly until
they leave the image. This is shown in graph 5.4, were each object is given the
same color than in the tracked mask images.
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Frame 108 Frame 112

Frame 114 Frame 118

Frame 148 Frame 150

Frame 108

Frame 114

Frame 148

Figure 5.3: Side-by-side tracking
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Figure 5.4: Trajectories of side-by-side objects (frames 100–160)
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5.2.2 Software stability and object splitting: the hall sequence

Hall is a simple, 300 frames long sequence showing somebody coming out of an
office, putting his document case on a small table, meeting somebody else and go-
ing into another room. Since we did not expect major difficulties on this scene, we
mainly used it to get an idea of the system’s stability. This aspect is of main im-
portance in our application since an automatic camera must be able to film without
interruptions under any circumstances.

Figure 5.5: The hall sequence

The test ran crash-free over the whole sequence and did not loose track on any
object. In the trajectory graph (fig. 5.6), one can clearly recognize each person’s
path, including the rest of the one that picks up a small TV set.
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Figure 5.6: Trajectory of both people int the hall sequence (frames 40–300)

Another interesting part of this sequence is when the left person (in red on
graph 5.7) puts his document case on the small table. Once the person moves
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along, the case keeps its label, as it should.

Frame 110 Frame 132

Frame 136 Frame 180

Figure 5.7: Splitting object

5.2.3 The volleyball sequence: split/merge cycles

This sequence includes much more difficulties than the previous ones: it shows
two people playing volleyball with some small stuff pet. Since the lightning is very
dark, it is sometimes difficult to distinguish the pet from the background. Also, its
image is slurred when it moves fast, due to the long aperture time of the camera.
This makes the sequence a good test for the change detection algorithm, which has
to find an only slightly visible object, as well as for the tracking, since it must pair
centroids based on features which are hardly different from the background.

We ran this sequence from frame 310 to 510. In this part, both people are seen
playing together while passing one in front of the other. The tracking of the players
was accurate as long as they did not exchange their positions (partial occlusion).
Once this happened, the algorithm lost track on one of them, and the subobjects did
not correspond to people anymore (the same problem will be addressed in detail in
the group sequence). The ball tracking highlighted some inaccuracies that some-
times happen during merge/split cycles. To illustrate this, we shall have a look at
the frames 133–147.

On both the tracked object mask and the trajectories graph (figures 5.9 and
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Figure 5.8: The volleyball sequence

5.10), we can see that the ball is tracked accurately up to frame 140. But then, the
direction change is not anticipated correctly, and the ball therefore not projected
out of the player’s mask, so there is no predicted label for the ball in frame 141.
Unfortunately, in frame 141, the right player’s head has the same color and the
same motion (!) than the ball, and gets paired with it erroneously. Since unpre-
dicted splitting is not allowed, the ball finally gets a new label. Between the frames
146 and 147, a similar scenario happens: the prediction fails, and no subobject is
formed at the end of the player’s arm. So the ball is lost.

The Lucas & Kanade algorithm cannot predict the changing ball direction, be-
cause it analyzes five consecutive frames and gets the average motion out of them.
Therefore, for changing directions, the average may be zero. So it would be up to
the tracking to find the ball. This is difficult here because of the describes feature
similarities between the head and the ball, but may be done if more weight was
given to the position in such cases. In most common scenes however, it should be
easier to distinguish objects.
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Frame 133 Frame 138

Frame 139 Frame 141

Frame 146 Frame 147

Figure 5.9: Split/merge cycles
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Figure 5.10: Ball and players trajectories in the volley sequence (frames 133–147)

5.2.4 Group: a complex sequence

The group sequence is very difficult to track, because it shows people coming to-
gether, passing in front of each other and making various movements. Since the
people are grouped together in one object mask region most of the time, it relies a
lot on the motion estimation to get correct subobjects. In order to create ideal test-
ing conditions, we used a 20 frames long hand-made object mask for this sequence.

Figure 5.11: The group sequence
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On the tracked mask (fig. 5.12), we see that the person who entered the scene
first is tracked correctly, because it never merges with another one. The problem
with the red person is that the subclusters of its body and head are not projected
accurately; only the feet go to the right place. Therefore, the red object gets soon
split into two parts, and at the end (frame 105), the blue-yellow and the red person
are nearly reversed (they actually are if one goes further into the sequence).

Frame 85 Frame 87

Frame 91 Frame 93

Frame 95 Frame 105

Figure 5.12: Motion estimation errors

This experiment suggests to find a way to get less dependent on the motion
estimation results. In the next chapter, we will propose some possible solution to
this problem and show how the system may be further enhanced.



5.3 Summary of the results 49

5.3 Summary of the results

Even though it was not possible to track some semantic objects in very difficult
cases, the overall performance of our system seems promising. Not only does
it almost never loose track on independent objects, but there is some support for
merged ones as long as the motion is not too complex. Another positive point is
the stability of the system: it never crashed during our tests (on a Unix computer).

The implementation of the scene description has been kept very simple because
we just wanted to show that it is in fact possible to extract descriptors automatically
with our method. Of course, the complete proposed description set should be used
whenever necessary.



Chapter 6

Further developments and
conclusions

The camera that we have studied in this work proved to be instructive in many
ways. First, it gave us an interesting insight into recent image processing tech-
niques while showing their limitations in a clear way. Then, the integration of two
different topics, object tracking and scene description, into one application, taught
us how to fit systems in a practical way. Finally, our software showed how many
details one has to consider to make theory work. . . In this final chapter, we propose
some possible extensions and improvements for our camera and conclude with a
summary of the achieved results.

6.1 Possible extensions and improvements

Many of the possible extensions of the camera have already been addressed briefly
in the text. There are at least three points that should be investigated for the track-
ing.

First, the experimental results showed that the tracking accuracy depends a lot
on the motion estimation. This is why we lost the object shape in complex merging
cases. One trivial method to avoid this would be to replace the Lucas & Kanade
algorithm by a more performing one; however, this one may not be easy to find,
and there is surely no estimation method that performs well inanycases. We could
also use some other input to get the subobjects. One possible way is to store object
shapes as long as the object is alone and to correct the projected clusters according
to the expected shape. Or the shapes can be previously stored in an object database.
However, such a system would not be generic anymore.

The Mahalanobis pairing had some difficulties with similar features belong-
ing to different objects. We may look out for possible better thresholds for the
disconnection of similar features.

Also, conflicts were resolved by always giving priority to the predicted result
over the tracking. Even though this was no problem in our tests, the use of reli-
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ability for the labelling decision should be investigated. In fact, the reliability is
already available for prediction and can be defined for the pairing.

Another interesting improvement would be to support camera movements or
tracking without any object mask. Theoretically, this is already possible if we rely
only on the centroids and not on the mask. However, a practical implementation
asks for future work.

The descriptor set that we proposed seems adequate for generic object descrip-
tion, but we did not implement and test wide parts of it. So it would be interesting to
validate our set on multiple objects, possibly taken out of random video sequences.
Also, we provided no tools for scene description, only for its composing objects.
So one may add other MPEG-7 descriptors to our subset for this purpose.

6.2 Conclusions

In this work, we put together a centroid-based tracking algorithm and a descriptor
set which were both laid out for generic objects. The result has been partially im-
plemented and tested on different video sequences. Even though there were errors,
the system showed to be performing on a realistic highway video-surveillance se-
quence as well as, up to some degree, for the tracking of people interacting with
objects. More important, the system does not depend on the actual objects: as long
as their interactions are not too complicated, they can be tracked and described.

But as impressive as machines “understanding” their surrounding world may
be, it will probably take some more time and work to come close to human perfor-
mance in this field. For sure, there are many open challenges!

Olivier Steiger

Lausanne, 22th February 2001
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Block diagram of the camera
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