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ABSTRACT

A wide range of image and signal processing problems

have been formulated as ill-posed linear inverse

problems. Due to the importance of discontinuities and

non-stationarity, piecewise linear models are a natural

step towards more realistic results. Although there have

been some attempts to extend classical approaches to

deal with discontinuities, �nding at the same time the

piecewise decomposition and the corresponding model

parameters remains a major challenge. A new approach

based on partitioning inconsistent linear systems into a

minimumnumber of consistent subsystems (MIN PCS)

is proposed for solving ill-posed problems whose formu-

lation as linear inverse problems with discrete data fails

to take into account discontinuities. In spite of the NP-

hardness of MIN PCS, satisfactory approximate solu-

tions can be obtained using simple but e�ective variants

of an algorithm which has been extensively studied in

the arti�cial neural network literature. Our approach

presents various advantages compared to classical alter-

natives, including a wider range of applicability and a

lower computational complexity.

1. INTRODUCTION

Many image and signal processing problems center aro-

und extracting high-level information from low-level or

raw data. Despite the crucial role that discontinuities

and non-stationarity play in such problems, standard

modeling techniques are based on continuous functions

and operators. This is the case of regularization theory

(see [1]), which has been proposed as a uni�ed and stan-

dard way of �nding approximate solutions to ill-posed

problems. The idea is to introduce a priori information

to deal with noise and to cope with unreliable or mis-

sing data. This is achieved either by using variational

principles that impose constraints on the admissible so-

lutions or by making statistical assumptions on the so-

lution space (see [2, 3] and the included references). The

smoothness constraint is a typical example of widely

used a priori information. While such approaches based
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on continuous operators face serious limitations, consi-

dering discontinuous functions and operators explicitly

leads to a di�erent class of models and methods which

pertain to Discrete Mathematics. Similar discussions

are also true for the various techniques of adaptive signal

processing [4, 5].

Since practical linear inverse problems are always

made discrete, they reduce to linear systems. When li-

near models are too simple to deal with the full comple-

xity of the problem at hand (the corresponding linear

system is inconsistent), a natural step is to consider

piecewise linear models that are able to model more

complex phenomena but are still simple enough to esti-

mate locally because of linearity. But determining the

structure of the data (detecting discontinuities) as well

as estimating the parameters of the model turns out to

be a major challenge. Indeed, structure and parameter

estimation is known to be a chicken and egg problem.

A simple approach consists in breaking down the esti-

mation of piecewise linear models into two distinct sta-

ges. First one tries to determine the underlying do-

main decomposition (partition) using some clustering

methods and then one estimates the parameters asso-

ciated with each component using regression or robust

regression techniques. However, generally, the number

of components has to be guessed in advance, the compu-

tational requirements are very high and the clustering

procedures do not take into account the type of model

(linear) used for each component. Although the Hough

Transform [6, 7] (HT) can in principle solve ill-posed in-

verse problems without a priori assumptions on the data

structure, the complexity and storage requirements nee-

ded to guarantee a good accuracy are prohibitive in most

applications.

Thus, rather than trying to transform the problem in

order to remove its ill-posedness (i.e. in this case the

non-existence of the solution) as it is done by regulari-

zation techniques, a more natural alternative is to look

for solutions that are partially consistent with the data

or, more precisely, with signi�cant subsets of the data.

This amounts to directly taking into account discontinu-

ities in the problem formulation. Instead of considering
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linear models which are clearly too simple, we focus on

piecewise linear ones which are able to model highly

complex phenomena while remaining simple enough.

In this paper, we propose a new combinatorial optimi-

zation approach which enables estimation of piecewise

linear models and, therefore, provides solutions to ill-

posed linear problems involving discontinuities.

2. MINIMUM PARTITION INTO

CONSISTENT SUBSYSTEMS (MIN PCS)

The idea is to formulate the estimation problem as that

of �nding a Partition of the linear system associated

with the linear model into a MINimum number of Con-

sistent Subsystems.

MIN PCS: Given a possibly inconsistent linear

system

Ax = b (1)

with a p�n-matrix and a p-dimensional vector b, �nd a

partition of the rows of Ax = b into a minimumnumber

of consistent subsystems.

TheMIN PCS formulation is very attractive because

it provides a natural way of addressing simultaneously

the two fundamental issues in piecewise linear model de-

sign: domain decomposition and parameter estimation.

Given any solution ofMIN PCS, the partition indicates

the piecewise decomposition and a solution associated

with each consistent subsystem provides the parameters

of the corresponding component.

According to the well-known Occam principle, we look

for the \simplest" piecewise linear model consistent with

the data, which is most likely to be the correct one. Here

\simplicity" is measured in terms of the number of linear

components.

In practice, we want to be able, like in regression

techniques, to cope with modeling errors and noisy

data. This is easily achieved by replacing each equa-

tion akx = bk, where ak is the kth row of A and bk is

the kth component of b, with the two complementary

inequalities

akx � bk + " akx � bk � " (2)

where " is the maximum admissible modeling error. If

equations of the original system are expected to be a�ec-

ted by di�erent noise levels, di�erent error level settings

can of course be used.

MIN PCS admits a very simple geometrical interpre-

tation. Considering each equation as a point Pk whose

coordinates are the n components of the kth row of A

denoted by ak, k 2 f1; 2; ::::; pg, MIN PCS amounts

to �nding a minimum number of hyperplanes Hj con-

taining all the points Pk. It easily veri�ed that, while

MIN PCS is trivial for points in general position (any

partition into consistent subsystems yields a minimum
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Figure 1: Geometrical interpretation of MIN PCS

problem with equations in two variables. a) each point

Pk corresponds to one equation, b) a graphical represen-

tation of a minimum number of hyperplanes that con-

tains all points.

size partition), it is not the case for non-pathological

point distributions [8].

In the case of complementary inequalities such as

in Eq. (2) with � independent from k, MIN PCS is

equivalent to �nding a minimum number of hyperslabs

of thickness 2� containing all the points Pk with k 2
f1; 2; ::::; ng.

It is noteworthy that MIN PCS turns out to be a

new combinatorial optimization problem (see [9] for a

list of many other interesting optimization problems).

To the best of our knowledge, no equivalent formulation

has been proposed neither in linear system theory nor

in regularization theory.

Given the relevance of MIN PCS to piecewise li-

near modeling, the question of its inherent complexity
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Figure 2: Geometrical interpretation of MIN PCS

problemwith inequalities. The problem is to �nd a mini-

mum number of hyperslabsHj of thickness 2� containing

all the points Pk.

problem arises. We show elsewhere that MIN PCS is

NP-hard [8, 10], i.e. if the fundamental conjecture of

complexity theory P 6= NP is valid, no algorithm is

guaranteed to provide an optimal solution in polynomial

time. Thus, not too surprisingly, estimating a piecewise

linear model turns out to be harder than �nding a least

mean squares solution to Ax = b.

3. AN EFFICIENT HEURISTIC FOR PIECE-

WISE LINEAR MODEL ESTIMATION

(PLIME ALGORITHM)

Although a worst-case complexity analysis provides an

important insight concerning the degree of complexity

of MIN PCS, it does not preclude the existence of e�-

cient heuristics apt to �nding close-to-optimal solutions

within a reasonable lapse of time. Therefore, we pro-

pose a greedy strategy that breaks the di�cult MIN

PCS problem into smaller subproblems consisting of

�nding, iteratively, consistent subsystems with a ma-

ximum number of equations (cf. MAX FLS problem

studied in [11, 12]). Clearly, eliminating repeatedly a

close-to-maximum consistent subsystem until the rema-

ining subsystem is consistent yields a partition into con-

sistent subsystems. Since the resulting algorithm is a

general method for Piecewise LInear Model Estimation,

we refer to it as PLIME. This algorithm enables simul-

taneous estimation of the piecewise decomposition as

well as the parameters of each single linear component

without requiring any a priori assumption neither upon

the number nor upon the topological locations of the

discontinuities. Di�erent values of the parameters �k
lead to estimations having di�erent levels of accuracy.

To extract maximum consistent subsystems, we use

an extension of thermal variants of the perceptron pro-

cedure which have been developed and studied in the

�eld of arti�cial neural networks [11, 13, 14, 15]. The

algorithm can be described as follows:

Algorithm
� Problem: Given any system Ax = b and any maximum

admissible error � � 0, look for an xmax 2 R
n such that

the couple of complementary inequalities akxmax � bk+�

and akxmax � bk�� is satis�ed for the maximum number

of indices k 2 f1; � � �; pg.

� Initialization: Take an arbitrary x0 2R
n, and set c :=

0, initial temperature t := t0, select a prede�ned number

of cycles C as well as a function (c;C) decreasing for

increasing c and such that (C;C) = 0.
begin

i 0

repeat

c c+ 1

t t0 � (c;C)

S f1; : : : ; pg
until S 6= ; do

Pick s 2 S and remove s from S

ki s

Eki := bki � aki � xi

�i :=
t

t0
exp

�
�jE

ki

i
j

t

�
aki

if (akixi � bki � �)

xi+1 := xi + �ia
ki

else

if (akixi � bki + �)

xi+1 := xi � �ia
ki

i i+ 1
until

c < C

Take xi+1 as an estimate of xmax.
end

where t0 depends on the average deviation from con-

sistency (average inequality error) for the current solu-

tion xi at the beginning of each cycle.

Intuitively, the behavior of the algorithm can be

explained as follows. At high normalized temperature

t=t0, all equations with both high or low deviations from

consistency lead to a signi�cant correction of the current

solution xi. Conversely, at low temperatures, only those

equations with small deviations from consistency yield

relevant corrections to the current solution. The con-

vergence of the procedure is guaranteed because when

t decreases to zero the amplitude of the modi�cations

tends to zero. We refer the reader to [8, 10] for other mo-

tivations, justi�cations and more details about the ove-

rall greedy strategy as well as the above-mentioned pro-

cedure developed to �nd close-to-maximum consistent

subsystems.

Although our simple PLIME algorithm is not gua-

ranteed to lead to minimum size partitions, it turns out

to be very e�ective experimentally. The very good re-

sults obtained for the two challenging applications we



considered so far (optical ow segmentation [16] and

time series state-space modeling [17]) suggest that it can

be successfully applied to a wide range of problems.

The interesting analogies and di�erences between our

PLIME algorithm and the Hough Transform are discus-

sed in [8, 10].

4. CONCLUSIONS

A new combinatorial optimization approach is proposed

for the domain decomposition and parameter estimation

of piecewise linear models. The problem is formulated

as that of �nding a partition of the given inconsistent

linear system into a minimumnumber of consistent sub-

systems (MIN PCS). A simple but e�cient heuristic

based on a greedy strategy and using variants of the per-

ceptron algorithm is proposed for tackling MIN PCS.

Our approach presents various advantages compared to

classical alternatives such as regularization techniques,

robust regression methods or the Hough transform. In

particular, it does not su�er from limitations due to mis-

sing a priori knowledge on the domain decomposition or

due to the absence of a dominant solution of the linear

system. In contrast to robust regression techniques, it

does not present any breakdown point. Moreover, since

it compares very favorably with the above-mentioned

techniques in terms of computational requirements, it is

particularly suited to real-time applications.
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