
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
FORMAL TESTING OF OBJECT-ORIENTED SOFTWARE :
from the Method to the Tool

THÈSE N˚ 1904 (1998)

PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Cécile PÉRAIRE
Ingénieur informaticienne diplômée EPF

de nationalité française

accepté sur proposition du jury:

Prof. A. Strohmeier, directeur de thèse
Prof. P. E. Bonzon, rapporteur

Dr. D. Buchs, rapporteur
Prof. M.-C. Gaudel, rapporteur
Prof. A. Wegmann, rapporteur

Lausanne, EPFL
1998

https://core.ac.uk/display/12574728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

o
A mes Parents, à Lorenz

Remerciements

son
er à des
ter ma

de ce
juste

été les
e et les
ncé”.

mann
ent
d’y

ardé un

ation de
“notre”
t mon

’outil
ale
r mon

abriel,
Remerciements

Je remercie tout d’abord le Professeur Alfred Strohmeier qui m’a accueillie au sein de
équipe, et qui a accepté d’être mon directeur de thèse. Ses encouragements à particip
conférences pour promouvoir mes travaux, et à suivre des cours à l’étranger pour complé
formation, ont rendu ces quatre années de thèse très enrichissantes.

Je suis particulièrement reconnaissante au Docteur Didier Buchs qui est à l’origine
travail de doctorat et qui l’a encadré. Sa passion communicative pour la recherche, sa
appréciation des options à prendre ou à rejeter, sa disponibilité ainsi que son amitié, ont
garants du bon déroulement de cette thèse. De plus, je remercie Didier pour la confianc
responsabilités qu’il m’a accordées lors de la création de son cours “Génie Logiciel Ava
Ce fut une expérience passionnante et très formatrice.

Je remercie vivement les Professeurs Pierre Bonzon, Marie-Claude Gaudel et Alain Weg
qui m’on fait l’honneur d’accepter d’être membre du jury. Je remercie tout particulièrem
Marie-Claude pour m’avoir invitée au Laboratoire de Recherche en Informatique afin
suivre des cours de DEA sur les méthodes formelles. Durant ces quatre années, elle a g
oeil attentif sur mes travaux, et ses conseils m’ont permis d’en améliorer la qualité.

Je remercie chaleureusement Stéphane Barbey, avec qui nous avons oeuvré à la réalis
nos thèses respectives sur le test de logiciel, ou, pour reprendre un lapsus révélateur, de
thèse! Ce mémoire lui doit beaucoup, et je lui témoigne toute ma reconnaissance e
amitié.

Un grand merci à tous ceux qui, de près ou de loin, m’ont aidée à la réalisation de l
CO-OPNTEST: Bruno Marre, Eric Moreau et Jörg Kienzle. Merci également à Pasc
Thévenod-Fosse et Hélène Waeselynck pour le regard critique qu’elles ont su porter su
travail. Mes remerciements vont aussi à tous mes collègues duLGL, grâce à qui ce doctorat a
put être réalisé dans une ambiance amicale et motivante: Anne, Dorothea, Enzo, G
Giovanna, Jarle, Julie, Mathieu, Nicolas, Olivier, Pascal, Shane et Thomas.
1

Remerciements

n des

l’Ecole

m’ont
tôt au
Je tiens également à remercier amicalement Jessica Hirschfelder pour la correctio
quelques 2000 fautes d’anglais qui truffaient ce mémoire. Good job!

Je remercie affectueusement mes parents qui, des bancs de la maternelle à ceux de
Polytechnique, m’ont patiemment accompagnée sur les sentiers de la connaissance.

Finalement, je remercie Lorenzo pour son affection, et pour ses encouragements qui
permis de garder le cap dans les moments les plus difficiles, lorsque le moral était plu
creux qu’au sommet de la vague.
2

Résumé

, dédiés
ne des
lexes

à un
st la
s aux

giciels
nt des
l’objet,

r. Cette
e taille
e ces

n bien
angage
r. Les

dié à la
ogique
tre
ntre les
et

tests
, mais
.

ratiques
rtinence
thèse sur
ose un
sts, et
Résumé

Ce mémoire présente une méthode et un outil d’assistance à la sélection de jeux de tests
aux applications orientées-objets et basés sur les spécifications formelles. Le test est u
méthodes permettant d’augmenter la qualité des logiciels extraordinairement comp
d’aujourd’hui. L’objectif du test est de trouver les erreurs d’un programme par rapport
certain critère de correction. Dans le cas du test formel, le critère de correction e
spécification de l’application testée: les comportements du programme sont comparé
comportements requis par la spécification. Dans ce contexte, la difficulté de tester des lo
orientés-objets provient du fait que le comportement d’un objet ne dépend pas uniqueme
valeurs d’entrée des paramètres de ses opérations, mais également de l’état courant de
et généralement de l’état courant d’autres objets du système référencés par ce dernie
explosion combinatoire implique de sélectionner avec soin des jeux de tests pertinents d
raisonnable. Ce mémoire propose une méthode de test formel qui tient compte d
difficultés.

Notre approche est basée sur deux formalismes distincts: un langage de spécificatio
adapté à l’expression des propriétés du système du point de vue du concepteur, et un l
de test bien adapté à la description de jeux de tests du point de vue du testeu
spécifications sont rédigées dans un langage orienté-objets (CO-OPN, Concurrent
Object-Oriented Petri Nets) basé sur les réseaux de Petri algébriques synchronisés et dé
spécification de systèmes concurrents. Les jeux de tests sont exprimés à l’aide d’une l
temporelle très simple (HML, Hennessy-Milner Logic) dont les formules logiques peuvent ê
exécutées par un programme. Il existe une adéquation, démontrée dans ce mémoire, e
relations de satisfaction deCO-OPNet HML: le programme satisfait sa spécification si,
seulement si, il satisfait le jeu de tests exhaustif dérivé de cette spécification. Le jeu de
exhaustif exprime l’ensemble des propriétés de la spécification, il est généralement infini
sa taille peut être réduite en faisant des hypothèses sur le comportement du programme

Ces hypothèses définissent des stratégies de sélection de tests et reflètent des p
courantes. La qualité des jeux de tests ainsi sélectionnés dépend uniquement de la pe
des hypothèses. Concrètement, cette réduction est réalisée en associant à chaque hypo
le comportement du programme, une contrainte sur le jeu de tests. Notre méthode prop
éventail de contraintes élémentaires: contraintes syntaxiques sur la structure des te
3

Résumé

vrir les
n en
er des

e tests

nts
e part
pas de

iption

ation du
e.
e tests
atique.

ur la
osition
tes de

as de
tude de
ule de
tifs
contraintes sémantiques visant à assigner les variables des tests de manière à cou
différentes classes de comportements induites par la spécification (décompositio
sous-domaines). Ces contraintes élémentaires peuvent être combinées afin de form
contraintes plus complexes. Finalement, le système de contraintes défini sur le jeu d
exhaustif est résolu, et la solution mène à un jeu de tests pertinent de taille raisonnable.

Grâce à la sémantique deCO-OPN, qui permet de calculer l’ensemble des comporteme
corrects et incorrects induits par une spécification, notre méthode permet de vérifier, d’un
qu’un programme possède des comportements corrects, et d’autre part qu’il ne possède
comportement incorrect. L’avantage de cette approche est de fournir une descr
observable des implémentations valides et non-valides par le biais des tests.

Notre méthode de test repose sur des bases formelles permettant une semi-automatis
processus de sélection de tests. Un nouvel outil,CO-OPNTEST, est présenté dans ce mémoir
Cet outil assiste le testeur durant la construction de contraintes à appliquer sur le jeu d
exhaustif, puis génère un jeu de tests satisfaisant ces contraintes de manière autom
L’architecture deCO-OPNTEST est composée d’un noyauPROLOG et d’une interface
graphique Java. Le noyau est une procédure de résolution équationnelle basée s
programmation logique. Il inclut des mécanismes de contrôle nécessaires à la décomp
en sous-domaines. L’interface graphique permet une construction conviviale des contrain
test.

L’outil CO-OPNTEST a permis de générer des jeux de tests pour différentes études de c
manière simple, rapide et efficace. En particulier, il a généré des jeux de tests pour une é
cas de taille réaliste emprunté au monde industriel: le programme de contrôle d’une cell
production [Lewerentz 95].CO-OPNTEST et ses applications sur des exemples significa
démontrent la pertinence de notre approche.
4

Summary

riented
quality
ct to
is the
those
are

ues of
t states
t test
ue into

ted to
e well
ritten
on
s. Test

n this
its
. The

to the
on test
of the

plied to
traints:
ow to
Summary

This thesis presents a method and a tool for test set selection, dedicated to object-o
applications and based on formal specifications. Testing is one method to increase the
of today’s extraordinary complex software. The aim is to find program errors with respe
given criteria of correctness. In the case of formal testing, the criterion of correctness
formal specification of the tested application: program behaviors are compared to
required by the specification. In this context, the difficulty of testing object-oriented softw
arises from the fact that the behavior of an object does not only depend on the input val
the parameters of its operations, but also on its current state, and generally on the curren
of other related objects. This combinatorial explosion requires carefully selecting pertinen
sets of reasonable size. This thesis proposes a formal testing method which takes this iss
account.

Our approach is based on two different formalisms: a specification language well adap
the expression of system properties from the specifier’s point of view, and a test languag
adapted to the description of test sets from the tester’s point of view. Specifications are w
in an object-oriented language,CO-OPN(Concurrent Object-Oriented Petri Nets), based
synchronized algebraic Petri nets and devoted to the specification of concurrent system
sets are expressed using a very simple temporal logic,HML (Hennessy-Milner Logic), whose
logic formulas can be executed by a program. There exists a full agreement, shown i
thesis, between theCO-OPN and HML satisfaction relationships: the program satisfies
specification if and only if it satisfies the exhaustive test set derived from this specification
exhaustive test set expresses all the specification properties.

The exhaustive test set is generally infinite. Its size is reduced by applying hypotheses
program behavior. These hypotheses define test selection strategies and reflect comm
practices. The quality of the test sets thus selected only depends on the pertinence
hypotheses. Concretely, the reduction is achieved by associating to each hypothesis ap
the program, a constraint on the test set. Our method proposes a set of elementary cons
syntactic constraints on the structure of the tests and semantic constraints which all
5

Summary

by the
form
olved,

ect
ogram
incorrect
tional

ation
s
st set;

n
nisms
f the

d and
alistic
instantiate the test variables so as to cover the different classes of behaviors induced
specification (subdomain decomposition). Elementary constraints can be combined to
complex constraints. Finally, the constraint system defined on the exhaustive test set is s
and the solution leads to a pertinent test set of reasonable size.

Thanks to theCO-OPN semantics, which allows to compute all the correct and incorr
behaviors induced by a specification, our method is able to test, on the one hand that a pr
does possess correct behaviors, and on the other hand that a program does not possess
behaviors. An advantage of this approach is to provide through the tests, an observa
description of valid and invalid implementations.

Our testing method exhibits the advantage of being formal, and thus allows a semi-autom
of the test selection process. A new tool, calledCO-OPNTEST, is presented in this thesis. Thi
tool assists the tester during the construction of constraints to apply to the exhaustive te
afterward it automatically generates a test set satisfying these constraints. TheCO-OPNTEST

architecture is composed of aPROLOGkernel and aJavagraphical interface. The kernel is a
equational resolution procedure based on logic programming. It includes control mecha
for subdomain decomposition. The graphical interface allows a user-friendly definition o
test constraints.

The CO-OPNTEST tool has generated test sets for several case studies in a simple, rapi
efficient way. In particular, it has generated test sets for an industrial case study of re
size: the control program of a production cell [Lewerentz 95].CO-OPNTESTand its application
to significant examples demonstrate the pertinence of our approach.
6

Table of Contents

...

....

...... 18

....

...... 22

.... 22
.... 23

...... 26

...... 26
...... 27
..... 28
..... 28
...... 28

....... 29
30
... 32
... 34
... 35
Table of Contents

Remerciements.. 1

Résumé .. 3

Summary ... 5

Table of Contents.. 7

Chapter 1
Introduction .. 13

1.1 Motivation ... 13

1.2 Contribution.. 17

1.3 Document organization ..

Chapter 2
Test Methods and Tools.. 21

2.1 Testing classifications...
2.1.1 Testing in the software life-cycle..
2.1.2 Test methods in the verification taxonomy...

2.2 Testing object-oriented software ..
2.2.1 Objects ..
2.2.2 Classes ..
2.2.3 Inheritance ...
2.2.4 Polymorphism..
2.2.5 Summary...

2.3 Test methods and tools ..
2.3.1 TheBGM method and theLOFT tool...
2.3.2 TheASTOOT method and tools ...
2.3.3 TheBULL method and tool ...
2.3.4 TheTGV method and tool ...
7

Table of Contents

...... 37

39

..... 40

...... 41
..... 43
...... 44

... 47

...... 47

.... 47

.... 48
.... 51
...... 51
..... 51
..... 53
...... 56
..... 57
58

.. 58
...... 59
...... 60
....... 61
...... 62
..... 63
64
7

....

9

..... 71

..... 71

...... 72
...... 74
...... 75
... 76
.. 76
.... 77
...... 78
. 79

.... 81
81
.. 81
82

.... 83
2.3.5 Summary...

Chapter 3
The CO-OPN Object-Oriented Specification Language ...

3.1 CO-OPN object-oriented concepts ..

3.2 Introductory example: the telephone system..
3.2.1 ADT modules ..
3.2.2 Class modules ...

3.3 Syntax ofCO-OPN..
3.3.1 Abstract data types..

3.3.1.1 ADT concrete syntax..
3.3.1.2 ADT abstract syntax ...
3.3.1.3 Relation between abstract and concrete syntax of an ADT............

3.3.2 Classes ..
3.3.2.1 Class concrete syntax ..
3.3.2.2 Class abstract syntax..
3.3.2.3 Relation between abstract and concrete syntax of a class

3.3.3 Syntax of a specification..
3.3.4 Summary of the syntax ofCO-OPN...

3.4 Semantics ofCO-OPN...
3.4.1 Order-sorted algebras and multi-set extension ...
3.4.2 Object Management..
3.4.3 State space ...
3.4.4 Semantics and inference rules ..

3.4.4.1 Partial semantics of a class ..
3.4.4.2 Semantics of aCO-OPN specification ...
3.4.4.3 Example of the semantics ofCO-OPN... 6

3.5 Summary... 67

Chapter 4
Theory of Formal Testing for Object-Oriented Software... 6

4.1 Theory of formal testing..
4.1.1 Test foundation ..
4.1.2 Test process...
4.1.3 Test selection ..
4.1.4 Reduction hypotheses for test selection..

4.1.4.1 Uniformity hypotheses ..
4.1.4.2 Uniformity hypotheses with subdomain decomposition
4.1.4.3 Regularity hypotheses ..

4.1.5 Test satisfaction ..
4.1.6 Our approach vs. theBGM approach...

4.2 Theory of formal testing for object-oriented software ...
4.2.1 Specification formalism:CO-OPN...

4.2.1.1 CO-OPN semantics ..
4.2.1.2 CO-OPN equivalence relationship: strong bisimulation equivalence
4.2.1.3 Satisfaction relationship between programs and specifications
8

Table of Contents

3
4

5
..... 85

.. 87
. 91
2
..... 92
.... 93
..... 95

....

..

....... 98

100

..... 101
.. 103
.. 103
.. 104
.. 105
.. 106
07

.... 110
.. 110
.... 113

.. 114

... 116
. 117
118
. 118

.. 119

... 121
.. 122
.. 124
.. 128
. 129
... 130
.. 130
... 133

.... 13

....
4.2.2 Test formalism: Hennessy-Milner Logic (HML) .. 8
4.2.2.1 Syntax and semantics ofHML.. 8
4.2.2.2 HML equivalence relationship: theHML equivalence 8
4.2.2.3 HML test cases and exhaustive test set ..
4.2.2.4 Satisfaction relationship between programs andHML test sets 86
4.2.2.5 Example ofHML test case selection ..
4.2.2.6 HML discriminating power..

4.2.3 Full agreement betweenCO-OPN andHML.. 9
4.2.3.1 Full agreement theorem...
4.2.3.2 Full agreement corollary...

4.2.4 Oracle construction..

4.3 Summary... 96

Chapter 5
Practical Test Selection .. 97

5.1 Practical test selection process ..

5.2 The languageHMLSP,X...

5.3 Reduction hypotheses..
5.3.1 Structural uniformity hypotheses..

5.3.1.1 Number of events..
5.3.1.2 Depth of a formula..
5.3.1.3 Number of occurrences of a given method.....................................
5.3.1.4 Event classification...
5.3.1.5 Shape ofHML formulas ... 1

5.3.2 Regularity hypotheses...
5.3.3 Uniformity hypotheses ...
5.3.4 Choosing reduction hypotheses ..

5.4 Uniformity hypotheses with subdomain decomposition ..
5.4.1 General strategy for subdomain decomposition ..
5.4.2 Where to findβ-constraints?..
5.4.3 How to findβ-constraints in algebraic conditions? ..
5.4.4 How to findβ-constraints in method parameters?...
5.4.5 How to findβ-constraints in pre- and postconditions

(without synchronization expressions)? ...
5.4.6 How to findβ-constraints in pre- and postconditions

in the presence of synchronization expressions? ...
5.4.6.1 Single synchronization ...
5.4.6.2 Sequential synchronization...
5.4.6.3 Simultaneous synchronization..
5.4.6.4 Alternative synchronization...

5.4.7 Example of subdomain decomposition..
5.4.7.1 Finding constraint systems characterizing the subdomains............
5.4.7.2 Solving constraint systems and selecting values

5.5 Minimal test set ..5

5.6 Summary...137
9

Table of Contents

..... 144

4
9

0
.. 151
1
52

. 153

. 153
.. 154
.. 155
. 157
... 159

. 162
162
63

....

.. 169

..... 170
.. 170
... 173
.... 173

.... 174

... 174
.... 175

.... 175
... 175
.. 175
.. 176
.. 176
.. 178
.... 178
.. 179
... 180

181

... 183

.. 184
. 184
... 186
... 190
... 191
Chapter 6
Operational Techniques and Test Set Generation Tool:CO-OPNTEST............................. 141

6.1 Operational techniques for test set selection ...
6.1.1 Algebraic specifications (CO-OPN, HML, CONSTRAINT) 144

6.1.1.1 Algebraic specification of theCO-OPN language............................ 14
6.1.1.2 Algebraic specification of theHML language.................................. 14
6.1.1.3 Algebraic specification of theCONSTRAINT language 15

6.1.2 From formal specifications to computational Horn clauses
6.1.2.1 From formal specifications toPROLOG facts.................................. 15
6.1.2.2 FromPROLOG facts to computational Horn clauses....................... 1

6.1.3 PROLOG resolution procedure..
6.1.3.1 SLD-resolution rule ...
6.1.3.2 SLD-resolution procedure ..
6.1.3.3 SLD-resolution search rule...
6.1.3.4 SLD-resolution computation rule ..

6.1.4 Control mechanisms for subdomain decomposition

6.2 TheCO-OPNTEST tool ..
6.2.1 TheCO-OPNTESTarchitecture...
6.2.2 TheCO-OPNTESTfunctionalities and graphical interface 1

6.3 Summary...167

Chapter 7
Case Study: Production Cell ...

7.1 Presentation of the case study..
7.1.1 Description of the production cell ..
7.1.2 Control program and simulator..
7.1.3 Safety requirements ..

7.2 Summary of Fusion ..
7.2.1 Analysis ...
7.2.2 Design...

7.3 Analysis and design with the Fusion method...
7.3.1 Analysis ...

7.3.1.1 System context diagram ...
7.3.1.2 Object model ..
7.3.1.3 System life-cycle ..
7.3.1.4 Operation models..

7.3.2 Design...
7.3.2.1 Interaction graphs ...
7.3.2.2 Class description..

7.4 From Fusion toCO-OPN..

7.5 Test selection for the production cell...
7.5.1 Unit testing of the robot..

7.5.1.1 Definition of the robot test driver and stubs
7.5.1.2 Test set selection..
7.5.1.3 Test set execution and error detection ...
7.5.1.4 Testing safety requirements...
10

Table of Contents

... 192

... 192
192
.. 193

....

....

..... 199

. 203

..

...

.

9

13

217

. 221
7.5.2 Integration testing of the robot and deposit belt ..
7.5.2.1 Presentation of the deposit belt..
7.5.2.2 Definition of the {robot, deposit belt} test driver and stubs.............
7.5.2.3 Test set selection for safety requirement ..

7.6 Summary...195

Chapter 8
Conclusion... 197

8.1 Contribution..197

8.2 Limitations, enhancements and perspectives...

Annex A - CO-OPNspecifications..

A.1 Unique .. 203

A.2 Booleans .. 204

A.3 Naturals.. 205

A.4 States... 207

Annex B - DevelopingCO-OPN specifications from Fusion models 20

Annex C - CO-OPN specification of the agent Robot.. 2

Annex D - Ada 95 implementation of the agent Robot ...

Annex E - Language of constraints..

References ... 233

List of Figures ... 241

List of Tables... 243

Curriculum Vitae ... 245
11

Table of Contents
12

Introduction

eir
ue. In

ters,
ming
lved a

s. It
ftware
ormal

ware
ng
lled a
y be

ieved
hat it
C H A P T E R

1
CHAPTER1INTRODUCTION

1.1 Motivation

The difficulty to develop complex software systems of high quality, that satisfy th
requirements while being reliable, efficient, extendable and reusable, is not a new iss
1972, during his Turing Award Lecture, E.W. Dijkstra stated that“as long as there were no
machines, programming was no problem at all; when we had a few weak compu
programming became a mild problem and now that we have gigantic computers, program
has become an equally gigantic problem. In this sense, the electronic industry has not so
single problem, it has only created the problem of using its product!” [Dijkstra 72]. These
provocative words are relevant to what is called the “software crisis”.

Software engineering tends to overcome this problem of quality in software system
proposes methods, techniques and tools allowing a more rigorous and disciplined so
development approach. Among the promoted methodologies, we can mention the f
methods and the object-oriented methods.

Formal methods provide a mathematical framework to specify, develop and verify soft
(and hardware) systems.Formally specifyrequires describing the system properties usi
mathematical notations. This description results in a non-ambiguous document ca
specification. Furthermore, the specification’s consistency and completeness ma
established by mathematical proof.Formally develop implies successively refining the
specification using mathematical rules, until the obtention of an executable program.Formally
verify consists of stating that the program conforms to the specification. This may be ach
by mathematical proof or by test. Proving is a static verification technique in the sense t
13

Introduction

f the
esting
is to
ation
ted by
5].
strial
ered

tems)
ethods
. In
easy

rt the
orem
ols is a
rules.
tions,

red by
based
ts. In
bjects
ts are

eans
an only
gainst
e same
hich

tware
nherits
to the

way
everal
s, like
90]
hases:

The
, these
wever,
does not involve program execution. The goal of proving is to state the correctness o
program by establishing that its code satisfies theorems deduced from the specification. T
is a dynamic verification technique which involves program execution. The goal of testing
find program errors with respect to the specification. In the case of testing, the specific
guides the tester to select pertinent test sets. The importance of testing has been no
Bowen and Hinchley in their “Ten Commandments of Formal Methods” [Bowen 9
Although formal methods have been successfully applied in many academic and indu
projects [Saiedian 96] [Hall 96], their benefits remain controversial. They are often consid
difficult to apply, expensive and only dedicated to safety-critical systems (e.g. aircraft sys
and business-critical systems (e.g. banking systems). This non-acceptance of formal m
is probably due to a lack of intuitive notations [Finney 96] and a lack of supporting tools
order to be satisfyingly employed, a formal method must propose a language allowing
expression of system properties, as well as a user-friendly environment to suppo
development. This environment may include tools like a specification checker, a the
prover, a simulator, a prototyper, a test set generator, etc. The development of these to
difficult automation task; however it is made easier thanks to mathematical notations and
In order to be widely employed, formal methods must be strengthened in these two direc
i.e. notations and tools.

Contrary to formal methods, object-oriented methods are widely used and are conside
many practitioners to be the solution to the software crisis. Object-oriented methods are
on the following postulate. Software systems accomplish given actions on given objec
order to obtain high quality systems, it is better to structure the software around the o
than around the actions [Meyer 97]. Consequently, the main object-oriented concep
objects, classes of objects, andinheritance between classes [Wegner 87] [McGregor 92].

A system is composed of a collection of objects which communicate with each other by m
of message sending. Each object has a private internal state. This “encapsulated” state c
be modified or consulted via the object operations. Thus, the state is protected a
uncontrolled access. Objects are grouped by class. All the objects of one class have th
structure. A class is a template for objects; it defines a modular unit and a type from w
objects can be dynamically created. The notion of class promotes reusability of sof
elements. This aspect is reinforced by the concept of inheritance: a “descendant” class i
all the characteristics of an “ancestor” class. Additional characteristics may be added
“descendant” class as required.

An object-oriented strategy should be used throughout the entire software life-cycle in a
that minimizes the gap between successive development phases [Meyer 97]. S
object-oriented methods have been proposed to support the development proces
OMT [Rumbaugh 91], Booch [Booch 94], Objectory [Jacobson 94], CRC [WirfsBrock
and Fusion [Coleman 94]. These methods emphasize three main development p
analysis, design, andimplementation.The analysis phase specifieswhat the system does. The
design phase defineshow the system realizes the behavior required by the analysis.
implementation phase encodes the design in a programming language. Furthermore
methods state the importance of software testing at every stage of the development. Ho
they remain vague about the way to perform testing.

The importance of software testing has been noted by many authors.
14

Introduction

alysis,
lution
tion,

elief
g is

r of an
lso on
atorial
ess, in
gthen
d for
t the

the
rmal
tance.
to the

poses
s

“Reliable object-oriented software cannot be obtained without testing”.

— R.V. Binder, [Binder 95]

“The importance of software testing and its implications with respect to software
quality cannot be overemphasized. [...] It is not unusual for a software
development organization to expend between 30 and 40 percent of total project
effort on testing. In the extreme, testing of human-rated software (e.g. flight
control, nuclear reactor monitoring) can cost three to five times as much as all
other software engineering activities combined!”

— R.S. Pressman, [Pressman 97]

“Quality assurance over test designs and testing is essential to a successful
quality effort. [...] More than the act of testing, the act of designing tests is one of
the most effective bug preventers known. [...] The ideal quality assurance activity
would be so successful at this that all bugs would be eliminated during test
design. Unfortunately, this ideal is unachievable. We are human and there will be
bugs. To the extent that quality assurance fails to reach its primary goal of bug
prevention, it must reach its secondary goal of bug detection.”

— B. Beizer, [Beizer 84]

However, within object-oriented approaches, testing has received less attention than an
design, and implementation. This lack of interest is probably due to the fact that the evo
of software development methods always follows the path from analysis to implementa
overlooking the verification phases [Muller 97]. Also, it is probably caused by a strong b
that object-oriented technology will lead by itself to quality software, and thus that testin
unnecessary. In addition, testing object-oriented software is difficult because the behavio
object does not only depend on the input values of the parameters of its operations, but a
its current state, and generally on the current states of other related objects. This combin
explosion requires carefully selecting pertinent test sets of reasonable size. Neverthel
order to cover the entire software life-cycle, the object-oriented methods should stren
their verification phases by providing methodologies for software testing. Finally, as we di
formal methods, we can mention that object-oriented methods lack tools to suppor
development process.

The work presented in this thesis is part of a project, calledCO-OPN (Concurrent
Object-Oriented Petri Nets), which aims to combine the rigor of formal methods and
structuration capabilities of object-oriented methods. Its goal is to develop a fo
specification language including object-oriented paradigms like object, class and inheri
The CO-OPN language is based on synchronized algebraic Petri nets and is devoted
specification of large concurrent systems. In addition, theCO-OPNproject aims to provide a
user-friendly environment with tools to support the development process. This thesis pro
a formal testing methodto select test sets fromCO-OPNspecifications. In addition, it propose
to provide theCO-OPN environment with a new tool to automate the test selection.
15

Introduction

rmal
red by

i) a test
d, and
e are
elp of

ftware
data

ogram
The formal testing method is an approach to find program errors with respect to the fo
specification of the tested application: program behaviors are compared to those requi
the specification. It is usually decomposed into the following three phases: (i) a testselection
phase, in which some tests that express properties of the specification are generated, (i
executionphase, in which the tests are executed and the results of the execution collecte
(iii) a testsatisfactionphase, in which the results obtained during the test execution phas
compared to the expected results. This last phase is commonly performed through the h
an oracle [Weyuker 80a].

The formal testing method presented in this thesis is an adaptation to object-oriented so
of the BGM method, developed by Bernot, Gaudel and Marre [Bernot 91b] for testing
types from algebraic specifications. The essence of theBGM method is to reduce the
exhaustive test set into a finite and pertinent test set by applying hypotheses to the pr
behavior.

The formal testing process is illustrated in figure 1.

Does the program satisfy its specification?

Test Selection

Test Execution

Test Requirement

Yes — No — Inconclusive Test Interpretation

Test Procedure

Program
Correction

Fig. 1.Formal testing process

Hi

H

H0

...

Exhaustive test set T0

Ti

...

T

Hj Tj

... ...

Reduction

of the test set

Application of

hypotheses to

the program

(Oracle)

Test Satisfaction
16

Introduction

riented
e the

s a
can

o the
well

s are

stify
en the

at
tween
s the

of the
lied to

entary
which
viors
an be
the

le size.

ect
that a
oes not

is
of the

s a

to the
these
1.2 Contribution

In this thesis, we present a method and a tool for test set selection, dedicated to object-o
applications and based on formal specifications. The main contributions of this work ar
following:

 • A theory of formal testing dedicated to object-oriented software

We propose a theory of formal testing for object-oriented applications. This i
generalization of theBGM theory to systems where the specifications and the test sets
be expressed using different formalisms: a specification language well adapted t
expression of system properties from the specifier’s point of view, and a test language
adapted to the description of test sets from the tester’s point of view. Specification
written in CO-OPN. Test sets are expressed using a very simple temporal logic,HML
(Hennessy-Milner Logic), whose logic formulas can be executed by a program. We ju
the choice of these formalisms, and establish that there exists a full agreement betwe
CO-OPNequivalence relationships and theHML equivalence relationships. We show th
this full agreement between equivalence relationships leads to a full agreement be
satisfaction relationships: the program satisfies its specification if and only if it satisfie
exhaustive test set derived from this specification.

 • A practical test set selection procedure

We present a practical test selection process to reduce the (generally infinite) size
exhaustive test set. The reduction is achieved by associating to each hypothesis app
the program, a constraint on the test set. Our method proposes a set of elem
constraints: syntactic constraints on the structure of the tests and semantic constraints
allow to instantiate the test variables so as to cover the different classes of beha
induced by the specification (i.e. subdomain decomposition). Elementary constraints c
combined to form complex constraints. Finally, the constraint system defined on
exhaustive test set is solved, and the solution leads to a pertinent test set of reasonab

 • A test format adapted to systems with states

Thanks to theCO-OPNsemantics, which allows to compute all the correct and incorr
behaviors induced by a specification, our method is able to test, on the one hand
program does possess correct behaviors, and on the other hand that a program d
possess incorrect behaviors. An elementary test is defined as a couple <Formula, Result>.
Formula is anHML formula composed of observable events of the specification.Resultis a
boolean value showing whether the expected result of the evaluation ofFormula (from a
given initial state) istrue or false with respect to the specification. An advantage of th
approach is to provide through the tests, an observational description (independent
state notion) of valid and invalid implementations.

 • A new tool based on operational techniques for test set selection

Our testing method exhibits the advantage of being formal, and thus allow
semi-automation of the test selection process. A new tool, calledCO-OPNTEST, is presented
in this thesis. This tool assists the tester during the construction of constraints to apply
exhaustive test set; afterward it automatically generates a test set satisfying
17

Introduction

hich
f the

of
ntrol
endly

ol
been
esign
of the

the

iders
ftware
ls.

tics of

s the
gic
tween

poses

c

constraints. TheCO-OPNTEST architecture is composed of aPROLOGkernel and aJava
graphical interface. TheCO-OPNTESTkernel is based on the same technique as theLOFT 1

kernel which has a proven efficiency; it uses an equational resolution procedure w
simulates narrowing by SLD-resolution, associating a Horn clause to each axiom o
specification. For that purpose, the formalisms involved in our test method (CO-OPN, HML,
and a language of constraintsCONSTRAINT) are translated into a logic program made
computational Horn clauses. Furthermore, the kernel includes additional co
mechanisms for subdomain decomposition. The graphical interface allows a user-fri
definition of the test constraints.

 • A demonstration of the soundness of the approach via a case study of realistic size

We present an application ofCO-OPNTEST to a case study of realistic size: the contr
program of an existing industrial production cell [Lewerentz 95]. Test sets have
generated at both unit and integration level in a simple, rapid and efficient way. The d
and execution of these tests have revealed errors in the design and implementation
controller. CO-OPNTEST and its application to a significant example demonstrate
pertinence of our approach.

1.3 Document organization

This document is organized as follows:

 • Chapter 2: Test Methods and Tools

First, chapter 2 places formal testing in the verification and test context. Then, it cons
the main object-oriented paradigms and their advantages and drawbacks for so
testing. Finally, it presents several existing formal test methods together with their too

 • Chapter 3: TheCO-OPN Object-Oriented Specification Language

Our test method derives test sets from a formal specification language:CO-OPN
(Concurrent Object-Oriented Petri Nets). Chapter 3 presents the syntax and the seman
CO-OPN, as defined by Biberstein, Buchs and Guelfi.

 • Chapter 4: Theory of Formal Testing for Object-Oriented Software

Chapter 4 presents our theory of formal testing for object-oriented software. It justifie
choice ofCO-OPNas the specification formalism and of Hennessy-Milner temporal Lo
(HML) as the test formalism, and then establishes that there exists a full agreement be
these two formalisms.

 • Chapter 5: Practical Test Selection

Chapter 5 presents the test selection process from a practical point of view. It pro
several reduction hypotheses together with their corresponding constraints2, studies the

1. The BGM method has led to the development of theLOFT tool (LOgic for Function and Testing,
[Marre 91]) which semi-automatically generates test sets (algebraic formulas) from algebrai
specifications.

2. The complete language of constraints,CONSTRAINT, is given in annex E.
18

Introduction

nto a

of the

l
or test

ol

ular,
n and
subdomain decomposition problem, and finally shows how to transform a test set i
minimal test set free of redundant tests.

 • Chapter 6: Operational Techniques and Test Set Generation Tool:CO-OPNTEST

First, chapter 6 presents the operational techniques for test set selection: translation
formalisms involved in our test method (CO-OPN, HML, CONSTRAINT) into a logic program
made of computational Horn clauses, thePROLOG resolution procedure, and contro
mechanisms for subdomain decomposition. Second, chapter 6 presents a new tool f
set selection based on the former techniques:CO-OPNTEST.

 • Chapter 7: Case Study: Production Cell

Chapter 7 presents an application ofCO-OPNTESTto a case study of realistic size: the contr
program of a production cell.

This work is the result of a collaboration with Didier Buchs and Stéphane Barbey. In partic
earlier versions of chapters 4 and 5, related to the theory of testing, were conjointly writte
can be found in [Barbey 96] and [Péraire 98a].
19

Introduction
20

Test Methods and Tools

. The
rmal
ented
several

some

ailure.

dopt
C H A P T E R

2
CHAPTER2TEST METHODS AND TOOLS

Testing is a verification technique to ensure that a program conforms to its specification
goal of this chapter is to place testing in the general verification context, and to place fo
testing in the test context. Furthermore, this chapter considers the main object-ori
paradigms and their advantages and drawbacks for software testing. It also presents
existing formal test methods together with their tools.

To standardize the vocabulary used in this document, we start this chapter with
definitions taken from the IEEE Standard Glossary [IEEE 94].

Mistake A human action that produces an incorrect result.

Error A difference between a computed result and the specified or theoretical one.

Fault A defect in a component which is the manifestation of an error.

Failure The inability of a system to perform a required function within specified limits.

Consequently, an error is caused by a mistake and results in a fault that may produce a f

Several different definitions have been given for the word “testing”. In this document we a
the one given by Myers [Myers 79]:

Testing The process of executing a program with the intent of finding errors.

Error Fault FailureMistake
21

Test Methods and Tools

tware
nding
e that

sting
riented

their

in the
ation
ach

odel,
the
Thus, testing is not the process ofdiagnosingthe cause of errors, ofcorrectingerrors, or of
proving the correctness of programs. The goal of testing is concentrated onfinding program
errors. However, testing has a side effect: the activity of designing tests early in the sof
development process allows to find errors in the design of the program. Furthermore, fi
errors in both the program design and the implementation provides convincing evidenc
there are no errors in the program.

The structure of this chapter is the following. First, section 2.1 presents two orthogonal te
classifications. Second, section 2.2 considers the main characteristics of testing object-o
software. Finally, section 2.3 presents several existing formal test methods together with
tools.

2.1 Testing classifications

This section presents two orthogonal testing classifications. The first places the test
software life-cycle. The second presents different test methods in the traditional verific
taxonomy. All of the latter test methods can be used (individually or in conjunction) at e
phase of the software life-cycle.

2.1.1 Testing in the software life-cycle

Several software life-cycle models are proposed in the literature, such as the “waterfall” m
the “V” model (see figure 2) and the “spiral” model. All of these models emphasize
importance of software testing at each development stage.

A
bs

tr
ac

tio
n

le
ve

l

Time

Analysis

Architectural
design

Detailled
design

Implementation

Unit testing

Integration and

Acceptance and

Integration testing

System testing

Sequencing Verification link

Fig. 2.V model for software development

Construction Assembly and
Verification
22

Test Methods and Tools

gn) is

n be

its is

nted in

ies:
the

code

sfies
ither
In the “V” model, each construction phase (analysis, architectural design, detailed desi
reflected by a verification phase. The first verification phase isunit testing. During this phase,
the tested software is divided into components, called basic units [Fiedler 89], that ca
tested in isolation. Then, the basic units are integrated andintegration testingis performed to
scrutinize the interactions between the integrated units. Once the integration of all un
achieved, thesystem testing phase checks that the entire system meets its requirements.

Unit, integration and system testing are performed using various testing strategies prese
the next section.

2.1.2 Test methods in the verification taxonomy

In the traditional taxonomy [Laprie 95], verification techniques are divided into two famil
static and dynamicmethods (see figure 3). Dynamic methods involve the execution of
tested program, whereas static methods do not.

Static methods includeproofs andstatic analysis.

 • Proving consists of stating the correctness of the program by establishing that its
satisfies theorems deduced from the specification.

 • Static analysis consists of analyzing the code of the program to verify that it sati
implicit or explicit properties required by the specification. Static analysis can be e
manual (e.g. code review) or automated (e.g. type checking, complexity measures).

Verification

SymbolicTest

Static Dynamic

AnalysisProof Execution

Specification-Program-based based

Deterministic

Fig. 3.Classification of verification techniques

Deterministic Probabilistic

ex: Formal

Probabilistic
23

Test Methods and Tools

lues
to the

This
d an
cases
uced
s that
ed by
with

cases

d
verage

code
of its
se of

ng is

The
rs are
cover

rmal,

lected

ment
of the

ermore,
cation

view
ments
ate of
Dynamic methods includesymbolic execution andtesting.

 • Symbolic execution is performed by executing tested programs with symbolic input va
instead of concrete ones, and yields as results symbolic expressions corresponding
outputs of the program.

 • Testing is performed by submitting a set of possible (concrete) inputs, called atest case, to
the tested program, and comparing the computed result to the expected one.
comparison is performed manually or automatically by means of a program calle
oracle. A test case exercises a particular aspect of the program. A set of test
constitutes atest set. Since the exhaustive test set is usually infinite, its size must be red
while retaining its pertinence. The goal is to select the smallest number of test case
will detect the greatest number of errors in the tested program. This is usually achiev
sampling the input domain of the tested program to exercise the program
representative test cases only.

Testing methods are divided into two families, according to the source from which test
are selected:program-based testing andspecification-based testing.

 • In program-based testing, also known asstructuralor white-boxtesting, test sets are derive
from the code of the program. Tests cases are selected in order to cover a given co
criterion (e.g. all instructions, all executable paths, all conditions)

While this approach gives good results, it is insufficient. For instance, examining the
of the tested program is unlikely to detect that the program does not perform one
desired tasks. Furthermore, using programs as models multiplies the work in the ca
multiple implementations of one specification. In contrast, specification-based testi
efficient in this case.

 • In specification-based testing, also known asfunctionalor black-boxtesting, test sets are
derived from the specification of the tested application, apart from the program.
criterion of correctness is the specification of the tested application: program behavio
compared to those required by the specification. The goal is to select test sets that
each property described by the specification. Specifications can be either info
semi-formal or formal.

In the informal case, the specification is written in natural language. Test sets are se
manually for each functionality described by the specification.

In the semi-formal case, test selection is guided by models of semi-formal develop
methods. For instance, test sets can be derived from the analysis and design models
Fusion method [Coleman 94]. Partial automation of the test process is possible.

In the formal case, specification-based testing is calledformal testing. Thanks to
mathematical notations and rules, the test selection process can be automated. Furth
this approach has the advantage of guaranteeing a good coverage of the specifi
properties. In addition to our formal language of choice,CO-OPN, which is described in
detail in chapter 3, the references [Ehrich 91][Dodani 95], and [Guelfi 97] give an over
of various formal specification languages for object-oriented systems. Several experi
have been performed in testing using formal specifications. A good summary of the st
the art can be found in [Gaudel 95].
24

Test Methods and Tools

are,
ations.
at are

es; the
Their

roups,

ective

file of
tical

thod is
overage
istic
d have
l not
fer to
Specification-based testing is especially well-suited for testing object-oriented softw
because it allows the reuse of test sets in the case of classes with multiple implement
However, it is not sufficient to detect when the software performs undesirable tasks th
not contained in the specification.

Program-based testing and specification-based testing are complementary techniqu
errors caught with one technique are not necessarily easily detected with the other.
relationship is shown in figure 4, which is inspired by [Roper 94].

Both program-based testing and specification-based testing can be divided into two g
according to the way test cases are selected:deterministic testing and what we call
probabilistic testing.

 • Testing is deterministic when test cases are determined only according to a sel
sampling criterion.

 • Testing is probabilistic when test cases are selected randomly, either on a uniform pro
the entry domain (random testing) or according to a probabilistic distribution (statis
testing) [Thévenod-Fosse 95].

Random test selection is easy, inexpensive and can give good results. However, this me
generally considered weak, because random test cases generally do not give a good c
of the input domain. However, statistical testing does not have this flaw. Determin
specification-based testing and statistical testing have been compared in [Marre 92] an
shown similar results. Since statistical testing is outside the scope of this work, we wil
elaborate on this issue for object-oriented software. Interested readers can re
[Thévenod-Fosse 97].

Specification

Program 1

Specification-based

 tests

Program-based tests 1

Unexpected additions detected
by program-based tests

Omissions detected by
specification-based tests

Fig. 4.Relationship between specification-based and program-based testing techniques

(incorrect)

Program-based tests 2

Program 2
(correct)

(for both programs)
25

Test Methods and Tools

wer to
y be
into a
faults
tation
been

ately
n this
cess.

bjects
main

wbacks
on the
ware

ying
is an

, many
re of a
ming
f errors

h
ented
s, the
y

ftware,
es the
For the different test methods presented in this section, the quality of a test set, i.e. its po
reveal errors, must be measured by appropriate techniques [Binder 96]. Quality ma
analyzed by techniques such as program mutation. In this analysis, faults are injected
program, and the quality of the test sets is defined as a measure of the number of
detected. For object-oriented software, this technique could be used if an appropriate mu
principle were defined. However, to our knowledge, no such mutation principle has yet
proposed.

To conclude, it is important to note that an efficient verification strategy must adequ
combine the use of the different static and dynamic verification techniques proposed i
section. These techniques must be used at each stage of the software development pro

2.2 Testing object-oriented software

As stated in the introduction, object-oriented methods structure the software around o
and not around actions. A system is composed of a collection of connected objects. The
object-oriented concepts areobjects, classes of objects, andinheritance between classes.

This section presents the main object-oriented paradigms and their advantages and dra
for software testing. This section is gathered from a complete and detailed presentation
subject which can be found in [Barbey 97]. A good survey of testing object-oriented soft
is presented in [Binder 94].

First, a major advantage of object-oriented programming could be that it is a unif
paradigm: in pure object-oriented programming languages, such as Smalltalk, everything
object, and all statements and communications are stated with messages. However
major object-oriented programming languages, such as Ada 95, C++, Eiffel and Java, a
hybrid fashion; they include values and control structures found in structured program
languages, such as while, repeat and loop statements. Thus, they combine the sources o
inherent to both programming styles.

2.2.1 Objects

The main constituents of an object-oriented system areobjects. An object is usually made up
of three elements: a state, methods and an identity.

 • Thestateof an object consists of a set ofattributes. In pure object-oriented systems, whic
do not admit entities other than objects, the attributes are objects. In hybrid object-ori
models, which also admit entities without identity such as natural numbers or boolean
attributes can also be values. A state isencapsulated: it can only be observed or modified b
means of the object methods.

The presence of an encapsulated state is a benefit for testing object-oriented so
because it reduces the dispersal of information and defines an interface that determin
actions that can be performed on the object.
26

Test Methods and Tools

iffel,
oes not
n into
ate of
tly, an
t be

cult to
f the

serve

t their
Huit
than

k).

can
is not
it is

f the

s its

ons.

ass
cture
class

hide
ide of

ethods
thods
. This
ation
action,
However, several programming languages, such as C++, Ada 95, Smalltalk and E
support mechanisms to break the encapsulation. Furthermore, the state of an object d
only include its local attributes. The attributes of connected objects must also be take
account. Indeed, the behavior of a method may not only be influenced by the local st
the object on which it is applied, but also by those of connected objects. Consequen
oracle that limits its observation to one object in order to test its methods may no
satisfactory. Furthermore, an oracle based on direct observation of states may be diffi
implement. It is therefore better to base the oracle on an external observation o
behavior.

 • Themethodsof an object are the subprograms which represent its behavior and can ob
or modify its state.

An advantage of methods for testing is that they are bound to a type, and thus tha
context may be identified. Another advantage is that they are usually short. Wilde and
[Wilde 92] have collected data on three object-oriented systems and found that more
fifty percent of methods consist of one or two statements (C++) or four lines (Smalltal

The drawback is that it is difficult to test a method individually. Generally, a method
only be tested through an object of a class. The context in which a method is executed
only defined by its possible parameters, but also by the state of the object by which
invoked and generally by the state of connected objects.

 • Theidentity allows identifying an object independently of its state.

The management of object identity is generally part of the run-time environment o
system, and can be considered correct.

The set of all attributes and all methods of an object is called itsfeatures, whereas the
properties of an object denote both its features and its other characteristics, such a
implementation and the description of its semantics (by assertions, axioms, etc.).

2.2.2 Classes

A class is a typed modular template from which objects are instantiated. It has two functi

 • First, a class is atype. It is a means of classifying objects with similar properties. Each cl
represents the notion of a set of similar objects, i.e. of objects sharing a common stru
and behavior. Associated with each class is a predicate that defines the criterion for
membership.

 • Second, a class is amodule. A class encapsulates the features of its instances and can
the data structures and other implementation details that should not be available outs
the class. The non-hidden features form the interface of the class. They are usually m
only. Therefore programmers can manipulate objects by invoking only these public me
and do not have to give special attention to the data representation of the class
separation between interface and implementation is very important: a single specific
can lead to multiple implementations. Since classes encapsulate a complete abstr
they are easily isolated and can be reused in many applications.
27

Test Methods and Tools

ested
uthors

y do not
s (for

eatures
sses.
ds, or
nted

tural to
sting of
the

rmore,
ts parent
nd its
t class.

st the
it may
d the

offer

ties.
g. For
s can
rphic
parent

ms for
Modularity simplifies testing because the determination of the components to be t
becomes easier, depending on the level of interconnection of the classes. Many a
consider the class to be the basic unit of test [Binder 94].

Some classes, such as abstract and generic classes, cannot be tested, because the
contain enough information. Therefore, testing can only be performed on instantiation
generic classes), or on concrete descendants (for abstract classes).

2.2.3 Inheritance

Inheritance is a mechanism that allows a class, called the descendant class, to inherit f
from one (single inheritance) or many (multiple inheritance) classes, called its parent cla
The descendant class can then be refined by modifying or removing the inherited metho
by adding new properties. Inheritance is the prevailing mechanism in object-orie
programming languages for providing the subclassing relationship.

Since the descendant class is obtained by refinement of its parent class, it seems na
assume that a parent class that has been tested can be reused without any further rete
the inherited properties. This intuition is however proved false in [Perry 90]: some of
inherited properties need retesting in the context of the descendant class. Furthe
inheritance breaks encapsulation: the descendant class has access to the features of i
class, and can modify them. Although encapsulation builds a wall between the class a
clients, it does not prevent the descendant class from changing the features of its paren

Therefore, it is difficult to take advantage of completed testing of the parent class to te
descendant class. Nevertheless, to avoid retesting the entire set of inherited properties,
be possible to select the minimal set of properties which are distinct in the parent an
descendant. Thus, only these properties need to be retested.

2.2.4 Polymorphism

In addition to objects, classes, and inheritance, most object-oriented methodologies
another important capability:polymorphism.

Polymorphism is the possibility for a single name to denote different kinds of enti
Polymorphism can affect the correctness of a program and cause trouble during testin
instance, it brings undecidability to program-based testing. Since polymorphic name
denote objects of different classes, it is impossible, when invoking a method on a polymo
reference, to predict before run-time which code is about to be executed, i.e. whether the
or a descendant implementation will be selected.

2.2.5 Summary

Table 1 summarizes the advantages and the drawbacks of object-oriented paradig
software testing.
28

Test Methods and Tools

ations
features
2.3 Test methods and tools

This section presents several existing formal test methods together with their tools.

 • TheBGM method [Bernot 91b] and theLOFT tool [Marre 91] based on algebraic
specifications.

 • TheASTOOT method and tools [Doong 94] based on object-oriented algebraic
specifications (LOBAS).

 • TheBULL method and tool [Dick 93] based on state-based specifications (VDM).

 • TheTGVmethod and tool [Fernandez 96a] based on protocol specifications (SDL, LOTOS).

These methods have been chosen so as to cover different types of formal specific
(algebraic, object-oriented, state-based, protocol) and because they present interesting
in terms of test selection strategies and tools.

Advantages Drawbacks

• Object-oriented paradigms unify
language constructs.

• Most object-oriented languages are
hybrid and use structured statements
and identity-less values.

Objects

• Encapsulation reduces the dispersal of
information and defines an interface.

• Encapsulated states are not observable.
• States depend on connected objects.
• Objects of the same class may share a

common state.
• Encapsulation can be broken.

• Methods are bound to types.
• Methods have few statements.

• Methods cannot be tested individually.

Classes

• Modularity allows to determine test
components.

• Abstract and generic classes cannot be
tested.

Inheritance

• Capitalizing on inheritance can reduce
the number of tests for descendant
classes.

• The part that needs no retesting is
difficult to determine.

• Inheritance breaks encapsulation.

Polymorphism

• No simple static analysis can be
performed because of run-time binding.

Table 1: Advantages and drawbacks of object-oriented paradigms for testing
29

Test Methods and Tools

e en
plete
od is

tion is
f each

shape
es.

plying
rmity

fied
this
2.3.1 TheBGM method and theLOFT tool

The BGM method has been developed at the LRI-CNRS (Laboratoire de Recherch
Informatique, University of Paris-Sud, Orsay, France) by Bernot, Gaudel and Marre. Com
presentations of the approach can be found in [Bernot 91b] and [Marre 91]. The meth
based on the theory of testing presented in [Bougé 86] and [Bernot 91a].

 • Goal

TheBGM method aims to test data types from algebraic specifications [Ehrig 85].
An example of an algebraic specification is given in figure 5 (CO-OPN ADT syntax).

 • Test unit and test coverage

The approach aims to test operations (test units) of the specification. Since an opera
specified by means of axioms, the test selection process aims to cover all the axioms o
operation.

 • Test format

Test cases derived from the algebraic specifications are algebraic equalities of the
u = v, whereu andv are ground terms well constructed from the specification interfac
This kind of test allows to test the properties of operations.

 • Sampling techniques

The method reduces the exhaustive test set into a finite and pertinent test set by ap
reduction hypotheses to the program behavior. This hypotheses are of two kinds: unifo
and regularity.

Uniformity hypothesesmake the assumption that if an axiom, holding a variable, is satis
for one instantiation of this variable, then it is satisfied for all possible instantiations of
variable.

Fig. 5.Algebraic specification of the Abstract Data TypeCoordinates

ADT Coordinates;
Interface

Use
Naturals, Booleans;

Sort
coordinate;

Generator
<_ , _>: natural natural→ coordinate;

Operations
projection1: coordinate → natural;
projection2: coordinate → natural;
permutation:coordinate → coordinate;
equivalence: coordinate coordinate → boolean;

Body
Axioms

projection1 <x, y> = x;
projection2 <x, y> = y;
permutation <x, y> = <y, x>;
equivalence (<x1, y1>,<x2, y2>) = (x1 = x2) and (y1 = y2);

Where
x, y, x1, y1, x2, y2: natural;

End Coordinates;
30

Test Methods and Tools

fied
d for

plex
ly not
which
ses are

the
tion is

r

ses is
a

t. The
of the
said to

ssary
id to be

ble to
n
there
Regularity hypothesesmake the assumption that if an axiom, containing a term, is satis
for all terms having a complexity less than or equal to a given bound, then it is satisfie
all terms whatever their complexity.

Uniformity and regularity hypotheses can be combined in order to obtain more com
reduction hypotheses. Since uniformity hypotheses are very strong, they are usual
applied to the elements under test, but to the elements imported into the specification,
are assumed to be already tested. To the elements under test, regularity hypothe
applied, as well as uniformity hypotheses combined with subdomain decomposition.

Subdomain decompositionallows to instantiate variables of an axiom so as to cover
different classes of behaviors described by the specification. Subdomain decomposi
performed byunfolding the operations occurring in the axiom.

This technique is illustrated with the decomposition of the axiom

equivalence (<x1, y1>,<x2, y2>) = (x1 = x2) and (y1 = y2)

by unfolding of the operationand described by the following axioms:

true and true = true,
true and false = false,
false and true = false,
false and false = false.

This unfolding leads to the following four formulas:

(x1 = x2) = true and (y1 = y2) = true ⇒ equivalence (<x1, y1>,<x2, y2>) = true,
(x1 = x2) = true and (y1 = y2) = false ⇒ equivalence (<x1, y1>,<x2, y2>) = false,
(x1 = x2) = false and (y1 = y2) = true ⇒ equivalence (<x1, y1>,<x2, y2>) = false,
(x1 = x2) = false and (y1 = y2) = false ⇒ equivalence (<x1, y1>,<x2, y2>) = false.

The instantiation of the variablesx1, y1, x2 and y2 by uniformity hypotheses leads, fo
instance, to the following four test cases:

equivalence (<3, 8><3, 8>) = true,
equivalence (<6, 2><6, 4>) = false,
equivalence (<1, 7><2, 7>) = false,
equivalence (<2, 4><8, 1>) = false.

A test set derived from the exhaustive test set with the preceding reduction hypothe
valid (it rejects any incorrect program) andunbiased(it accepts any correct program) for
program satisfying these hypotheses.

 • Oracle

The oracle is a decision procedure to verify that an implementation satisfies a test se
oracle is based on equivalence relationships that compare the outputs of the execution
test cases with the expected results derived from the specification; these elements are
beobservable. The problem is that the oracle is not always able to compare all the nece
elements to determine the success or failure of a test case; these elements are sa
non-observable. This problem is solved using oracle hypotheses.

The oracle hypotheses stipulate that for any observable test case, the oracle is a
determine whether the test execution yieldsyes or no, i.e. that no test case executio
remainsinconclusive. Furthermore, they stipulate that for any non-observable test case,
existobservable contexts to transform it into observable test cases.
31

Test Methods and Tools

ration

to

from

nal
the
main

ne

mplex

een
A).
g 94].

raic

ethod
s aims
For instance, consider an oracle which is able to compare natural values with the ope
=, and holds the operationsprojection1, projection2, andpermutation, but which is not able to
compare coordinates because it does not hold the operationequivalence. This oracle is not
able to observe the testpermutation <0, succ(0)> = <succ(0), 0>. However, this test can be
observed using observable contexts:

projection1 (permutation <0, succ(0)>) = projection1 (<succ(0), 0>),
projection2 (permutation <0, succ(0)>) = projection2 (<succ(0), 0>).

In the past few years, many aspects of theBGM method have been enhanced to take in
account exceptions [Gall 93] and bounded specifications [Arnould 97].

The BGM method has led to the development of theLOFT tool (LOgic for Function and
Testing, [Marre 91]) which semi-automatically generates test sets (algebraic formulas)
algebraic specifications.

 • Operational techniques for test selection

The LOFT kernel is an equational resolution procedure which simulates conditio
narrowing byPROLOGSLD-resolution, associating a Horn clause to each axiom of
specification. Furthermore, it includes additional control mechanisms for subdo
decomposition. These techniques are presented in chapter 6.

 • User assistance

LOFT proposes severalPROLOGpredicates (e.g.unfold_std, do_not_unfold) to assist the
tester during the selection of hypotheses to reduce the exhaustive test set. ThePROLOG
queries are written via a text window. A Tcl/Tk graphical interface allows to defi
resolution parameters.

Practical experiences at an industrial level, for example the application ofLOFT to an
automatic subway [Dauchy 93], have shown that this tool can be used successfully for co
problems.

2.3.2 TheASTOOT method and tools

The ASTOOT(A Set of Tools for Object-Oriented Testing) method and tools have b
developed by Frankl and Doong at the Polytechnic University of Brooklyn (New York, US
Complete presentations of the approach and tools can be found in [Doong 93] and [Doon

 • Goal

TheASTOOTmethod aims to test object-oriented programs from object-oriented algeb
specifications written inLOBAS [Doong 93].

 • Test unit and test coverage

The approach aims to test classes (test units) of the specification by focusing on m
interactions. Since a method is specified by means of axioms, the test selection proces
to cover all the axioms of each method involved in an interaction.
32

Test Methods and Tools

.
s to

servers.

gram
ted

l
o test

h as
e

a
al
ivalent
etailed

ce

l and

s the
his

ach test
der to

nd of
).
 • Test format

Test cases are triplets (T, T’, tag) whereT andT’ are sequences of method calls, andtag is a
boolean value showing whetherT is equivalentto T’ according to the specification.T is a
sequence supplied by the user whileT’ is a simplified sequence computed by the methodT
and T’ are equivalent if the axioms of the specification can be used as rewrite rule
transformT into T’ (thus the specification must define a convergent rewriting system).

A sequence of method calls has the following limitations:

- methods have no side effects on their parameters,
- observers have no side effects,
- observers can only appear as the last method of a trace,
- when a sequence is passed as a parameter to a method, it must not contain any ob

These limitations permit the construction of an oracle and thus ensure the pro
testability. However, this format does not always reflect the reality of object-orien
programs, for instance by neglecting the potential side effects of observers.

 • Sampling techniques

The test set selection is based on original sequencesT supplied by the user. These origina
sequences are selected either by hand or randomly; this is a limitation with regard t
quality. Then, using the axioms of the specification, each sequenceT is rewritten into
several simplified sequences. This simplification leads to test cases suc
(T, T’, equivalent) or (T, T” , not-equivalent). This simplification is performed by a cas
analysis of the axioms.

 • Oracle

The method requires that the class under testClassand each class that is returned by
function of Class include anequivalence functionthat approximates an observation
equivalence between objects (for instance, two FIFO queues may be considered equ
if they have the same number of elements). The equivalence function is based on a d
knowledge of how data is represented and manipulated in the class body.

Thus, for a test case (T, T’, tag), the oracle checks whether the result of the equivalen
function, applied to the objects returned byT andT’, is equal totag. This approach has the
advantage of simplifying the oracle problem to a trivial boolean comparison.

TheASTOOTapproach is embodied in a testing system which includes a test selection too
a test execution tool.

 • Test selection tool

The test selection tool translates the axioms of the algebraic specification, as well a
original sequencesT supplied by the user, into an internal representation (ADT tree). T
internal representation forms a rewriting system which allows to automatically rewriteT in
several equivalent or non-equivalent sequences, and thus to generate test cases. E
case is generated along with a set of constraints that must be solved manually in or
instantiate the remaining variables in the sequences.

 • Test execution tool

A driver generatortakes as input the interface specifications of the class under test a
some related classes, and outputs atest driver(a class in the implementation language
33

Test Methods and Tools

em by
using

turned

2],

earch
found

ten in

ing on
state
state

ce,

orm
elds a
o the
he
ation.

the
valent

paths.
ining
se of
This test driver, when executed, reads test cases, checks their syntax, executes th
sending sequences to objects of appropriate types, and checks the results by
equivalence functions to compare the objects and by checking whether the values re
by the functions agree with the corresponding tags.

The current version ofASTOOTis targeted at the Eiffel programming language [Meyer 9
but could be suited for other languages.

2.3.3 TheBULL method and tool

The BULL method has been developed by Dick and Faivre at the Bull Corporate Res
Center (Les Clayes-sous-Bois, France). A complete presentation of the approach can be
in [Dick 93].

 • Goal

The BULL method aims to generate test cases from state-based specifications writ
VDM [Dawes 91].

 • Test unit and test coverage

The approach aims to test state components (test units) of the specification by focus
operation sequences. For this purpose, a Finite State Automaton (FSA) is built for each
component, using the specification of the operations (each operation describes a
modification). Thus, the test selection process aims to cover all the FSA paths.

 • Test format

Test cases derived fromVDM specifications are sequences of operations of the interfa
calledtest suites.

 • Sampling techniques

The test selection process starts with apartition analysis of individual operations. The
mathematical description of each operation is reduced to a Disjunctive Normal F
(DNF). This reduction creates a set of disjoint sub-operations. Each sub-operation yi
set of constraints which describe a single test domain. This reduction is equivalent t
unfolding technique proposed by theBGM method (see section 2.3.1). Furthermore, t
recursive operations are unfolded a fixed number of times to ensure unfolding termin
This approach is similar to the use of reduction hypotheses in theBGM method.

Second, apartition analysis of the system stateis performed. This partition permits the
construction of an FSA formed of transitions and states. FSA transitions are
sub-operations previously computed, while FSA states are disjoint classes of equi
states (computed from the DNF of the sub-operation pre- and post-conditions).

Finally, test suites are formed such that they ensure a certain coverage of the FSA
After the resolution of their combined constraints, test suites may contain rema
variables, which are randomly instantiated. This instantiation corresponds to the u
uniformity hypotheses in theBGM method.
34

Test Methods and Tools

states

ich

s is
les
sis is

their
ot

ed
y
esting
es and
and

ed at
nce)
can be

ed

g on
nd its
of

ll the
 • Oracle

The oracle problem is not solved; no equivalence relationship between abstract FSA
and practical states is provided.

The BULL method has led to the development of a tool described in [Dick 92], wh
semi-automatically generates test suites fromVDM specifications. This tool is included in the
VDM toolbox.

 • Operational techniques for test selection

The partition analysis of individual operations is automated. Reduction to DNF
performed inPROLOG. The formulas thus obtained are simplified using inference ru
based on first order calculus. However, the construction of the FSAs by partition analy
not automated.

 • User assistance

The tool assists the user during the composition for test suites, and then solves
combined constraints. However, sinceVDM is based on a semi-decidable logic, it is n
always possible to generate solutions to constraint systems.

While dedicated toVDM specifications, theBULL method could be suited for other state-bas
specification languages. A similar method based onZ [Spivey 92] has been proposed b
Hoercher and Peleska [Hoercher 94]. Finally, we can mention other state-based t
approaches, such as the Turner and Robson method based on sequential machin
described in [Turner 92], or the McGregor method based on finite state machines
presented in [McGregor 94].

2.3.4 TheTGV method and tool

The TGV (Test Generation using Verification techniques) method has been develop
INRIA (Institut National de Recherche en Informatique et en Automatique, Rennes, Fra
by Fernandez, Jard, Jéron, Nedelka and Viho. Complete presentations of the approach
found in [Fernandez 96a] and [Fernandez 96b].

 • Goal

The TGV method aims to generate test cases from protocol specifications written inSDL
(Specification and Description Language, [Belina 89]) or inLOTOS[Bolognesi 87]. The
semantics of anSDL or LOTOS specification is expressed as Input-Output Labell
Transition Systems (IOLTS).

 • Test unit and test coverage

The approach aims to test protocol entities (test units) of the specification by focusin
sequences of interactions (input and output messages) between the entity a
environment simulated by atester, which is also the test driver. Since the sequences
interactions are specified with an IOLTS, the test selection process aims to cover a
IOLTS paths.

 • Test format

A test case is derived from two elements: the specification of the entity and atest purpose.
35

Test Methods and Tools

set of
art of
with

ith a
ne
se.

the
ct if
sult

.

bular
ce of

. The

nts that
ore,

tic

the
y the
s to

ects any

is
re not
duced

f test

cases
This
A test purpose defines a sequence of interactions that one wants to test, and a
constraints that must be applied to the implementation before testing. The behavioral p
the test purpose is also specified by an IOLTS in which transitions are labelled
interactions. This IOLTS is an abstraction of that of the protocol specification.

A test case is derived from the specification and test purpose if and only if both agree w
consistency relation. This is a weak notion of satisfaction meaning that at least o
sequence of the IOLTS of the specification is accepted by the IOLTS of the test purpo

A test case is obtained by computing the synchronous product of the IOLTS of
specification with the IOLTS of the test purpose: a transition is firable in the produ
either it is firable in the two components or if it is firable only in the specification. The re
is an acyclictest graphlabelled with input and output observable messages,verdicts(partial
success, total success, failure, inconclusive) andtimersto detect deadlocks or infinite loops

The test graph is then translated into a tree in standard notation (TTCN: Tree and Ta
Combined Notation, [OSI 92]). This tree, in which each branch describes a sequen
interactions between the protocol and the tester, is the test case.

 • Sampling techniques

The method is more concerned with control (sequencing of actions) then with data
variables are thus generally instantiated in the exhaustive way.

To obtain a test graph of reasonable size, the test purpose introduces a set of constrai
must be applied to the implementation before testing (ex: forbidden actions). Furtherm
some hypotheses are introduced.

- Bounded fairness hypothesis: a bounded number of executions of a non-determinis
implementation will show all its behaviors.

- Reasonable environment hypothesis: each time the environment sends a message to
network, it waits for stabilization. This means that no new message can be sent b
environment until it receives all specified outputs of the protocol. This hypothesis allow
avoid concurrency between inputs and outputs by limiting the crossing messages.

The test case construction ensures that, modulo these hypotheses, a test case rej
incorrect program and accepts any correct program.

 • Oracle

A notion of conformanceof an implementation with respect to the specification
introduced. The conformance relation states that outputs of the environment which a
accepted by the specification may be accepted by the implementation, but inputs pro
by the implementation must be also produced by the specification.

The tester exercises the implementation with input messages following branches o
cases. It compares output messages of the implementation with test verdicts.

TheTGVmethod has led to the development of a tool which automatically generates test
from SDLor LOTOSspecifications and from test purposes that must be defined manually.
tool is included in the CADP toolbox [Fernandez 92a].
36

Test Methods and Tools

in
f the
the

erated
TCN

ol, the
plex
 • Operational techniques for test selection

The TGV kernel is an extension of an on-the-fly verification algorithm presented
[Fernandez 92b]. It is based on depth-first traversal of the synchronous product o
IOLTS of the specification with the IOLTS of the test purpose. During the traversal,
consistency relation is checked. If the relation is satisfied, an acyclic test graph is gen
and labelled with verdicts and timers. The test graph is then unfolded in a tree in the T
format.

TheTGV tool has been successfully used to generate test cases for an industrial protoc
DREX protocol. This experiment has shown the effectiveness of the approach for com
protocols.

2.3.5 Summary

Table 2 on page 38 presents a summary of this section.
37

Test Methods and Tools
BGM-LOFT ASTOOT BULL TGV
M

et
ho

d

Model
Algebraic

specifications

Object-oriented
algebraic

specifications
LOBAS

 State-based
specifications

VDM
(FSA)

Protocol
specifications
SDL - LOTOS

(IOLTS)

Test unit Operation
Class

(method in
interaction)

State
component

(sequences of
operations)

Protocol entity
(sequences of

input and output
messages)

Test
coverage

Axioms Axioms FSA paths IOLTS paths

Test format Equality

triplet
(trace 1, trace 2,

equivalence
between traces)

Sequence of
operations

TTCN tree
(tree branches

are sequences of
input and output

messages)

Sampling
techniques

Reduction
hypotheses

Random
Partitionanalysis

based on DNF
reduction

Constraints and
hypotheses

Oracle

Equivalence
relationships

with observable
contexts

Equivalence
functions

—

Conformance
relation
(external

observation of
the protocol
behavior)

To
ol

Operational
techniques

PROLOG
SLD-resolution

with control
mechanisms

Rewriting based
on ADT trees

DNF reduction
usingPROLOG,
Simplification
using inference

rules

On-the-fly
algorithm for

depth-first
traversal of

graphs product

User
Assistance

Selection of
hypotheses
(PROLOG
predicates),

User-friendly
interface for
resolution
parameters

—
Composition of

test suites
—

Table 2: Main characteristics of four test methods and tools
38

The CO-OPN Object-Oriented Specification Language

fined
tion of
erties.
tional

tisfies
the
97]
this

e in

rent
s
in a
scribe
del the
y large
by the
arity,
tion,
esting
C H A P T E R

3
CHAPTER3THE CO-OPNOBJECT-ORIENTED

SPECIFICATION LANGUAGE

The testing method presented in this document requires the use of a formally de
specification language. This language must have a syntax well adapted to the specifica
object-oriented systems, and a semantics allowing to prove and deduce system prop
Furthermore, behaviors of the semantics must be automatically computed by opera
techniques.

Therefore we have chosen to use an object-oriented specification language which sa
these criteria:CO-OPN(Concurrent Object-Oriented Petri Nets). This section describes
CO-OPN formalism. This presentation, based on [Biberstein 95a], [Barbey 97], [Hulaas
and [Buffo 97], does not cover all of the language, but only the parts which are relevant to
work. Interested readers will find the complete and formal definition of the languag
[Biberstein 97a] or [Biberstein 97b].

The CO-OPN formalism is devoted to the specification of large and complex concur
systems. The two underlying formalisms ofCO-OPN are the algebraic specification
[Ehrig 85] and the Petri nets ([Brams 83a], [Brams 83b], [Proth 95]) which are combined
more general model: algebraic nets [Reisig 91]. Algebraic specifications are used to de
the data structures and the functional aspects of the system, while Petri nets serve to mo
behavioral and concurrency features. However, algebraic nets are not suitable to specif
and complex concurrent systems. This lack of structuring capabilities is compensated
introduction of a complete set of object-oriented concepts: object, class, modul
encapsulation, object identity, dynamic creation, inheritance, subtyping, substitu
genericity, etc. These features make the language suited to illustrate our theory of t
object-oriented software.
39

The CO-OPN Object-Oriented Specification Language

inally,
tics of

e.
ave a
n

e

with
and

ve sorts

tions
and

ed

imply
bject.
xioms.

then

i.e.

hen
od of
the
s that
The structure of this chapter is the following. First, section 3.1 presents theCO-OPN
object-oriented concepts. Second, section 3.2 introduces theCO-OPN object-oriented
specification language using a small but significant example: a telephone system. F
section 3.3 and section 3.4 are a formal presentation of the syntax and the seman
CO-OPN.

3.1CO-OPN object-oriented concepts

CO-OPN specifications are defined using different kinds of modules:abstract data types
(ADT) , objectsandclasses; CO-OPNis thus a hybrid object-oriented specification languag
The modules are used to define sorts and their related operations. All the modules h
similar structure: in addition to aheaderwhich holds the module name and the informatio
related to genericity or inheritance, each module has a public part, theinterfacewhich lists
sorts and public operations, and a private part, thebodywhich defines the properties of th
operations.

 • ADT modules

ADT modules contain data structure definitions. These data structures are defined
algebraic sorts and operations. Their behavior is defined by algebraic formulas
theorems. These sorts are used to describe passive entities, such as values of primiti
(e.g. boolean, integer, enumeration types) or purely functional sorts (e.g. stacks).

Algebraic sorts are specified using hierarchical order-sorted algebraic specifica
[Goguen 92]. Indeed, notions like subsorting, partial operations, polymorphism
overloading, which are required byCO-OPN, are well encompassed within the order-sort
algebra framework.

 • Object modules

Object modules define a single instance of an object, using class’type sorts (later s
called types) and operations. The operations are the services provided by the o
Services are also called methods or events. Their behavior is defined by behavioral a

Object encapsulation.An object is an encapsulated entity (an encapsulated algebraic net)
that holds an internal state (each place of the net stores a multi-set of algebraic values) and
provides the outside with various services (parametrized transitions of the net). The only
way to interact with an object is to request one of its services. The internal state is
protected against uncontrolled access.

Object communication. Objects communicate with each other by means of services,
by triggering one of their external events. There are three kinds of services:creation
methods(which allow dynamic creation of a new object),methods(which provide changes
of the state of an object, or allow the observation of this state) anddestruction methods
(which allow the destruction of objects). Interaction between objects is synchronous. W
an object invokes a method on another object, it asks to be synchronized with the meth
the object provider. The synchronization will only occur if the object provider can offer
service. The synchronization is specified by means of synchronization expression
40

The CO-OPN Object-Oriented Specification Language

many

es.
y of
bject
ethod

d as

ructure.
sed to
state,

e
ll the
lready
types;

ass
whole
lation
to the

s

built
other

r is

one
with a

er, and
ay with
appear in the axioms of the classes. Synchronization expressions may involve
partners, as well as synchronization operators of three kinds:sequence, simultaneityand
alternative.

Objects and concurrency. CO-OPN objects are not restricted to sequential process
CO-OPN provides both inter- and intra-object concurrency, because the granularit
concurrency is associated with method invocation rather than with objects. Each o
possesses its own behavior and concurrently evolves with other objects, and a set of m
calls can be concurrently performed on the same object.

Object identity. Each object has an identity, called an object identifier, that may be use
a reference.

 • Class modules

Class modules are templates for objects; all the objects of one class have the same st
They define types from which objects can be dynamically created. These types are u
describe active entities requiring dynamic creation, identity, concurrency, persistent
etc.

CO-OPN provides two relationships between classes:inheritance and subtyping (a
relation similar to subtyping, calledsubsorting, can also hold between ADTs). Inheritanc
is the syntactic mechanism which allows reuse and refinement: a class may inherit a
features of another class and may also add services or change the description of a
defined services. Subtyping addresses a semantic conformance relationship between
it limits the enrichment to what is allowed by the strong substitution principle. A cl
instance of a subtype may substituted for a class instance of its supertype only if the
system remains unchanged. This conformance relationship is based upon bisimu
between the semantics of the supertype and the semantics of the subtype restricted
behavior of the supertype.

A module can beeffective(directly usable),abstract(it defines types for which no instance
can be created),generic(it is parameterized by other modules), orparameter(it defines the
properties of a module parameter in a generic module). A dependency graph can be
among the different modules of a specification. A module is said to be dependent on an
module if the former imports the latter, if the former inherits from the latter, or if the latte
used as an actual generic parameter. A well-formedCO-OPNspecification does not allow
cycles in the dependency graph.

3.2 Introductory example: the telephone system

To introduceCO-OPN, we present a small but significant example: a simplified teleph
system. This example models the behavior of a telephone machine that can be used
phonecard. Each phonecard includes an identification code that is also known to the us
is requested by the telephone machine when the user tries to make a phone call and to p
the card. The remaining balance is also stored on the card.
41

The CO-OPN Object-Oriented Specification Language

ecard,
ity that
ecard),

and of
k the
phone
ected
, etc.

their
:

hat is
From this description, we can identify several entities such as the telephone, phon
pin-code, and money. Amongst these entities, several are objects, which have an ident
makes them discernible from other objects with the same state (telephone and phon
whereas other entities are merely values (pin-code and money).

The state of an object phonecard consists of the amount of money available on the card,
a pin-code. A phonecard provides services to withdraw money from the card, chec
pin-code, or yield the balance of the remaining money on the card. The state of a tele
consists of the amount of money collected by the telephone, and a (possibly) conn
phonecard. A telephone offers services to insert a card, eject it, buy communication time

Several modules are encompassed in this system:

 • ADTs (Pin, Money, Booleans andNaturals),

 • classes (PhoneCard andTelephone).

In figure 6, we give a partial representation of the classes, their synchronizations and
client relationships with abstract data types. This figure follows the following conventions

 • The grey rectangles represent ADT modules.

 • The ellipses represent class modules, the inside of the ellipses representing w
encapsulated:

• The solid black rectangles represent the methods.

• The white rectangles correspond to the internal transitions.

• The solid grey rectangles correspond to the creation methods.

• The circles identify the places or the object attributes.

 • The solid arrows indicate the data flow.

 • The grey arrows indicate the synchronizations.

 • The dotted arrows indicate dependency on ADTs.

Pin

Telephone

Money

insert(c)

enter(p) enter(p)

ready-to-eject

buy(m)

buy(m)

idle
wait-for-pin wait-for buy

PhoneCard

id

balance

get-pin (p)
get-balance(b)

withdraw (m)

b b

b b - m p p

s

c, s

c, s
c, s

c, s

c, s

c, s+m

c, s

c, s

c, s
c, s

s

eject

create (p)

create

p

Fig. 6.The classes and their internal description and synchronizations
42

The CO-OPN Object-Oriented Specification Language

T
bstract
al

e as
f
g
no

. The
rt

s of
les,
3.2.1 ADT modules

In our example, the balance (ADTMoney) as well as the personal identification number (AD
Pin) require no concurrency, and do not require a persistent state. They are modeled as a
data types (see figure 7). The ADTsBooleans andNaturals are data types axiomatized as usu
(see annex A.2. and annex A.3).

Since the ADTMoney is defined to model the balance, it seems natural to describe this typ
a copy of the ADTNaturals. It inherits all the operations ofNaturals, and changes the name o
the sortnatural into money. So the modulesNaturals and Money are related by a subclassin
relationship, but the typesnatural andmoney are not related by a subsort relationship. Thus
substitution is possible for these two types.

The ADT Pin imports the ADT Boolean. Its signature consists of a sort,pin, and three
operations: two generators to create new pins, and one function to compare two pins
generatorfirst-pin has no parameter and the generatornew-pin has a post-fixed parameter of so
pin. The function“=” is an in-fix operation, with two parameters of sortpin.

The axioms ofPin define the algebraic conditions that hold between the various operation
the specification. All functions are totally defined. These axioms make use of two variabn
andm, of sortpin.

.

Fig. 7.TheADTs Pin and Money

ADT Pin;
Interface

Use
Booleans;

Sorts
pin;

Generators
first-pin : → pin;
new-pin _ : pin → pin;

Operations
_ = _ : pin pin → boolean;

Body
Axioms

 (new-pin (n) = new-pin (m)) = (n = m);
 (new-pin (n) = first-pin) = false;
 (first-pin = new-pin (m)) = false;
 (first-pin = first-pin) = true;

Where
n, m : pin;

End Pin;

ADT Money;
Inherit

Naturals;
Rename

natural → money;
End Money;
43

The CO-OPN Object-Oriented Specification Language

s
d,

place
n
o an
he

ince
can be

he
e

3.2.2 Class modules

Figure 8 shows the textual description of the classPhoneCard (the graphical representation in
figure 6 is equivalent to this textual representation). This module imports the ADT modulePin
andMoney. It defines a type,phonecard, together with four exported methods. The first metho
create, must be called to create a phonecard. It is given a parameter of typepin. The three other
methods,get-pin, withdraw and get-balance provide services to get the pin-code (get-pin), to
access the balance (get-balance), and to reduce it (withdraw). Since it is a throw-away card, it is
not possible to reload it.

The state of a phonecard is encapsulated in the body of the module. It includes the
balance, a multi-set of algebraic values of sortmoney, which stores the money still available o
the card, andid, which stores the pin-code. For each new card, the balance is initialized t
initial marking in which the constant value20 is assigned as the initial amount of money on t
card.

In the fieldAxioms, the behavior of the methods is given by Petri net causal relations. S
the places are independently accessed through the methods, concurrent access
performed on the placesid andbalance. However, it is not possible to simultaneously read t
balance and withdraw money, becauseget-balance andwithdraw use the same critical resourc
balance.

Fig. 8.Textual specification of the class PhoneCard

Class PhoneCard;
Interface

Use
Pin, Money, Booleans;

Type
phonecard;

Creation
create _ : pin;

Methods
get-pin _ : pin;
withdraw _ , get-balance _ : money;

Body
Places

balance : money;
id : pin;

Initial
balance 20;

Axioms
create (p) :: → id p;
get-pin (p) :: id p → id p;
get-balance (b) :: balance b → balance b;
withdraw (m) :: (b ≥ m) = true ⇒ balance b → balance b - m;

Where
b, m: money;
p: pin;

End PhoneCard;
44

The CO-OPN Object-Oriented Specification Language

ores
has
e
thod

the
iables

, in

he
not
rd.

ard,
ance of
ADT

ed
thods
e
oking
The creation method implicitly performs the initialization of a newly created object, and st
a pin-code in the placeid. Get-pin returns the value of this place, assuming that the card
been created (and that the placeid is not empty).Get-balance has the same behavior, but on th
placebalance, to return the amount of money still available on the phonecard. The me
withdraw can only be fired if the amount of money available on the card is greater than
amount of money that the client wants to withdraw. These axioms make use of three var
of the imported sortsmoney andpin.

We can imagine another kind of phonecard which allows reloading cards (see figure 9).

The class moduleReloadablePhoneCard inherits from the class modulePhoneCard, and renames
the typephonecard in reloadablephonecard. These two types are related by a subtype relation
the clauseSubtype, which states thatreloadablephonecard is a subtype ofphonecard. This class
provides two new methods. One is a methodcreate which has the same semantics as t
methodcreate in the classPhoneCard, but must be defined since creation methods are
inherited. It also provides a methodreload to increase the amount of money stored on the ca

The classTelephone (figure 10) specifies the behavior of the automaton which accepts a c
waits for and checks a pin-code, and, as long as the pin-code is correct, reduces the bal
the card by a given amount corresponding to the price of a phone call. It imports three
modules:Pin, Money, andBooleans; and a class module,PhoneCard.

A type, telephone, is defined insideTelephone, as well as a static instance of that type nam
cabin. Three public services are provided by this class. These services are me
corresponding to the methodsinsert, enter andbuy, which can be activated sequentially. Sinc
no creation method is provided, instances of that class can be dynamically created by inv
a implicit method namedcreate, which will only do the initialization.

Fig. 9.Textual specification of the class ReloadablePhoneCard

Class ReloadablePhoneCard;
Inherits PhoneCard;

Rename
phonecard → reloadablephonecard;

Interface
Use

PhoneCard;
Subtype

reloadablephonecard < phonecard;
Creation

create _ : pin;
Methods

reload _ : money;
Body

Axioms
create (p) :: → id p;
reload (m) :: balance b → balance b +m;

Where
b, m: money;
p: pin;

End ReloadablePhoneCard;
45

The CO-OPN Object-Oriented Specification Language

lies the
ther an
lso

nsition
urs,
to the

f the
The places of the class are used to describe the state of the telephone. In this state
money already collected by the telephone, and, when the machine contains a card (i.e. ei
instance ofphonecard or of reloadablephonecard) a reference to this card. These places are a
used to sequentialize the events that are possibly triggered.

Besides the observable events defined in the interface, an invisible event, the internal tra
eject, is defined in the body of the specification. It is automatically activated if an error occ
or when the process is finished. Its effects are not directly observable, but correspond
rejection of the card.

The behavior of the telephone is defined through its behavioral axioms. The syntax o
behavioral axiom is

Event [With SynchroExpression] :: [Condition] ⇒ Precondition → Postcondition

in which:

 • Event is an internal transition name or a method with term parameters.

Fig. 10.Textual specification of the class Telephone

Class Telephone;
Interface

Use
Pin, Money, PhoneCard, Booleans;

Type
telephone;

Object
cabin : telephone;

Methods
insert _ : phonecard;
enter _ : pin;
buy _ : money;

Body
Places

idle : money;
wait-for-pin: phonecard money;
wait-for-buy: phonecard money;
ready-to-eject: phonecard money;

Initial
idle 0;

Transition
eject;

Axioms
insert (c) :: idle s → wait-for-pin c s;
enter (p) With c.get-pin (pp) ::

(pp = p) = true ⇒ wait-for-pin c s → wait-for-buy c s;
enter (p) With c.get-pin (pp) ::

(pp = p) = false ⇒ wait-for-pin c s → ready-to-eject c s;
buy (m) With c.get-balance (b) ::

(m > b) = true ⇒ wait-for-buy c s → ready-to-eject c s;
buy (m) With c.get-balance (b) .. c.withdraw (m) ::

(m > b) = false ⇒ wait-for-buy c s → ready-to-eject c s+m;
eject :: ready-to-eject c s → idle s;

Where
s, m, b: money;
c: phonecard;
p, pp : pin;

End Telephone;
46

The CO-OPN Object-Oriented Specification Language

een
up of
efined:

lities

t is

in

rst is
s when
ed by

d. The
ard is

data
the
int of

tion or
 • SynchroExpression is an optional synchronization expression allowing cooperation betw
objects: each event may request synchronization with the method of one or a gro
partners using a synchronization expression. Three synchronization operators are d
“ //” for simultaneity, “..” for sequence, and “⊕” for alternative.

 • Condition is a condition on the algebraic values, expressed with a conjunction of equa
between algebraic terms.

 • Precondition andPostcondition correspond respectively to what is consumed and to wha
produced in the different places within the net (in arcs andout arcs in the net).

Event can occur if and only ifCondition is satisfied, as well asPrecondition (the resources can be
consumed from the places of the module) andPostcondition (the resources can be produced
the places).

The classTelephone makes synchronization requests to the phonecard in two cases. The fi
to check the pin-code when a phonecard is inserted in the telephone, and the second i
money must be withdrawn from the card to pay for a call. This second behavior is model
the following two axioms:

buy (m) With c.get-balance (b) ::
(m > b) = true ⇒ wait-for-buy c s → ready-to-eject c s;

buy (m) With c.get-balance (b) .. c.withdraw (m) ::
(m > b) = false ⇒ wait-for-buy c s → ready-to-eject c s+m;

In the last axiom, the telephone synchronizes itself twice in sequence with the phonecar
first time is to get the balance, and, provided that the amount of money available on the c
sufficient to pay for the call, the second time is to withdraw the price of the call.

3.3 Syntax ofCO-OPN

The purpose of this section is to describe the concrete and abstract syntax ofCO-OPN. Recall
that aCO-OPNspecification is composed of different kinds of modules:ADT modules, class
modulesandobject modules. The ADT modules are used to describe the algebraic abstract
types involved in aCO-OPN specification, whereas the class modules correspond to
description of the objects that are obtained by instantiation. From the abstract syntax po
view, the object modules are class modules for which only one instantiation is created.

3.3.1 Abstract data types

3.3.1.1 ADT concrete syntax

Each abstract data type module contains four sections (the keywords starting each sec
clause are written in bold):
47

The CO-OPN Object-Oriented Specification Language

ricity
.
tion

of

ble to
ce

n two
in
mixed

of its

es
of the
al

n the

f an
ecified

places,
The header contains information to identify the module, along with inheritance and gene
information. This section is introduced by the keywordADT, followed by the module name
An optionalInheritance clause, which defines the inherited modules, allows a finer selec
of the inherited components (through the clausesRename, RedefineandUndefine). Generic
ADTs are prefixed by the keywordGeneric, and the parameter module follows the identifier
the ADT (between parentheses).

TheInterface includes the information on the components of the module that are accessi
its clients. This section includes: aUseclause, which lists the modules used by the interfa
definition; aSort clause, to declare the names of the sorts specified in the package; aSubsort
clause, to specify the subsort relationships among sorts; and a list of operations, i
separate clauses:Generator andOperation. These operations are coupled with their profile
which the underscore character ‘_’ gives the position of the respective arguments. This
notation allows pre-fix, post-fix, in-fix and out-fix profiles.

The Body section describes the local aspects of the module, such as the behavior
operations, by means of axioms. ClausesUse, Sort, Subsort, Generator andOperation can
be reiterated for private components. TheAxiom clause allows the expression of the properti
of operations by means of formulas, or axioms. Properties that are logical consequences
axioms can be expressed in aTheorem clause. The formulas are mainly used as condition
positive equations:

[Id :] [Condition ⇒] Term-1 = Term-2

where Id is an optional identifier,Condition an optional condition to limit the validity of the
axiom to a certain context, and(Term-1 = Term-2) is an equation in whichTerm-1 andTerm-2 are
terms well constructed from module interfaces. The variables used in the axioms or i
theorems clauses must be defined in aWhere clause that follows the former clauses.

The next section presents the ADT abstract syntax.

3.3.1.2 ADT abstract syntax

The aim of this section is to give the formal definition of an ADT module, which consists o
ADT signature, a set of axioms, and some variables. Recall that algebraic sorts are sp
using hierarchical order-sorted algebraic specifications [Goguen 92].

Notations

Throughout this chapter, we consider a universe including the disjoint sets:S, F, M, P, V, O.
These sets correspond respectively to the sets of all sorts, operations, methods,
variables and static object names.S is made of the two disjoint setsSA andSC, the sets of
sort names in algebraic specifications and of type names in classes.

The “S-sorted” notation facilitates the subsequent development. AnS-sorted set Ais a
family of sets indexed byS, and notedA = (As) s ∈ S. Given twoS-Sorted sets AandB, an
S-sorted functionµ : A → B is a family of functions indexed byS denoted
µ = (µs : As → Bs)s ∈ S.
48

The CO-OPN Object-Oriented Specification Language

type:
uctured
e the
efined

ty, and
otient

.

The partial order≤ ⊆ (S× S) is extended to strings of equal length inS* by:
s1,...,sn ≤ s’1,...,s’n iff si ≤ s’i (1 ≤ i ≤ n).
Similarly, ≤ is extended to pairs in (S* × S) by: (w, s)≤ (w’, s’) iff w ≤ w’ and s≤ s’.

Function namef ∈ is denoted byf : s1,...,sn → s.
Constant namef ∈ Fε, s is denoted by f : → s (ε being the empty string).

Formally the signature of an ADT module consists of three elements of an algebraic data
a set of sorts, a subsort relation, and some operations. Since the specifications are str
into modules, they can use elements that are not locally defined, i.e. defined outsid
signature itself. Thus, the profiles of the operations as well as the subsort relations are d
over the set of all sort namesSA and not only over the set of sorts defined in the moduleSA.
Otherwise the signature is said to be complete.

Definition 1.ADT signature, order-sorted signature, complete ADT signature

Thesignature of an ADT (overS andF) is a tripletΣA = 〈SA, ≤A, F〉 where

 • SA is a set of sort names ofSA,

 • ≤A ⊆ (SA × SA) ∪ (SA × SA) is a partial order (partial subsort relation),

 • F = (Fw, s) w ∈ S*, s ∈ S is a (S* × S)-sorted set of function names ofF.

An order-sorted signatureis a tripletΣ = 〈S, ≤, F〉 in which S⊆ S, ≤ ⊆ S × S, andF is a
(S* × S)-sorted function.

A signature is said to becomplete if it only uses locally defined elements. ◊

Some properties are required on order-sorted signatures such as monotonicity, regulari
coherence for the well-definedness of term interpretation and the existence of qu
structures.

Definition 2.Monotonicity, regularity, and coherence

Let Σ = 〈S, ≤, F〉 be an order-sorted signature.

Σ satisfies themonotonicityconditions ifff ∈ ∩ andw1 ≤ w2 imply s1 ≤ s2.

Σ is regular iff Σ is monotonous and givenf ∈ andw0 ≤ w1 there is a least〈 w, s〉
∈ S* × S such thatw0 ≤ w andf ∈ Fw,s.

Σ is coherent iff it is regular and each sorts has a maximum inS. ◊

More details about these properties are given in [23].

Inside ADT signatures, functions are divided into two groups, generators and operations

Definition 3.Generators and operations

InsideF we can distinguishC andOP, respectively a finite set ofconstructors, also called
generators, and a finite set ofoperations, sometimes calleddefined or derived
operations. The setsC andOP are disjoint. Moreover we haveF = C ∪ OP. ◊

Fs1...sn s,

Fw1 s1, Fw2 s2,

Fw1 s,
49

The CO-OPN Object-Oriented Specification Language

uations

o not
nected
lation

use
At an abstract level, these two notions can be assimilated.

The variables used in the axioms are said to form anS-Sorted variable set.

Definition 4.S-sorted variable set

Let Σ = 〈S, ≤, F〉 be a complete signature.
An S-sorted set ofΣ-variables is anS-indexed setX = (Xs) s ∈ S of disjoint subsets ofX.◊

As usual, the properties of the operations of a signature are described by means of eq
(more generally conditional positive equations) which consist of pair of terms.

Definition 5.Set of all terms

Let Σ = 〈S, ≤, F〉 be a complete order-sorted signature andX be anS-sorted variable set.
Theset of all termsoverΣ andX is the leastS-sorted setTΣ, X = ((TΣ, X)s)s∈ Sinductively
defined as:

 • x ∈ (TΣ, X)s for all x ∈ Xs,

 • f ∈ (TΣ, X)s for all f : → s’ ∈ F such thats’ ≤ s,

 • f (t1, ...,tn) ∈ (TΣ, X)s
for all f : s1, ...,sn → s’ such thats’ ≤ s and for allti ∈ (TΣ, X)si (1 ≤ i ≤ n). ◊

Definition 6.Variables, groundness and linearity of terms

Let Σ = 〈S, ≤, F〉 be a complete signature andX be anS-sorted variable set.
Var (t) is the set of variables occurring in the termt ∈ (TΣ,X)s.
WhenVar (t) = ∅, the termt is said to beground.
When each variable is present no more than once,t is said to belinear. ◊

Since we use order-sorted approach, i.e. with subsorting, both terms of an equation d
necessarily have comparable sorts, but their least sort must be in the same con
component, i.e. they must be related in the transitive symmetric closure of the subsort re
[Goguen 92].

Definition 7.Equation and positive conditional equation

Let Σ = 〈S, ≤, F〉 be a complete signature andX be anS-sorted variable set.
An equation is a pair〈 t, t' 〉 of equally sorted terms:∃ a sorts such thatt, t' ∈ (TΣ,X)s.
A positive conditional equation is an expression
e1 ∧ ...∧ en ⇒ e wheree, ei (1 ≤ i ≤ n) are equations. ◊

Thus, the description of an ADT module consists of an ADT signature, which may
elements that are not locally defined, a set of axioms, and some variables.
50

The CO-OPN Object-Oriented Specification Language

es of
can be

h the

e role

d

cation.

n.

e
s of
he

is

ns of
s

Definition 8.ADT module

Let Σ be a set of ADT signatures, andΩ be a set of Class interfaces (see definition9)
such that the global signature (see definition15) ΣΣ,Ω = 〈S, ≤, F〉 is complete.
An ADT module is a tripletModA

Σ, Ω = 〈ΣΑ, X, Φ〉 where:

 • ΣΑ is an ADT signature,

 • X = (Xs)s ∈ S is anS-sorted variable set ofV,

 • Φ is a set of positive conditional equations (axioms) overΣΣ,Ω and X. ◊

Note that, according to the above definition, an ADT module may define data structur
object identifiers because the variables and components of the profile of the operations
of sortSC.

3.3.1.3 Relation between abstract and concrete syntax of an ADT

The relation between abstract and concrete syntax of an ADT is shown in figure 11 wit
example of an unbounded stack of integers.

3.3.2 Classes

3.3.2.1 Class concrete syntax

Classes have a structure similar to ADTs. They also include three parts that play the sam
but contain different information.

The header starts with the keywordClass, followed by the identifier of the class. This keywor
may be prefixed by the keywordGeneric, as for ADT modules, or by the keywordAbstract, if
the class is not aimed to be implemented, for example because its sole purpose is classifi
In this case no instance of this class may be created. A clauseInherit can also appear in the
header.

In the Interface section, the clauseUsedeclares all modules required for the class definitio
The clauseType declares the name of the type of the instances of the class. The clauseObject
declares static instances of the class. The clauseMethod declares the services provided by th
class. The clauseCreation lists methods concerned with the dynamic creation of instance
the class. Similarly, the clauseDestruction may appear to declare methods that deal with t
deletion of objects.

The sectionBody includes aUseclause, and some internal methods (in aMethod clause) or
spontaneous transitions declared under theTransition clause. The state of the objects
described in a clausePlaces, as a list of attributes. The clauseInitial declares the initial
marking or the static initializations of each instance of the class.

Finally, the properties of the methods and internal transitions are described by mea
behavioral axioms within the clauseAxioms. Recall that the syntax of the behavioral axiom i

Event [With SynchroExpression] :: [Condition] ⇒ Precondition → Postcondition
51

The CO-OPN Object-Oriented Specification Language

een
up of
efined:

lities

t is

in
in which:

 • Event is an internal transition name or a method with term parameters.

 • SynchroExpression is an optional synchronization expression allowing cooperation betw
objects: each event may request synchronization with the method of one or a gro
partners using a synchronization expression. Three synchronization operators are d
“ //” for simultaneity, “..” for sequence, and “⊕” for alternative.

 • Condition is a condition on the algebraic values, expressed with a conjunction of equa
between algebraic terms.

 • Precondition andPostcondition correspond respectively to what is consumed and to wha
produced in the different places within the net (in arcs andout arcs in the net).

Event can occur if and only ifCondition is satisfied, as well asPrecondition (the resources can be
consumed from the places of the module) andPostcondition (the resources can be produced
the places).

The next section presents the class abstract syntax.

Adt Fifo; (: Specification of an unbounded stack of integers :)

Interface

Use Naturals, Booleans;

Sort fifo, non_empty_fifo;

Subsort non_empty_fifo < fifo;

Generators

empty : → fifo;

push _ _ : natural fifo → non_empty_fifo;

Operations

size _ : fifo → natural; (: Return the size of the stack :)

pop _ : non_empty_fifo → fifo; (: Remove the first element :)

top _ : non_empty_fifo → natural; (: Return the first element :)

Body

Axioms

size empty = 0;

size (push n f) = size f + 1;

pop (push n f) = f;

top (push n f) = n;

Where

f : fifo;

n : natural;

End Fifo;

Fig. 11.Relation between abstract and concrete syntax in the ADT Fifo

ΣΑ

X

Φ

ModA

SA

≤A

F

C

OP
52

The CO-OPN Object-Oriented Specification Language

of a
vioral

set of
efined

wing

an a
in the

for
in the

et is

t

3.3.2.2 Class abstract syntax

The aim of this section is to give the formal definition of a class module, which consists
class interface, a set of places, an initial marking, a set of variables and a set of beha
formulas.

The class interface includes the type of class, a subtype relation with other types, the
methods that corresponds to the services that this class offers, and the set of pred
instances of the class.

Definition 9.Class interface

A class interface (overS, M, andO) is a quadrupletΩC = 〈{ c}, ≤C, M, O〉 in which

 • c ∈ SC is the type name of the class module,

 • ≤C ⊆ ({c} × SC) ∪ (SC × {c}) is a partial order (partial subtype relation),

 • M = (Mc, w) c ∈ {c}, w ∈ S* is a finite ({c} × S*)-sorted set of method names ofM,

 • O = (Oc) c ∈ Sc is a finiteSC-sorted set of static object names ofO. ◊

For a type to be a subtype of another type, the profile of its methods must follow the follo
contravariance condition:

Definition 10.Contravariance condition

A set of class interfacesΩ satisfies thecontravariance conditioniff for any class
interface〈{ c}, ≤C, M, O〉 and〈{ c’}, ≤C’, M’ , O’ 〉 in Ω, the following property holds:
if c ≤∅,Ω c’ then for each methodmc’ : s’1, ..., s’n in M’ there exists a method
mc : s1, ..., sn in M such thats’i ≤ si (1 ≤ i ≤ n). ◊

Note that in theCO-OPNcontext, a method is a parameterized synchronization rather th
function. Therefore, the usual co-variance of the function co-domain does not appear
previous definition.

In the CO-OPN context, multi-setsare used for two purposes. The first is the need
representing values of the places, and the second is for the expression of concurrency
semantics.
A multi-set is a set which may contain many copies of the same element. A multi-s
represented by a function from the set of elements to naturals.
For example, the multi-set [a,b,a,c] over the set {a,b,c,d} is represented by the function:
f : a → 2, b → 1, c → 1, d → 0.
Formally a multi-set over a setE is a mapping fromE to . The set of all multi-sets over a se
E is defined by the set of all functions [E] = { f | f : E → } equipped with the operations [_]
(coercion to the single-element set), + (set union) and∅ (empty set) defined as follows:

IN
IN

e[] E[]
e'()

1

0

=
if e e'=

otherwise
for all e e', E∈

f E[]g+() e() f e() g e()+= for all f g, E[]∈ and for alle E∈
53

The CO-OPN Object-Oriented Specification Language

. The
ed for
ons.

,
l
f an

nd are
). The
ule. A
hree
∅[E] (e) = 0 for alle ∈ E

Thus, to express terms over multi-sets, we define the multi-set extension of a signature
multi-set extension of a given order-sorted signature consists of the signature, enrich
each sort, with the multi-set sort, the multi-set subsort relation, and the multi-set operati

Definition 11.Multi-set extension of a signature

Let Σ = 〈S, ≤, F〉 be an order-sorted signature. Themulti-set extension of Σ is

◊

Before defining behavioral axioms, recall thatCO-OPNprovides two different kinds of events
namely invisible events andobservableevents. Both of them can involve an optiona
synchronization expression. The invisible events describe hidden spontaneous reactions o
object to modifications of the system state; they correspond to the internal transitions a
denoted byτ in the abstract syntax (and not by a specific name as in the concrete syntax
observable events correspond to the methods which are accessible outside the mod
synchronization expression allows the object to synchronize itself with partners. T
synchronization operators are provided: “//” for simultaneity, “..” for sequence, and “⊕” for
alternative.

The set of all events over a set of parameter valuesA, a set of methodsM, a set of object
identifiersO, and a set of types of class modulesC is written asEA, M, O, C. Because this set is
used for various purposes, a generic definition is proposed.

Definition 12.Set of all events

Let S= SA ∪ SC be a set of sorts such thatSA ∈ SA andSC ∈ SC. Let us consider a set of
parameter valuesA = (As)s ∈ S, a set of methodsM = (Ms, w)s ∈ SC, w ∈ S*, a set of object
identifiersO = (Os)s ∈ SC, and the set of typesC ⊆ SC.
EventsEvent of EA, M, O, C are built following this syntax:

Event→ Invisible | Invisiblewith Synchronization |
Observable| Observablewith Synchronization

Invisible→ self.τ
Observable→ self.m (a1, ..,an) |

Observable SynchronizationOperator Observable
Synchronization→ o.m (a1, ..,an) | o.create | o.destroy |

Synchronization SynchronizationOperator Synchronization
SynchronizationOperator→ .. | // |⊕

wheres∈ SC, si ands’i ∈ S(1 ≤ i ≤ n), a1 ... an ∈ As1, ×...× Asn, m∈ Ms, s’1 ... s’n, o ∈ Os,
c ∈ C, self∈ Oc and such thatsi ≤ s’i . ◊

Σ[] S s[]{ }
s S∈
∪∪ ≤ s[] s′[],〈 〉{ }

s s′, S∈
s s′≤

∪∪, F

∅ s[]
: s[]→ ,

_[] s[]
:s s[],→

+
s[]

: s[] s[] s[]→,

s S∈
∪∪,〈 〉=
54

The CO-OPN Object-Oriented Specification Language

ed to
ternal

places
hods
For example, the observable evento.m (a1, a2) with o1.m1 (a1) // o2.m2 represents the
simultaneous synchronization of the methodm of an objecto with both the methodsm1 andm2
of two objectso1 ando2.

Now the definition of the behavioral axioms is presented. The behavioral axioms are us
describe the properties of observable and invisible events (respectively, methods and in
transitions).

Definition 13.Behavioral axioms

Let Σ = 〈S, ≤, F〉 be a complete order-sorted signature such thatS= SA ∪ SC (SA ∈ SA

andSC ∈ SC). For a given (SC × S*)-sorted set of methodsM, a set of object identifiers
O, anS-sorted set of placesP, a set of typesC ⊆ SC, and anS-sorted set of variables
X = XA ∪ XC whereXA andXC are, respectively, anSA-sorted and anSC-sorted variable
set. Abehavioral axiomis a quadruplet

〈Event, Condition, Precondition, Postcondition〉

also denoted by the expression

Event:: Condition⇒ Precondition→ Postcondition

where

 • Event∈ E (TΣ, X), M, O, C,

 • Condition is a conjunction of equations overΣ and X,

 • Precondition = (Prep) p ∈P is a family of terms over ([Σ], X) indexed byP s.t.

(∀s ∈ S) (∀p ∈ Ps) (Prep ∈ (T[Σ], X)[s]),

 • Postcondition = (Postp) p ∈P is a family of terms over ([Σ], X) indexed byP s.t.

(∀s ∈ S) (∀p ∈ Ps) (Postp ∈ (T[Σ], X)[s]).

◊

Consequently, a class module can be defined by its interface, a state represented as
together with their initial values, behavioral axioms that define the properties of its met
and internal transitions, and variables used in these definitions.

Definition 14.Class module

Let Σ be a set of ADT signatures, andΩ be a set of class interfaces such that the global
signatureΣΣ,Ω = 〈S, ≤, F〉 (see definition15) is complete. Aclass moduleis a quintuplet
ModC

Σ,Ω = 〈ΩC, P, I, X, Ψ〉 in which:

 • ΩC = 〈{ c}, ≤C, M, O〉 is a class interface,

 • P = (Ps) s∈ S is a finiteS-sorted set of place names ofP,

 • I = (Ip) p ∈ P is an initial marking, a family of terms indexed byP such that
55

The CO-OPN Object-Oriented Specification Language

ith the
(∀s ∈ S) (∀p ∈ Ps) (Ip ∈ (T[Σ], X)[s]),

 • X = (Xs) s ∈ S is anS-sorted set of variables ofV,

 • Ψ is a set of behavioral axioms. ◊

Note that the places and variables, as well as the profile of the methods, can be of sortsSC; thus
the objects are able to store and exchange object identifiers.

3.3.2.3 Relation between abstract and concrete syntax of a class

The relation between the abstract and concrete syntax of a class is shown in figure 12 w
telephone example.

Class Telephone;

Interface

Use SuperTelephone;

Type telephone;

Subtype telephone < supertelephone;

Object cabin : telephone;

Methods

insert _ : phonecard;
enter _ : pin;
buy _ : money;

Body

Places

idle : money;
wait-for-pin: phonecard money;
wait-for-buy: phonecard money;
ready-to-eject: phonecard money;

Initial idle 0;

Transition eject;

Axioms

insert (c): idle s → wait-for-pin c s;

(pp = p) = true ⇒ enter (p) With c.get-pin (pp):
wait-for-pin c s → wait-for-buy c s;

(pp = p) = false ⇒ enter (p) With c.get-pin (pp):
wait-for-pin c s → ready-to-eject c s;

(m > b) = true ⇒ buy (m) With c.get-balance (b):
wait-for-buy c s → ready-to-eject c s;

(m > b) = false ⇒ buy (m) With c.get-balance (b) .. c.withdraw (m):
wait-for-buy c s → ready-to-eject c s+m;

eject: ready-to-eject c s → idle s;

Where s, m, b: money; c: phonecard; p, pp : pin;

End Telephone;

ΩC

{ c}

≤C

M

O

P

I
τ

Ψ

X

ModC

Fig. 12.Relation between abstract and concrete syntax in the class Telephone
56

The CO-OPN Object-Oriented Specification Language

lobal

f the
arious

onship
3.3.3 Syntax of a specification

Given the previous definitions, it is possible to define the global signature and the g
interface of aCO-OPN specification, and finally theCO-OPN specification itself.

Definition 15.Global subsort/subtype relationship, signature and global interface

Let Σ = (ΣA
i)1 ≤ i ≤ n be a set of ADT signatures, andΩ = (ΩC

j)1 ≤ j ≤ m be a set of class
interfaces such thatΣA

i = 〈SA
i, ≤A

i, Fi〉 andΩC
j = 〈{ cj} , ≤C

j, Mj, Oj〉.

The global subsort/subtype relationship overΣ andΩ noted≤Σ, Ω is:

Theglobal signature overΣ andΩ notedΣΣ, Ω is:

Theglobal interface overΩ is:

◊

Definition 16.CO-OPN specification

Let Σ be a set of ADT signatures andΩ be a set of class interfaces such that the global
signatureΣΣ,Ω is complete and coherent, and such thatΩΩ satisfies the contravariance
condition. ACO-OPN specification consists of a set of ADT and class modules:

SpecΣ,Ω = {(ModA
Σ,Ω)i | 1 ≤ i ≤ n} ∪ {(ModC

Σ,Ω)j | 1 ≤ j ≤ m}.

A CO-OPN specificationSpecΣ,Ω is denoted bySpecand the global subsort/subtype
relation≤Σ,Ω by ≤ whenΣ andΩ are, respectively, included in the global signature and in
the global interface of the specification. In this case the specification is said to becomplete.
◊

From a specificationSpec,two dependency graphs can be constructed. The first consists o
dependencies which concern the algebraic part of the specification, i.e. between the v
ADT signatures. The second dependency graph corresponds to the client-ship relati
between the class modules. ACO-OPNspecification is said to bewell-formedif there is no
cycle in its dependency graphs.

≤Σ Ω, ≤i
A

1 i n≤ ≤
∪ ≤ j

C

1 j m≤ ≤
∪∪〈 〉 *=

ΣΣ Ω, Si
A

1 i n≤ ≤
∪ cj{ }

1 j m≤ ≤
∪ ≤Σ Ω, Fi

1 i n≤ ≤
∪,, FΩ j

C
1 j m≤ ≤
∪∪ ∪〈 〉=

ΩΩ cj{ }
1 j m≤ ≤
∪ ≤ j

C

1 j m≤ ≤
∪

 *, M j
1 j m≤ ≤
∪, Oj

1 j m≤ ≤
∪,〈 〉=
57

The CO-OPN Object-Oriented Specification Language

t

riefly
ed, we
cation
ed so
otions
3.3.4 Summary of the syntax ofCO-OPN

A summary of the syntax ofCO-OPN, together with the symbols used for its differen
components, are given in table 3.

3.4 Semantics ofCO-OPN

This section presents the semantic aspects of theCO-OPNformalism which are mainly based
on the notion of order-sorted algebra and the notion of transition system. First, we b
present some definitions and notions required for the construction of the semantics. Inde
recall some basic definitions in relation to the semantics of order-sorted algebraic specifi
and their multi-set extension, we introduce the object identifier algebra which is organiz
as to capture the notion of subtyping between object identifiers, and we introduce the n
of marking and state. Then, all the inference rules that construct the semantics of aCO-OPN
specification in terms of transition systems are presented.

Module ADT ModA Class ModC

Signature signature ΣA interface ΩC

Sort/Type algebraic sorts SA class type {c}

Hierarchy subsort relation ≤A subtype relation ≤C

Services
operations

(generators and
functions)

F
methods

(public and private)
M

Static instances — objects O

Body

State — places P

Initial State — initial markings I

Reaction — internal transitions τ

Specification of
behavior

algebraic formula
(axioms and defined-

ness formula)
Φ behavioral formula Ψ

defined with algebraic terms events

using variables X X

Table 3: Summary of the syntax of CO-OPN
58

The CO-OPN Object-Oriented Specification Language

s of
3.4.1 Order-sorted algebras and multi-set extension

In this section we briefly recall some basic definitions in relation to the semantic
order-sorted algebraic specification and their multi-set extension.

Definition 17.Partial order-sorted algebras

Let Specbe a well-formedCO-OPN specification, andSpecA = 〈 Σ, X, Φ 〉 be its
associated order-sorted algebraic specification in whichΣ = 〈 S, ≤ , F 〉.

A partial order-sortedΣ-algebra consists of:

 • anS-sorted setA = (As)s ∈ S,

 • a family of partial functionsFA =

where is a function from into Assuch that:

 • s ≤ s' impliesAs ⊆ A’s ,

 • f ∈ with (s1, ...,sn, s) ≤ (s’1, ...,s’n, s’) implies

for all ai ∈ Asi (1 ≤ i ≤ n). ◊

We usually omit the familyF A and writeA for an order-sortedΣ-algebra (A, FA).
The set of all order-sortedΣ-algebras is denoted byAlg (Σ).

Definition 18.Assignment and interpretation

Let Σ = 〈 S, ≤, F 〉 be a regular signature,X be anS-sorted variable set andA ∈ Alg (Σ).

An assignment is anS-sorted functionσ = (σs : Xs → As)s ∈ S.

An interpretation of terms ofTΣ, X in A is anS-sorted partial function
 defined as follows:

 • if x ∈ Xs ands ≤ s' then

 • if f : → s ∈ F ands ≤ s' then

 • if f : s1, ...,sn → s ∈ F ands ≤ s' then

When it is necessary to specify anS-algebraA, the interpretation is noted . ◊

Definition 19.Satisfaction relation, validity, model

Given aΣ-algebraA ∈ Alg (Σ), an order-sorted algebraic specificationSpecA ∈ SPEC

(SPEC is the set of all specifications) and thesatisfaction relation|= ∈ Alg (Σ) × SPEC.

f s1 ... sn s, , ,
A

f :s1 ... sn s, , , s→ F∈
f s1 ... sn s, , ,

A
As1

... Asn
××

Fs1 ... sn s, , , Fs′1 ... s′n s′, , ,∩

f s1 ... sn s, , ,
A

a1 ..., an,() f s1′ ... sn′ s′, , ,
A

a1 ..., an,()=

_[[]] : TΣ X,()s As→

x[[]] s′
σ σs x()=def

f[[]] s′
σ

f s
A=def

f t1 ... tn, ,()[[]]
s′
σ f s

A
t1[[]]

s1

σ
... tn[[]]

sn

σ, ,
 if all ti[[]]

si

σ
are defined

undefined otherwise

=def

[[_]] σ
A

59

The CO-OPN Object-Oriented Specification Language

e.

nd to
to be

elation
f their
ts the

vided.
zed so
ets of

jects
s

s in
A satisfies(or validates) a positive conditional equation (u1 = t1∧ ... ∧ un = un) ⇒ (u = t)
iff, for any assignmentσ : X → A, we have: .
This is notedA, σ |= (u1 = t1∧ ...∧ un = un) ⇒ (u = t).

A satisfies (or validates) an algebraic specificationSpecA iff
A satisfies (or validates) all the conditional positive equations ofSpecA.
This is notedA |= SpecA.

A model of SpecA is aΣ-algebra whichsatisfies(or validates) SpecA.
The set of models ofSpecA is a subclass ofAlg (Σ) which is notedMod (SpecA). ◊

Definition 20.Multi-set extension of an algebra

The multi-set semantics extension of an order-sortedΣ-algebraA is defined as follows:

The multi-set syntactic extension of an algebraic specificationSpecA = 〈 Σ, X, Φ 〉 is
noted [SpecA] = 〈 [Σ], X, Φ 〉. The set of models of [SpecA] is restricted to:

. ◊

3.4.2 Object Management

Each object possesses an identity, called anobject identifier, that may be used as a referenc
An identity is an algebraic value of an order-sorted algebra called anobject identifier algebra
Aoid. This algebra allows to define a set of identifiers for each type of the specification a
provide some operations which return a new object identifier whenever a new object has
created. Moreover, these sets of object identifiers are arranged according to subtype r
over these types. It means that two sets of identifiers are related by an inclusion relation i
respective types are related by subtyping. In other words, the inclusion relation reflec
subtype relation.

The class of all models ofSpecA which respect the constraints sketched above is denotedMod
oid (SpecA), and we have:Mod oid (SpecA) ⊆ Mod (SpecA).

Whenever a new class instance has to be created, a new object identifier must be pro
Indeed, for each type, the last object identifier that has been provided has to be memori
as to be able to compute the next object identifier at any time. This is achieved by the s
functionsloid (last object identifier) andnewloid (new last object identifier).

Another information has to be retained throughout the system evolution: the list of the ob
that have been created and that are still alive. This is achieved by the sets of functionaoid
(alive object identifiers) andnewaoid (new alive object identifier).

Interested readers will find the complete and formal definition of these function
[Biberstein 97a].

ui[[]]
σ

ti[[]]
σ

=

A[] A As[]
s S∈
∪

 ∪ F
A ∅

As[]
_[]

As[]
+

As[]
, ,

s S∈
∪

∪,〈 〉 .=

Mod Spec
A[]() A[] | A Mod Spec

A()∈{ }=def
60

The CO-OPN Object-Oriented Specification Language

gebraic
3.4.3 State space

The system state definition is based on the notion ofmarking, i.e. a mapping between the
places and their contents, which associates to each place of the system a multi-set of al
values.

Definition 21.Marking, definition domain, system state, state space

Let Spec be aCO-OPN specification andA be a model inMod oid (SpecA).
Let S be the set of sorts defined inSpec andP be theS-sorted set of places ofSpec.

A markingis a partial functionm : Aoid × P → [A] such that ifo ∈ Aoid andp ∈ Ps with s
∈ S thenm (o, p) ∈ [As].

We denote byMarkSpec,A the set of all markings. The initial marking is computed by a
function calledinitmark.

Thedefinition domain of a markingm ∈ MarkSpec, A is defined as

Dom(m) = { (o, p) | m (o, p) is defined,p ∈ P, o ∈ Aoid}.

A markingm is denoted⊥ whenDom(m) = ∅.

Thesystem state is a triple〈 l, a, m 〉 ∈ loidSpec, A × aoidSpec, A × MarkSpec, A.

Thestate space, i.e. the set of all states, is denotedStateSpec, A. ◊

We introduce three basic operators on markings, namely + , and :

 • m1 + m2 is an operation that adds two sets of places,

 • m1 m2 determines whether two markings are equal on their common places,

 • m1 m2 considers two markings and returns a marking with the values of the markingm1
plus the values of the places ofm2 which are not present inm1.

Definition 22.Sum of markings, common markings, fusion of markings

Let Spec be a CO-OPNspecification andA be a model inMod oid (SpecA).
Let S be the set of sorts defined inSpec andP be theS-sorted set of places ofSpec.
Let m1 andm2 be two markings ofMarkSpec, A.

 • Thesum of two markings is + :MarkSpec, A × MarkSpec, A → MarkSpec, A

∩ ∪→

∩

∪→

s S∈∀() p P∈∀() o A
oid∈∀()

m1 m2+() o p,()

m1 o p,() +
As[]

m2 o p,() if o p,() Dom m1() Dom m2()∩∈

m1 o p,() if o p,() Dom m1()\Dom m2()∈

m2 o p,() if o p,() Dom m2()\Dom m1()∈

undefined otherwise

=

61

The CO-OPN Object-Oriented Specification Language

.

nce
nsists
taken
g to a
nsists
zation
tions
all its
.

is
 • Thecommon markingpredicate is :MarkSpec, A × MarkSpec, A→ Boolean

 • Thefusion of two markings is : MarkSpec, A × MarkSpec, A → MarkSpec, A

◊

The three operators on markings + , and are extended to states in [Biberstein 97a]

3.4.4 Semantics and inference rules

The semantics of aCO-OPNspecification is expressed as transition systems. A set of infere
rules is provided for that purpose. The construction of the semantics of a specification co
first in determining the semantics, called partial semantics, of each class module
separately. Once this is performed, the various partial semantics are mixed accordin
partial order given by the synchronizations. The combination of the partial semantics co
in applying successively a stabilization procedure and a closure operation. The stabili
procedure allows producing a transition system in which all invisible and internal transi
have been taken into account. The closure application adds to a transition system
sequential behaviors, simultaneous or alternate, and solves all synchronization requests

The CO-OPNsemantics is mainly given by two transition systems. A transition system
defined as follows:

Definition 23.Transition system

Let Spec be aCO-OPN specification andA be a model inMod oid (SpecA).
Let SC be the set of object identifier sorts defined inSpecandM be the set of methods
included inSpec. A transition system is defined as:

TSSpec, A = 〈 StateSpec, A × EA, M, Aoid, SC × StateSpec, A 〉

The set of all transition systems is denotedTSSpec, A.
A triplet 〈state1, event, state2〉 is called atransition.
An evente between two statesstate1 andstate2 is commonly writtenstate1

e→ state2. ◊

∩

m1 m∩
2 for all o p,() A

oid
P×∈⇔

o p,() Dom m1() Dom m2()∩∈ m1 o p,()⇒ m2 o p,()=

∪→

m1 m2∪→ m3 is such that o p,() A
oid

P×∈∀=

m3 o p,()

m1 o p,() if o p,() Dom m1()∈

m2 o p,() if o p,() Dom m2()\Dom m1()∈

undefined otherwise

=

∩ ∪→
62

The CO-OPN Object-Oriented Specification Language

mpute,
ories,

S
the

h

To construct the semantics, mostly two concurrent transition systems, of aCO-OPN
specification we provide a set of inference rules. The first transition system→ is used to
compute the unstabilized behavior whereas the second∗→ is used to described the only
observable events after the stabilization process. The stabilization process is used to co
maximally, the action of the internal transitions. These rules, grouped into three categ
realize the following tasks:

 • The rules CLASS and MONO (for monotonicity) build, for a given class, its partial transition
system according to its methods, places, and behavioral axioms. The rule CREATE takes
charge of the dynamic creation and the initialization of new class instances.

 • The rules SEQ (for sequence), SIM (for simultaneity), ALT-1 and ALT-2 (for alternative)
compute all deducible sequential, concurrent and non-deterministic behaviors, whileYNC

(for synchronization) composes the various partial semantics by means of
synchronization requests between the transition systems.

 • STAB-1 and STAB-2 (for stabilization) “eliminate” all invisible or spontaneous events whic
correspond to the internal transition of the classes.

3.4.4.1 Partial semantics of a class

This section presents the partial semantics of a class specification.

Definition 24.Partial semantics of a class

Let Spec be aCO-OPN specification andA be a model inMod oid (SpecA).
Let SC be the set of object identifier sorts and letModC = 〈ΩC, P, I, X, Ψ〉 be the class
module ofSpecwhereΩC = 〈{ c}, ≤C, M, Ο〉. The partial semanticsof ModC is the
transition systemPSemA (ModC), noted→ and obtained by application of the inference
rules CLASS, CREATE and MONO given in figure 13. ◊

∀ m, m', m'' ∈ StateSpec, A ande ∈ EA, M, Aoid, SC.

Fig. 13.Inference rules for the partial semantics construction

CLASS

Event:: Cond Pre Post Ψ σ : X A,→∃,∈→⇒
A σ Cond|= o aoid c()∈, ,

loid c() aoid c() Pre[[]] o
σ, ,〈 〉 Event[[]]

σ
loid c() aoid c() Post[[]] o

σ, ,〈 〉

--

CREATE
oid newloid loid c()()= naoid newaoid aoid c() oid,()=,

loid c() aoid c() ⊥, ,〈 〉
oid.create

oid naoid initmark oid c,(), ,〈 〉

MONO

m
e

m'

m m''+
e

m' m''+

63

The CO-OPN Object-Oriented Specification Language

llow
e
e

ns

rt is
of

ay be

ed at
be

ad of

l class
nd to
nction
ternal
en all
Informally, the rule CLASS generates the basic observable and invisible transitions that fo
from the behavioral axioms of a class. The rule CREATE generates the transitions aimed at th
dynamic creation of new objects. The rule MONO generates all the firable transitions from th
transitions already generated.

In a more procedural approach, we can formulate CLASS as follows.

 1. An eventEvent defined by the behavioral axiomCond⇒ Event: Pre → Postis firable if:

• Cond is satisfied for the algebraic axioms.

• Τhe current marking satisfies the preconditions ofEvent both quantitatively, because
there are enough tokens, andqualitatively, because the values of the chosen toke
conform to the algebraic predicates of the precondition.

• TheEventsynchronization part is firable. The actual firing of the synchronization pa
done only at step 3 below. This decomposition is justified by the possibility
performing recursive method calls.

 2. Before firingEvent do:

• Remove the terms ofPre from the current marking.

 3. When firingEvent do:

• Fire the synchronization part ofEvent.

 4. After firingEvent do:

• Add the terms ofPost to the current marking.

How a candidate axiom is selected is not specified. Among all enabled axioms, any one m
fired at random, provided that the choice respects the additional semantics ofCO-OPN.
Likewise, the tokens to be removed from the current marking (step 2 above) may be pick
will as long as they satisfy the conditions of the axiom. This kind of behavior is said to
non-deterministic, because the evolution of the object depends on an arbitrary choice inste
being determined entirely by its current state.

3.4.4.2 Semantics of aCO-OPN specification

The idea behind the construction of the semantics of a specification composed of severa
modules is to build the partial semantics of each individual class module in a first step, a
compose them subsequently by means of the synchronizations. However, the disti
between observable events (related to methods) and invisible events (related to in
transitionsτ) implies a stabilization process, so that observable events are performed wh
invisible events have occurred.

Definition 25.Closure operation

Given Speca CO-OPNspecification andA ∈ Mod oid (SpecA) an algebraic model, the
closure operationClosure: TSSpec, A × TSSpec, A is such thatClosure (TS) is the
application on transition systems→ and∗→ induced by the use of the inference rules
SEQ, SIM, ALT-1, ALT-2, and SYNC given in figure 14. ◊
64

The CO-OPN Object-Oriented Specification Language

ngs
.
the

st

of the
Informally, the rule SEQ infers the sequence of two transitions provided that the marki
shared betweenm1’ andm2 are equal. The rule SIM infers the simultaneity of two transitions
The rules ALT-1 and ALT-2 provide all the alternative behaviors (two rules are necessary for
commutativity of the alternative operator⊕). The rule SYNC solves the synchronization reque
by generating the event which behaves the same way as the event ‘e1 with e2’ asking to be
synchronized with the evente2.

To avoid any confusion, it should be emphasized that these rules determine the behavior
called objects rather than that of the caller (the emitter of the synchronization).

The applicationStabilizationon transition systems→ and∗→ build a transition system∗→ by
suppressing the transition leading to non-stable states.

Definition 26.Stabilization process

GivenSpeca CO-OPNspecification andA ∈ Mod oid (SpecA) a model, the stabilization
processStabilization:TSSpec, A× TSSpec, Ais defined as follows:

∀ m, m', m1, m1', m2, m2' ∈ StateSpec, A ande, e1, e2 ∈ EA, M (Spec), Aoid, SC.

Fig. 14.Inference rules for the closure operation

SEQ

m1' m2
∩ m1

e1
* m1' m2

e2 m2', ,

m1 m2∪→
e1 .. e2 m2' m1'∪→

--

SIM

m1
e1 m1' m2

e2 m2',

m1 m2+
e1 // e2 m1' m2'+

--

ALT-1
m

e1 m'

m
e1 e2⊕

m'

--- ALT-2

m
e2 m'

m
e1 e2⊕

m'

SYNC

m1

e1with e2 m1' m2

e2
* m2',

m1 m2+
e1 m2' m1'+

Stab TS() m
e

m' TS∈

m
e

* m' PreStab TS()∈ m'
τ

m'' PreStab TS()∈∃¬

∪=
65

The CO-OPN Object-Oriented Specification Language

the
e

uced

antics
new
before
are not
in which PreStab:TSSpec, A × TSSpec, A is a function such thatPreStab(TS) is the
application on transition systems→ and∗→ induced by the use of the inference rules
STAB-1 and STAB-2 given in figure 15. ◊

Informally, the rule STAB-1 is used to merge an event leading to a non-stable state and
invisible event which can occur “in sequence”. The rule STAB-2 generates all the observabl
events which can be merged with invisible events if they lead to an unstable state.

To build the whole semantics of a specification we introduce, for a given partial order ind
by the client-ship dependency graph (calledCD), a total order ⊆ CD × CD. GivenModC

0
the lowest module of the hierarchy and given thatModC

i ModC
i+1 (0 ≤ i < n), we introduce

the partial semantics of all the modulesModC
i (0 ≤ i <n) of the specification from the bottom to

the top.

Definition 27.Semantics of a CO-OPN specification

Given a specificationSpeccomposed of a set of class modulesModC
i (0 ≤ i ≤ m) and an

algebraA ∈ Mod oid (SpecA), the semantics ofSpec is denoted (Spec) and
inductively defined as follows:

 • (∅) = ∅

 • (ModC
0) = limn → ∞ (Stab° Closure)n (PSemA (ModC

0))

 • (∪0 ≤ i ≤ k ModC
i) =

limn → ∞ (Stab° Closure)n ((∪0 ≤ i ≤ k-1 ModC
i) ∪ PSemA (ModC

k))

for 1 ≤ k≤ m ◊

The semantics expressed by this definition is calculated by starting from the partial sem
of the lowest object in the hierarchy (for a given total order), and repeatedly adding a
object to the system. For each new object added, the stabilization process is performed
the closure operation. A consequence of this semantics is that mutual dependencies
allowed within a system.

∀ m, m', m1, m1', m2, m2' ∈ StateSpec, A ande ∈ EA, M (Spec), Aoid, SC.

Fig. 15.Inference rules for the stabilization process

STAB-1

m′1 m2
∩ m1

e1
* m1' m2

τ
m2', ,

m1 m2∪→
e

* m2' m1'∪→

STAB-2

m
e

m'

m
e

* m'

--

∠
∠

SemA
∠

SemA
∠

SemA
∠

SemA
∠

SemA
∠

66

The CO-OPN Object-Oriented Specification Language

. The

rules

ed for

d

a
te our

to
e

3.4.4.3 Example of the semantics ofCO-OPN

Let us come back to the example of the telephone system presented in section 3.2
inference rules in figure 16 show an example of the semantics ofCO-OPN. The behavioral
formula c.create (1234) .. c.withdraw (12) .. c.get-balance (8) is inferred. We can calculate the
behavior of this formula by calculating the partial semantics of each event, through the
CREATE (for the eventcreate), CLASS (for the eventswithdraw andget-balance), and MONO (to
introduce an additional contextual state when necessary), and performing successiveStaband
Closure (rules STAB and SEQ).

From this inference tree, we can for instance deduce the initial and final object state need
the behavioral formula to succeed. The placebalance must be initialized to 20, and finally
contain the value 8, whereas the placeId must be empty (∅) and will finally contain 1234.

3.5 Summary

This chapter has presented the aspects ofCO-OPNwhich are relevant for the testing metho
proposed in the next chapters, in particular:

 • The CO-OPNobject-oriented concepts. CO-OPNpresents the advantage of integrating
very complete set of object-oriented concepts making the language suited to illustra
theory of testing object-oriented software.

 • The example of the telephone system. This small but significant case study, dedicated
an intuitive understanding ofCO-OPN, will be widely used in chapters 4 and 5 to illustrat
the test set selection fromCO-OPN specifications.

R1:

CREATE
id ∅

balance 20 c
c.create 1234() id 1234

balance 20 c

STAB-2
id ∅

balance 20 c
c.create 1234()

*
id 1234

balance 20 c

CLASS balance 20[]c
c.withdraw 12() balance 8[]c

MONO
id 1234

balance 20 c
c.withdraw 12() id 1234

balance 8 c

--

SEQ
id ∅

balance 20 c
c.create 1234()..c.withdraw 12() id 1234

balance 8 c

STAB-2
id ∅

balance 20 c
c.create 1234()..c.withdraw 12()

*
id 1234

balance 8 c

--

R1

CLASS balance 8[]c
c.get-balance 8() balance 8[]c

--

MONO
id 1234

balance 8 c
c.get-balance 8() id 1234

balance 8 c

SEQ
id ∅

balance 20 c
c.create 1234()..c.withdraw 12()..c.get-balance 8() id 1234

balance 8 c

STAB-2
id ∅

balance 20 c
c.create 1234()..c.withdraw 12()..c.get-balance 8()

*
id 1234

balance 8 c

Fig. 16.Derivation tree for the event
c.create (1234) .. c.withdraw (12) .. c.get-balance (8)
67

The CO-OPN Object-Oriented Specification Language

of

ted
stems.
ns of

ed
a

tions
 • The syntax of CO-OPN. The use of ADT modules (to describe passive entities) and
algebraic Petri net classes (to describe active entities) makes theCO-OPN syntax well
adapted to the specification of object-oriented systems.

 • The semantics ofCO-OPN. The semantics is mainly based on the notion of order-sor
algebra and on inference rules that construct the semantics in terms of transition sy
These rules will allow to automatically compute behaviors of the semantics by mea
operational techniques.

A set of tools, calledCO-OPNTOOLS [Biberstein 95b] [Buchs 95], has already been develop
to support the formalism.CO-OPNTOOLS comprises utilities such as a syntax checker,
simulator, a graphic editor, and a transformation tool supporting the derivation of specifica
into Prolog clauses. This document presents in chapter 6 a newtool, CO-OPNTEST, allowing to
generate test sets fromCO-OPN specifications.
68

Theory of Formal Testing for Object-Oriented Software

tions.

n 2.1.2,

use it
other,
ased
rticular

nly be
ill use
that

low to
bility
of the
C H A P T E R

4
CHAPTER4THEORY OF FORMAL TESTING FOR

OBJECT-ORIENTED SOFTWARE

This chapter presents a theory for testing object-oriented software from formal specifica

Why do we adopt aspecification-based approach?

We have chosen to use a specification-based approach because, as stated in sectio
specification-based testingpresents advantages with respect toprogram-based testing.Indeed
program-based testing requires more work for incremental software development, beca
relies on the code of the program, which is bound to change from one increment to an
and it is not fit for multiple implementations of one specification. Thus the specification-b
approach is more general because it does not depend on the features of a pa
programming language.

Why do we adopt aformal approach?

Our approach must be designed with the goal of being automatable. Automation can o
reached when working with models that a computer can understand. Therefore, we w
formal specifications as model for testing. An advantage of formal specifications is
completeness and consistency are more easily obtained. Also, formal specifications al
define testing criteria of correctness. For our approach, we will thus postulate the availa
of a complete and valid specification as a means to determine the expected behavior
tested component.
69

Theory of Formal Testing for Object-Oriented Software

solid
ented

hod is
ented

g its
rmal

its
three

are

ed.

ared
. Our
ested

hod.
the

the
, and
f these
Our approach for testing object-oriented software from formal specifications relies on a
theoretical framework. It is a generalization [Péraire 95] and an adaptation to object-ori
systems of theBGM method [Bernot 91b] presented in section 2.3.1. TheBGM method has
been developed for testing data types by using formal specifications. However, this met
oriented towards algebraic specifications, and does not fulfill the needs of object-ori
software development.

The formal testing method is an approach to detect errors in a program by validatin
functionalities without analyzing the details of its code, but by comparing it against a fo
specification. The goal is to answer the question:

"Does a program satisfy its formal specification?",

or, in accordance with the goal of testing, to find out if a program does not satisfy
specification. The formal testing process is usually decomposed into the following
phases:

Phase 1 Test selection: the test cases that express the properties of the specification
generated.

Phase 2 Test execution: the test cases are executed and results of the execution collect

Phase 3 Test satisfaction: the results obtained during the test execution phase are comp
to the expected results. This last phase is performed with the help of an oracle
oracle is a program based on external observation of the behavior of the t
program.

An abstract view of the formal testing process is shown in figure 17.

In this chapter, we will first present the theoretical framework of the formal testing met
Second, we will present our theory of formal testing for object oriented software, justifying
choices of CO-OPN (Concurrent Object-Oriented Petri Nets) [Biberstein 97a] as
specification formalism and Hennessy-Milner Logic [Hennessy 85a] as the test formalism
then establishing that there exists a full agreement between the equivalence relations o
two formalisms.

Does the program satisfy its specification?

Test Selection

Test Execution

Test Satisfaction

Test Requirement

Test Interpretation Verdict

Test Procedure

Program
Correction

Fig. 17.Abstract view of the formal testing process
70

Theory of Formal Testing for Object-Oriented Software

e test

ot

e, the

s

4.1 Theory of formal testing

This section presents the whole test process of the formal testing theory, starting from th
foundation and then focussing on the test selection and test satisfaction phases.

Throughout this chapter we use the following notations:

 • SPEC: class of all specifications written in the specification language considered,

 • PROG: class of all programs expressed in the language used for the implementation,

 • TEST: class of all test sets that can be written,

 • |= : satisfaction relationship onPROG × SPEC, expressing the validity of the program with
respect to the specification,

 • |=O : satisfaction relationship onPROG× TEST, deciding if the test cases are successful or n
for the program under test. |=O is the oracle satisfaction relationship.

4.1.1 Test foundation

The strategy used to answer the question"Does a program satisfy its formal specification?"is
to select from the specification the services required to the program. For each servic
specification allows the selection of a number of scenarios. A scenario is called atest caseand
the set of all test cases makes up what we call thetest set.

The idea of the test selection phase is to derive, from a specificationSP∈ SPEC, a test setTSP⊆
TESTallowing to reject any incorrect programP ∈ PROG(an incorrect program contains error
with respect to its specification) andto accept any correct programP ∈ PROG (a correct
program does not contain errors with respect to its specification).

The rejection of any incorrect program is expressed by the following relation:

(P |≠ SP) ⇒ (P |≠O TSP) (i)

i.e. an incorrect implementationP of the specificationSPimplies thefailure of the test setTSP
executed on a programP. A test set satisfying(i) is said to bevalid.

The acceptation of any correct program is expressed by the following relation:

(P |= SP) ⇒ (P |= O TSP) (ii)

i.e. a correct implementationP of the specificationSP implies thesuccessof the test setTSP
executed on a programP. A test set satisfying(ii) is said to beunbiased.

Consequently, the aim of the test selection phase is to find a test setTSPsuch that:

(P |= SP) ⇔ (P |= O TSP) (iii)

i.e. the programP satisfies its specificationSP if and only if it satisfies the test setTSP.
71

Theory of Formal Testing for Object-Oriented Software

f of

ity and

und
ction

ng the
otheses

sary
ing the
r not,
the test

tion

he test
s

es the

ned as

f

ith
ng,

at are

ble”
he
orrect
As noted by Weyuker and Ostrand [Weyuker 80b], this equation is similar to a proo
correctness, and it can only be correct ifTSPincludes a complete coverage ofSP, i.e. it contains
enough test cases to cover all possible behaviors expressed bySP. The only test set that will fit
in this equation is the exhaustive test set, because there is no way to guarantee the valid
unbiasedness of a non-exhaustive test set.

A valid and unbiased test setTSPcan be used to test a programP only if TSPhas a “reasonable”
finite size. Limiting the size of test sets is performed by sampling: a trade-off must be fo
between size and accuracy. This trade-off is formally expressed by a set of redu
hypothesesHR applicable to the programP. The hypothesesHR state under which conditions
the satisfaction of the specification is ensured by the satisfaction of the test set by maki
assumption that the program reacts in the same way for some test data. These hyp
correspond togeneralizations of the behavior of the program.

Moreover, an oracleO and its satisfaction relation|= O can only be constructed for a programP
and a test setTSP if TSP is decidable, i.e. the oracle is always able to compare all the neces
elements to determine the success or failure of any test case. This problem is solved us
oracle hypotheses,HO, which state that the oracle knows whether a test case is decided o
and that a test case is either observable, or else the oracle contains criteria to augment
case to make it observable.

Assuming that hypothesesH = HO ∪ HR have been made about the program, the test equa
(iii) becomes:

(P satisfiesH) ⇒ (P |= SP) ⇔ (P |= O TSP, H). (iv)

In this case, test selection is a function of the specification and of the hypotheses; thus t
set is notedTSP, H . The equivalence relationship⇔ is satisfiedassuming some hypothese
about the programand that the test setTSP, His valid and unbiased.

A nice property of equation(iv) is that the quality of the test setTSP, His only dependent on the
quality of the hypotheses. The drawback however is that proving that a program satisfi
hypotheses is not trivial.

4.1.2 Test process

The formal testing process, presented in figure 17, is a three phase process formally defi
follows:

Phase 1 Selection of a test setTSP, Hfrom a specificationSPof the system and from a set o
hypothesesH on the program under testP (SP∈ SPEC, TSP, H⊆ TEST, P ∈ PROG).

Assuming we have an oracleO that ensures the observability of the system w
the oracle hypothesesHO, the first task of the test process consists of selecti
from the specification, a test set that validates equation(iii) . This is theoretically
achieved by selecting an exhaustive test set which contains all test cases th
required by the specification. Then a number of reduction hypothesesHR are
applied to the behavior of the program to obtain a finite test set of “reasona
size that validates equation(iv). We proceed by successive reductions of t
number of test cases. Thus, when the test set is successful, the program is c
72

Theory of Formal Testing for Object-Oriented Software

st set
d by

e

and it
ted

e of a
on condition that it satisfies the oracle and the reduction hypotheses. The te
quality is a function of the number of oracle and reduction hypotheses satisfie
the program under test.

Phase 2 Execution of the program under testP using the test setTSP, H.

Phase 3 Analysis of the results obtained during the execution of the programP.
If the test set is successful (P |= O TSP, H), then the test process is completed.
In addition, if P verifies the hypothesesH, then the program satisfies th
requirements of the specification (P |= SP).
If the test set is not successful, then the program contains faults or omissions,
is possible to return to the second step of the test process after having correcP.
Furthermore, the oracle answer can be inconclusive (for instance, in the cas
deadlock situation which prevents the normal termination ofP). In this case the
result of the test process is undefined.

The formal testing process is illustrated by figure 18.

Oracle:
P satisfies, or not, T ! Test Satisfaction

Phase 3

Phase 2
Execution of P using T Test Execution

Program Specification

Test Set

P SP

HR

TO

TO,R

T

Does P satisfy SP ?

Test Selection

Test
procedure

Phase 1

P satisfies SP !

Oracle
hypotheses
HO to P

Reduction
hypotheses
HR to P

Correction of P

P does not satisfy SP ! Undefined

inconclusive

HO

HO

no yes

yesno

P satisfies, or not, H

Fig. 18.Formal testing process

H

73

Theory of Formal Testing for Object-Oriented Software

est set

ulas
round

the
st set.
ses to

:

4.1.3 Test selection

According to the formal testing process, the goal of the test selection phase is to find a t
TSP, H that can be submitted to an oracle and which ispertinent, i.e. valid and unbiased.

Definition 28.Pertinent test set

Given a set of hypothesesH, P ∈ PROGand a specificationSP∈ SPEC,
the test setTSP, H⊆ TESTis pertinent if and only if:

 • TSP, H is valid: (P satisfiesH) ⇒ (P |= O TSP, H⇒ P |= SP).

 • TSP, H is unbiased: (P satisfiesH) ⇒ (P |= SP⇒ P |= O TSP, H). ◊

The test selection phase consists of selecting, from a possibly infinite set of form
corresponding to all the specification properties required to the program, a finite set of g
(without variable) formulas which is sufficient, under some hypotheses, to state
preservation of these properties. The infinite set of formulas is called the exhaustive te
This exhaustive test set is then reduced to a final test set by applying reduction hypothe
the program.

The required property of the final test setTSP, H is to be practicable.

Definition 29.Practicable Test Context

Given a specificationSP ∈ SPEC, a test context (H, TSP, H)O is defined by a set of
hypothesesH about a program under testP ∈ PROG, a test setTSP, H⊆ TESTand an oracle
O ∈ PROG.

(H, TSP, H)O is practicable iff:

 • TSP, H is pertinent and has a “reasonable” finite size.

 • O = 〈 |= O, DomO〉 is decidable (i.e. it is defined for each element ofTSP, H
(TSP, H⊆ DomO) (see definition34)).

In a practicable test context (H, TSP, H)O, the test setTSP, H is said to bepracticable. ◊

To simplify, (H, TSP, H)O is noted (H, T)O in the rest of the dissertation.

As shown in figure 19, the selection of a pertinent test setT of “reasonable” size is performed
by successive refinements of an initial test context (H0, T0)O, which has a pertinent test setT0

of “unreasonable” size, until the obtention of a practicable test context (H, T)O.

This refinement of the context (Hi, Ti)O into (Hj, Tj)O induces a pre-order between contexts

(Hi, Ti)O ≤ (Hj, Tj)O.

At each step, the pre-order refinement context (Hi, Ti)O ≤ (Hj, Tj)O is such that:

 • The hypothesesHj are stronger than the hypothesesHi : Hj ⇒ Hi.
74

Theory of Formal Testing for Object-Oriented Software

i.e. we
t. This
eses:

eses
Thus
 • The test setTj
SP, Hj is included in the test setTi

SP, Hi : Tj
SP, Hj ⊆ Ti

SP, Hi.

 • If P satisfiesHj then (Hj, Tj)O does not detect more errors than (Hi, Ti)O:

(P satisfiesHj) ⇒ (P |= O Ti
SP, Hi ⇒ P |= O Tj

SP, Hj).

 • If P satisfiesHj then (Hj, Tj)O detects as many errors as (Hi, Ti)O:

(P satisfiesHj) ⇒ (P |= O Tj
SP, Hj ⇒ P |= O Ti

SP, Hi).

Therefore, we have the following theorem:

Theorem 30.Preservation of pertinence

Given a specificationSP∈ SPEC, and two test contexts (Hi, Ti)O and (Hj, Tj)O such that
(Hi, Ti)O ≤ (Hj, Tj)O. If Ti

SP, Hi is pertinent thenTj
SP, Hj is pertinent. ◊

The reduction hypotheses used to obtain a practicable test context (H, T)O are presented in the
next section.

4.1.4 Reduction hypotheses for test selection

In order to reduce the size of a test set, we apply reduction hypotheses to the program,
assume a certain knowledge of the behavior of the program that is not necessary to tes
reflects common test practices. In this chapter, we present two kinds of reduction hypoth
uniformity and regularity. Uniformity hypotheses correspond to a 1:n generalization of the
program behavior while regularity hypotheses correspond to an:m generalization of the
program behavior.

A test is a formula, ground or with universally quantified variables. The reduction hypoth
act on tests with variables, replacing these variables to reduce the formula’s complexity.
we defineVar (f): the set of variables of a formulaf.

Hi

H

H0

...

T0

Ti

...

T

Hj Tj

... ...

Reduction

of the test set

Application

of hypotheses

Fig. 19.Iterative refinement of the test context

(H0, T0)O ≤ ... ≤ (Hi, Ti)O ≤ (Hj, Tj)O ≤ ... ≤ (H, T)O
75

Theory of Formal Testing for Object-Oriented Software

hat if

ormity

esis
n it is

orted
.

main
eses

ly of
main
ng

t set
4.1.4.1 Uniformity hypotheses

The uniformity hypotheses help to limit the size of the test set by making the assumption t
a test holding a variable, is successful forone instantiation of this variable, then it is successful
for all instantiations of this variable.

The uniformity hypothesis can be stated as follows: if a test of a formulaf, with v ∈ Var (f), is
successful for a given value ofv, then it is successful for all possible values ofv.

Definition 31.Uniformity hypothesis

Given a specificationSP∈ SPEC, a test context (H, T)O, a testf of T, a variablev ∈Var(f),
and the setTERM (SP) of all terms which could substitutev, an uniformity hypothesis
applied to a variablev for a formulaf and a programP ∈ PROG, UNIFv, f (P), is such that:

(∀ v0 ∈ TERM (SP)) ((P |= O f [v0 / v]) ⇒ (∀ v1 ∈ TERM (SP)) (P |= O f [v1 / v])).

The corresponding step of context refinement is the following:

(H, T)O ≤ (H ∧ UNIFv, f (P), T - { f } ∪ { f [v0 / v] v0 ∈ TERM (SP) })O.

Corollary: If T is pertinent, then the new test set is pertinent. ◊

For instance, in the case of the telephone system presented in section 3.2, a unif
hypothesis can be applied on the pin-code passed to the methodget-pin, because the
specification ofPhoneCard does not depend on its value, but on its existence. This hypoth
can stipulate that if a test of a phonecard is successful for a given pin-code 1234, the
successful for all possible pin-codes.

Since the uniformity hypotheses represent a generalization 1:n of the program behavior, they
are “strong” and they are usually not applied to the sort under test, but to the sorts imp
into the specification, which we assume are already tested or simulated by correct stubs

This hypothesis underlies random testing: a randomly selected entry of the input do
stands for all possible entries. However, as for random testing, applying uniformity hypoth
may miss interesting cases present in the specification under the form of a fami
conditional axioms. In this case, uniformity hypotheses can be combined with do
decomposition, so that the generalization 1:n is applied to each subdomain instead of bei
applied to the whole domain.

The application of uniformity hypotheses is further studied in section 5.3.3.

4.1.4.2 Uniformity hypotheses with subdomain decomposition

The uniformity hypotheses with subdomain decomposition help to limit the size of the tes
by making the assumption that if a test holding a variable, is successful forone instantiation of
this variable by subdomain, then it is successful forall instantiations of this variable.
76

Theory of Formal Testing for Object-Oriented Software

en a

drawal
f the
the

omain
alues

d in

that if
The uniformity hypothesis with subdomain decomposition can be stated as follows. Giv
formula f having a domainD(f) = ∪i=1..n Di (f), a set ofn conjunctions of equationsCSi
characterizing each subdomainDi (f), and substitutionsθi of the variables ofCSi satisfying
CSi, if a test of a formulaf is successful for a given substitutionθi for each subdomainDi (f),
then the test off is successful for all possible substitutions of the variables off.

Definition 32.Uniformity hypothesis with subdomain decomposition

Given a specificationSP∈ SPEC, a test context (H, T)O, a testf of T having a domain
D (f) = ∪i=1..n Di (f), a set ofn conjunctions of equationsCSi characterizing each
subdomainDi (f), and substitutionsθi ∈ Sat(CSi) whereSat (CSi) is the set of all
substitutions of the variables ofCSi satisfying CSi, a uniformity hypothesis with
subdomain decomposition for the formulaf and a programP ∈ PROG, DOMUNIFf (P), is
such that:

(∀i ∈ [1..n] , ∀ θi ∈ Sat (CSi)) ((∧j = 1..n P |= O θj (f)) ⇒ (P |= O f)).

The corresponding step of context refinement is the following:

(H, T)O ≤ (H ∧ DOMUNIF f (P), T - { f } ∪i = 1..n { θi (f) θi ∈ Sat(CSi) }) O.

Corollary: If T is pertinent, then the new test set is pertinent. ◊

For instance, in the case of the telephone system presented in section 3.2, for the with
mechanism, a single uniformity hypothesis will not be sufficient, since the specification o
methodwithdraw tells apart the case of overdraft (first subdomain) from the case where
amount can be eventually withdrawn (second subdomain). Thus, a hypothesis with subd
decomposition can stipulate that if a test of a phonecard is successful for couples with v
<amount = 15, balance = 10> (first subdomain) and<amount = 8, balance = 12> (second
subdomain), then it is successful for all possible couples<amount, balance>.

The application of uniformity hypotheses with subdomain decomposition is further studie
section 5.4.

4.1.4.3 Regularity hypotheses

The regularity hypotheses help to limit the size of the test set by making the assumption
a test is successful forterms having a complexity less than or equal to a given bound, then it is
successful forall terms whatever their complexity.

The regularity hypotheses can be stated as follows: if a test formulaf, containing a termt, is
successful for all termst which have a complexity less than or equal to a boundk, then it is
successful for all possible complexities oft.

Definition 33.Regularity hypothesis

Given a specificationSP∈ SPEC, a test context (H, T)O, a testf of T, a variablev ∈ Var(f),
the setTERM (SP) of all terms which could substitutev, α (t) a complexity measure of the
term t, andk a bound, a regularity hypothesis of levelk applied to a variablev for a
formulaf and a programP ∈ PROG, REGULk, v, f (P), is such that:
77

Theory of Formal Testing for Object-Oriented Software

sure of
larity
s less

t the
y the
m is
of the
st sets

the

er test.
it is

et. This
ilure of
al errors.
(∀ v0 ∈ TERM (SP)) (α (v0) ≤ k ⇒ P |= O f [v0 / v]) ⇒

(∀ v1 ∈ TERM (SP)) (P |= O f [v1 / v]).

The corresponding step of context refinement is the following:

(H, T)O ≤ (H ∧ REGULk, v, f (P), T - { f } ∪ { f [v0 / v] v0 ∈ TERM (SP), α (v0) ≤ k }) O.

Corollary: If T is pertinent, then the new test set is pertinent. ◊

For instance, in the case of the telephone system presented in section 3.2, a mea
complexity can be the number of insertions of a phonecard in the telephone. A regu
hypothesis can stipulate that if a phonecard reacted correctly to a number of insertion
than or equal to 20, then it will react correctly to any number of insertions.

Since regularity hypotheses correspond to a generalizationn:m of the program behavior, they
are “weak” and they are usually applied to the sort under test.

The strength (weak or strong) of a reduction hypothesis is linked to the probability tha
program satisfies the hypothesis: a hypothesis with a high probability of satisfaction b
program is weak whereas a hypothesis with a low probability of satisfaction by the progra
strong. In the present state of the art, we do not dispose of a measure of the strength
hypotheses. However, in most cases, test sets selected by uniformity are included in te
selected by regularity, because the generalizationm:n is likely to include the case of the
generalization 1:n. That is why we consider the uniformity hypotheses to be stronger than
regularity hypotheses, even though this is not an absolute rule.

4.1.5 Test satisfaction

Once a test set has been selected, it is used during the execution of the program und
Then the results collected from this execution must be analyzed. For this purpose,
necessary to have a decision procedure to verify that an implementation satisfies a test s
process is called an oracle. The oracle is a program that must decide the success or fa
every test case, i.e. whether the evaluation of test cases is satisfied or if test cases reve

Definition 34.Oracle

The oracleO = 〈 |= O, DomO 〉 is a partial decision predicate of a formula in a programP
∈ PROG. For each test casef ∈ TEST belonging to the oracle domainDomO, the
satisfaction relationship|= O onPROG× TEST allows the oracle to decide:

 • If f is successful inP (P |= O f).

 • If the answer isinconclusive (f is non-observable). ◊
78

Theory of Formal Testing for Object-Oriented Software

of
re said

ssary
d to be

ermine

teria to

, oracle
ulas.

n

essary
s way,
same

ed by
the

, text

esting
s:
The oracle is based onequivalence relationshipsthat compare the outputs of the execution
the test cases with the expected results derived from the specification; these elements a
to beobservable. The problem is that the oracle is not always able to compare all the nece
elements to determine the success or failure of a test case; these elements are sai
non-observable. This problem is solved using the oracle hypothesesHO which collect all
power limiting constraints imposed by the realization of the oracle.

Definition 35.Oracle Hypotheses

The oracle hypothesesHO are defined as follows:

 • When a test casef ∈ TEST is observable (f ∈ DomO) for a programP,
the oracle knows how to decide the success or failure off :

(P satisfiesHO) ⇒ ((P |= O f) ∨ (¬ (P |= O f))).

 • When a test casef is non-observable for a programP (f ∈ DomO),
the oracle has a setC of criteriaci allowing to observef :

(P satisfiesHO ∧ P |= O (∧ci ∈ C ci (f))) ⇒ (P |= O f).

◊

The first hypothesis stipulates that for any observable test case, the oracle is able to det
whether the test execution yieldsyes or no, i.e. that no test case execution remainsinconclusive.
The second hypothesis stipulates that for any non-observable test case, there are cri
transform it into an observable test case.

Since the oracle cannot handle all possible formulas that are proposed as test cases
hypotheses must be taken into account to limit the test selection to decidable test form
Thus, it seems rational to put the oracle hypothesesHO at the beginning of the test selectio
phase of the test process (see figure 18).

Moreover, a method call can lead to non-deterministic behaviors. Thus, another nec
oracle hypothesis is the assumption that this non-determinism is bounded and fair. In thi
non-deterministic mechanisms can be tested by a limited number of applications of the
test case.

4.1.6 Our approach vs. theBGM approach

As mentioned in the introduction, this theoretical framework is based on researches l
Bernot, Gaudel and Marre, as defined in ([Bernot 91b], [Marre 91]). We have borrowed
global test process from this framework, including the notions of pertinence, practicability
context refinement, and reduction hypotheses.

However, many aspects of this framework have been adapted for the purpose of t
object-oriented software, because theBGM method is strongly tied to algebraic specification
79

Theory of Formal Testing for Object-Oriented Software

test

cation.

require
at any
oracle

cribe
namic

tside
 do.
 • The formal specifications used are algebraic specifications.

 • The test sets are expressed as algebraic terms.

 • Throughout the test process, the observability problem is solved by augmenting
contexts into observable test contexts, which is specific to algebraic specifications.

The adaptations introduced in section 4.1 are the following:

 • We do not require the test sets to be expressed in the same formalism as the specifi
Any two formalisms that are compatible with|= are acceptable for us.

 • We have disconnected the selection of the test sets and that of the oracle. Instead, we
that an oracle is defined before the selection process occurs. This guarantees th
generated test case is observable from the beginning of the process. Furthermore, the
observation problem is solved using the general notion of observation criteria.

In section 4.2, we will introduce the following new adaptations:

 • As we want to test object-oriented programs, we will add to static ADTs (used to des
passive entities) dynamic classes (used to describe active entities requiring dy
creation, identity, concurrency, persistent state, etc.).

 • We are not only interested in testing valid formulas, but also in testing components ou
their domain of validity, to check that the program does not what it is not supposed to

The main differences between the two approaches are summarized in table 4.

BGM Method Our Method

Specification Formalism
=

Test Set Formalism

Specification Formalism
≠

Test Set Formalism

Oracle definition
throughout the test process

Oracle definition
at the beginning of the test process

Static ADTs Static ADTs

Dynamic Classes

Validation of:

- acceptable properties

Validation of:

- acceptable scenarios

- non-acceptable scenarios

Table 4: Main differences between the BGM approach and our approach
80

Theory of Formal Testing for Object-Oriented Software

which
mula
can be

fication
ge well
age to
eement

iented
)
85a]
en the

0] and

)

s, and
s of the

s:
4.2 Theory of formal testing for object-oriented software

Test selection is based on the knowledge of the properties of the specification language,
must be theoretically well founded. Usually, specification languages have a notion of for
representing the properties that all desired implementations satisfy, and test cases
expressed using the same language.

However, in practice it is not necessary to use the same language to express the speci
properties and test cases. The most interesting solution is to have a specification langua
adapted to the expression of properties from a user’s point of view, and another langu
describe test cases that can be easily applied to an oracle, as long as there is a full agr
between the equivalence relations of these two languages.

This section presents the theory of formal testing adapted to the case of object-or
systems, justifying the choice ofCO-OPN (Concurrent Object-Oriented Petri Nets
[Biberstein 97a] as the specification formalism and of Hennessy-Milner Logic [Hennessy
as the test formalism, and then establishing that there exists a full agreement betwe
equivalence relations of these two formalisms.

Some notations, as well as some definitions and examples, come from [Schnoebelen 9
[Baeten 87].

4.2.1 Specification formalism:CO-OPN

Our formal testing method uses theCO-OPN (Concurrent Object-Oriented Petri Nets
language as the specification formalism. This choice is motivated by the fact thatCO-OPNis
formally defined, has a syntax well adapted to the specification of object-oriented system
has a semantics allowing to prove and deduce system properties. Furthermore, behavior
semantics can be automatically computed by operational techniques.

A complete presentation ofCO-OPN is given in chapter 3.

4.2.1.1CO-OPN semantics

TheCO-OPNsemantics is expressed with transition systems that we can define as follow

Definition 36.Transition system

A transition systemG = < Q, E,→, i > ∈ Γ , whereΓ is the class of all transition systems,
is such that:

 • Q = {q1, q2,...} is a set of states (built over the local state of each object).

 • E = {e1, e2,...} is a set of events (built from objects creations, calls of methods
and algebraic terms).

 • → ⊆ Q × E × Q is a transition relation (notation:q e→ q’).
81

Theory of Formal Testing for Object-Oriented Software

sition

ms:
other
te, the
tial

r 89],
 • i ∈ Q is a non-empty initial state. ◊

This definition of transition systems is a generalization of definition23 in whichQ corresponds
to StateSpec,A, E corresponds toEA,M,Aoid,SC, → corresponds to the transition systems (→ and
∗→) that express theCO-OPN semantics, and the initial statei is that of the specification.

We will see in section 4.2.3.1, when establishing the full agreement theorem, that a tran
system must be image-finite. This will be a hypothesis of the testing procedure.

Definition 37.Image-finite

Let G = < Q, E,→, i > be a transition system.

 • A stateq ∈ Q is image-finite, if {q’ ∈ Q | q e→ q’} is finite for eache ∈ E.

 • G is image-finite, if all reachable states ofG are image-finite. ◊

In the context of transition systems, the equivalence relation is thestrong bisimulation
equivalence, which identifies systems which have similar arborescent structures.

4.2.1.2CO-OPN equivalence relationship: strong bisimulation equivalence

The strong bisimulation (↔) establishes a relation between states of two transition syste
two states are related if and only if each transition in the first system corresponds to an
transition in the second system and vice-versa. All states are reached from a specific sta
initial state. Unicity of the strong bisimulation relation is imposed by the relation on ini
states.

Definition 38.Strong bisimulation↔

Given two transition systemsG1 = <Q1, E1, →1, i1> andG2 = <Q2, E2, →2, i2>,
astrong bisimulation betweenG1 andG2 is the relationR ⊆ Q1 × Q2 such that:

 • i1 R i2

 • If q1 R q2 andq1
e→1 q1’ ∈ G1 then there isq2

e→2 q2’ ∈ G2
such thatq1’ R q2’

 • If q1 R q2 andq2
e→2 q2’ ∈ G2 then there isq1

e→1 q1’ ∈ G1
such thatq1’ R q2’

We say thatG1 and G2 are strongly bisimilar if there exists a non-empty relationR
betweenG1 andG2; we denote this byG1 ↔ G2. ◊

Example: bisimulation between two graphs.

G1 andG2 arestrongly bisimilar as shown by the relationR of figure 20.

Readers interested in the bisimulation equivalence relationship should refer to [Milne
[Autant 91], [Nicola 90], or [vanGlabbeek 87].
82

Theory of Formal Testing for Object-Oriented Software

of

n the

er
y
there
4.2.1.3 Satisfaction relationship between programs andCO-OPN specifications

A programP ∈ PROG is said to have the same semantics as a specificationSP∈ SPEC, if P
satisfies a satisfaction relationship|= (the next definitions often use the functionEVENT (S)
which returns all the events of the systemS).

Definition 39.Satisfaction relationship|=

Let P ∈ PROG be a program, andSP∈ SPEC aCO-OPN specification.
Let G (P) = 〈Q1, EVENT(P), →1, i1〉 be a transition system representing the semantics ofP.
Let G (SP) = 〈Q2, EVENT(SP), →2, i2〉 be a transition system representing the semantics
SP. Assuming there is a one-to-one morphism between the signatures ofP and SP, the
satisfaction relationship|= ⊆ PROG× SPEC is such that:

(P |= SP) ⇔ (G (P) ↔ G (SP)).

◊

As a consequence, for a programP to be testable by a test set derived from aCO-OPN
specificationSP, it is necessary that a one-to-one morphism of signatures exists betwee
events of the specification and those of the program.

4.2.2 Test formalism: Hennessy-Milner Logic (HML)

If the specification language isCO-OPN, the tests can be expressed with Hennessy-Miln
Logic (or with any other logic compatible with|=), notedHML and introduced by Henness
and Milner in [Hennessy 85a], because, in the context of image-finite transition systems,
exists a full agreement between the bisimulation equivalence (↔) and theHML equivalence
(~HML).

a
a

a

b

b

b b

R

G1 G2

Initial state

Initial state

Event

Fig. 20.Example of bisimulation between two graphs
83

Theory of Formal Testing for Object-Oriented Software

,
tance,

n a
4.2.2.1 Syntax and semantics ofHML

HMLSPformulas are built using the operatorsNext(<_>),And(∧), Not (¬) andT (always true
constant), and the eventsEVENT(SP) of the specificationSP∈ SPEC.

Definition 40.Syntax of HML

TheHMLSP language is defined for a specificationSP∈ SPEC as follows:

 • T ∈ HMLSP

 • f ∈ HMLSP⇒ (¬ f) ∈ HMLSP

 • f, g ∈ HMLSP⇒ (f ∧ g) ∈ HMLSP

 • f ∈ HMLSP⇒ (<e> f) ∈ HMLSP wheree ∈ EVENT(SP) ◊

In the concrete syntax, we will use “not” for the symbol “¬” , and “and” for the symbol “∧”.
In the case of the telephone system presented in section 3.2, the followingHML formulas are
valid:

<cabin.create> <cabin.insert (card)> <cabin.enter (1234)> <cabin.buy (12)> T

<card.create (1234)> not <card.get-pin (4321)> T

<card.create (1234)> ((card.get-pin (1234)> T) and (<card.get-balance (20)> T))

In this dissertation, we will use literal values, such as12, 1234, and1111 in the above examples
to designate algebraic values that are in fact built upon the operations of that sort. For ins
12 stands forsucc (succ (succ (succ (succ (succ (succ (succ (succ (succ (succ (succ (0)))))))))))) and
1234 for new-pin (new-pin (... (first-pin))) !

The semantics ofHML is expressed by means of the satisfaction relationship|= HMLSP
.

Definition 41.Semantics of HML and satisfaction relationship|= HMLSP

GivenSP∈ SPEC a specification,G = 〈Q, EVENT(SP), →, i〉 a transition system,q ∈ Q.
The satisfaction relationship|= HMLSP

⊆ Γ × Q × HMLSPis defined as follows:

 • G, q |= HMLSP
T

 • G, q |= HMLSP
 (¬ f) ⇔ G, q / |=HMLSP

f

 • G, q |= HMLSP
 (f ∧ g) ⇔ G, q |= HMLSP

f andG, q |= HMLSP
g

 • G, q |= HMLSP
 (<e> f) ⇔

∃ e ∈ EVENT(SP) such that q e→ q’ with G, q’ |= HMLSP
f ◊

Givenf ∈ HMLSPa formula, we writeG |= HMLSP
 f whenG, i |= HMLSP

 f.

For example, letG be the transition system modeling the telephone in figure 6. Give
phonecard obtained with the creation sequence<card.create (1234)> and thus referenced by the
namecard, containing the pin-code1234 and having an initial balance of20, we have:

 • G |= HMLTelephone
<cabin.create> <cabin.insert (card)> <cabin.enter (1234)> <cabin.buy (12)> T
84

Theory of Formal Testing for Object-Oriented Software

the

e
he
m (for

plied in
s of the
because making a call is possible when the identification code is right.

 • G /|=HMLTelephone
<cabin.create> <cabin.insert (card)> <cabin.enter (4321)> <cabin.buy (12)> T

because making a call is impossible when the identification code is wrong.

4.2.2.2HML equivalence relationship: theHML equivalence

TheHML equivalence relationship is defined as follows:

Definition 42.HML equivalence ~HMLSP

GivenSP∈ SPEC a specification, and
G1 = 〈Q1, EVENT(SP), →1, i1〉 andG2 = 〈Q2, EVENT(SP), →2, i2〉 two transition systems,
theHMLSPequivalence relationship (~HMLSP

) is such that:

(∀ f ∈ HMLSP, G1 |= HMLSP
f ⇔ G2 |= HMLSP

f) ⇔ (G1 ~HMLSP
G2). ◊

4.2.2.3HML test cases and exhaustive test set

For a given specificationSP ∈ SPEC, an elementary test case is a couple〈Formula, Result〉
where:

 • Formula is a temporal logic formula, such thatFormula belongs toHMLSP.

 • Result ∈ { true, false} is a boolean value showing whether the expected result of
evaluation ofFormula (from a given initial state) istrue or false with respect to the
specificationSP.

A test case〈Formula, Result〉 is successful ifResult is true and Formula is valid in the
transition system modeling the expected behavior ofP, or if Resultis falseandFormula is not
valid in the transition system modeling the expected behavior ofP. In all other cases, a test cas
〈Formula, Result〉 is a failure. It is important to note that the test case definition will allow t
test process to verify that a non-acceptable scenario cannot be produced by the progra
instance making a call even though the identification code of the phonecard is wrong).

For the example of the telephone system, we can generate test cases such as:

1: 〈<cabin.create> <card.create (1234)> <cabin.insert (card)> <cabin.enter (1234)>
<cabin.buy (12)> T, true〉

2: 〈<cabin.create> <card.create (1234)> <cabin.insert (card)> <cabin.enter (1111)>
<cabin.buy (12)> T, false〉

3: 〈<cabin.create> <card.create (1234>
<cabin.insert (card)> <cabin.enter (1234)> <cabin.buy (12)>
<cabin.insert (card)> <cabin.enter (1234)> <cabin.buy (6)> T, true〉

The first two test cases correspond to a subset of the possible combinations of events ap
one single cycle of telephone usage, whereas the third corresponds to successive use
cabin. We can also express more sophisticated test cases, including the∧ and¬ operators, such
as:
85

Theory of Formal Testing for Object-Oriented Software

he result

ness).
set, by

cation

t

4: 〈<cabin.create> <card.create (1234)> <cabin.insert (card)> not <cabin.enter (1111)>
<cabin.buy (12)> T, true〉

5: 〈<card.create (1234)> ((<card.get-balance (0)> T) and (<card.get-pin (1111)> T)), false〉

Test case 4 is redundant with respect to test case 2. They express the same test case (t
false in the test case 2 is counterbalanced by the operatornot in test case 4), and one of them
can be suppressed from the test set without altering its pertinence (validity and unbiased
Section 5.5 explains how to avoid redundancies, while keeping the pertinence of the test
reducing the exhaustive test set using adequate strategies.

The exhaustive test set contains the set of formulas corresponding to all the specifi
properties required to the program.

Definition 43.Exhaustive test set

Given SP∈ SPEC a specification,G (SP) = 〈Q, EVENT (SP), →, i〉 a transition system
representing the semantics ofSPandHO the oracle hypotheses, an exhaustive test se
EXHAUSTSP, Ho⊆ TEST is such that:

EXHAUSTSP, Ho ={〈Formula, Result〉 ∈ HMLSP× { true, false} |

(G (SP) |= HMLSP
Formula andResult = true) or

(G (SP) /|=HMLSP
FormulaandResult= false)}.

◊

4.2.2.4 Satisfaction relationship between programs andHML test sets

A programP ∈ PROG is said to have the same semantics as a test setT ∈ TSP, Hif P satisfies a
satisfaction relationship|= O. This relationship is expressed using theHML satisfaction
relationship|= HML.

Definition 44.Satisfaction relationship|= O

Let P ∈ PROG be a program andSP∈ SPEC aCO-OPN specification.
Let G (P) = 〈Q, EVENT(P), →, i 〉 be a transition system representing the semantics ofP.
Assuming there is a one-to-one morphism between the signatures ofP andSP,
the satisfaction relationship|= O ⊆ PROG × TEST is such that:

(P |=O TSP, H) ⇔ (∀ 〈Formula, Result〉 ∈ TSP, H

((G (P) |= HMLSP
Formula andResult = true) or

(G (P) /|=HMLSP
FormulaandResult= false))).

◊

86

Theory of Formal Testing for Object-Oriented Software

), we

,

s to

spect

path
4.2.2.5 Example ofHML test case selection

This section presents the selection process ofHML test cases to validate the classPhoneCard
presented in section 3.2.

The exhaustive test set of the classPhoneCard is the following:

TCardExhaust = { 〈 g, result 〉 | g ∈ HML, result ∈ {true, false}}.

Assuming that the methodcreate is correctly implemented, we can apply auniformity
hypothesisto the variableg, replacing this variable by the formula<card .create pin > f. Thus the
test set becomes:

TCard0 = { 〈<card .create pin > f, result 〉 | card ∈ PhoneCard, pin ∈ Pin, f ∈ HML, result ∈ {true, false}}.

Assuming that we want to test a given card with a given pin-code (the initial balance is 20
can applyuniformity hypothesesto the variablescard and pin , replacing these variables by
values. For instancecard is replaced by a given cardc (card := c) andpin is replaced by a given
pin-code1234 (pin := 1234). Thus the test set becomes:

TCard1 = {〈<c.create 1234> f, result 〉 | f ∈ HML, result ∈ {true, false}}.

TheHML formula f is a combination of the phonecard events<c.get-pin p>, <c.withdraw m> and
<c.get-balance b>, wherep ∈ Pin, m, b ∈ Money. To simplify the presentation of this example
we are not going to work withcombinationsof events but only withsequencesof events,
excluding the use of the operatorsnot and and. We can apply aregularity hypothesisof
complexity 2 tof, where the complexity is the number of events in the formula. This lead
the following test set:

TCard2 = {

〈<c.create 1234> <c.get-pin p1> <c.get-pin p2> T, result 〉,

〈<c.create 1234> <c.get-pin p1> <c.withdraw m1> T, result 〉,

〈<c.create 1234> <c.get-pin p1> <c.get-balance b1,0> T, result 〉,

〈<c.create 1234> <c.withdraw m1> <c.get-pin p1> T, result 〉,

〈<c.create 1234> <c.withdraw m1> <c.withdraw m2> T, result 〉,

〈<c.create 1234> <c.withdraw m1> <c.get-balance b1,1> T, result 〉,

〈<c.create 1234> <c.get-balance b1,0> <c.get-pin p1> T, result 〉,

〈<c.create 1234> <c.get-balance b1,0> <c.withdraw m1> T, result 〉,

〈<c.create 1234> <c.get-balance b1,0> <c.get-balance b2,0> T, result 〉

| p1, p2 ∈ Pin, m1, m2, b1,0, b2,0, b1,1 ∈ Money, result ∈ {true, false}}.

Test cases in whichf has less than 2 events are not given, since they are redundant with re
to test cases in whichf has 2 events.

The test setTCard2 can be represented by the graph of figure 21 in which a test case is a
from the root to the leaf.
87

Theory of Formal Testing for Object-Oriented Software

with
the

o

set

o

The instantiation of the remaining variables is done by applying uniformity hypotheses
subdomain decomposition. Subdomain decomposition is performed by studying
specification behavioral axioms as explained in section 5.4.

The variablespi in the events<c.get-pin pi> (i=1,2 is the number of the event) have tw
subdomains:

 • the subdomain of the correct value wherepi = 1234,

 • the subdomain of the incorrect values wherepi ≠ 1234.

Thus by uniformity applied to these subdomains we select:

 • a correct valuepi := 1234,

 • an incorrect valuepi := 1111.

For test cases containing any incorrect value, the variableresult is instantiated by the value
false. Forgroundtest cases containing only correct values, the variableresult is instantiated by
the valuetrue. In all the other cases,result remains non-instantiated. This leads to the test
TCard3 represented in figure 22.

The variablesmi in the events<c.withdraw mi> (i=1,2 is the number of the event) have tw
subdomains:

 • the subdomain of the correct values wheremi ≤ 20 - Σk=0
i -1 m k , with m0 = 0 ,

 • the subdomain of the incorrect values wheremi > 20 - Σk=0
i -1 m k , with m0 = 0 .

Thus by uniformity applied to these subdomains we select:

 • the correct valuesm1 := 12 ≤ 20 andm2 := 4 ≤ 20 - 12,

 • the incorrect valuem1 := 40 > 20 andm2 := 40 > 20 - 12.

c . withdraw m1

c . get-pin p2

c . get-balance b1,0

c . withdraw m1

c . get-pin p1

c . get-balance b1,0

c . withdraw m2

c . get-pin p1

c . get-balance b1,1

c . withdraw m1

c . get-pin p1

c . get-balance b2,0

c . create 123

result

result

result

result

result

result

result

result

result

p1, p2 ∈ Pin, m1, m2, b1,0, b2,0, b1,1 ∈ Money, result ∈ {true, false}

Fig. 21.Test set TCard2
88

Theory of Formal Testing for Object-Oriented Software

set

hich
For test cases containing any incorrect value, the variableresult is instantiated by the value
false. Forgroundtest cases containing only correct values, the variableresult is instantiated by
the valuetrue. In all the other cases,result remains non-instantiated. This leads to the test
TCard4 represented in figure 23.

The variablesbi,j in the events<c.get-balance bi,j> (i=1,2 is the number of the event,j=0,1 is the
number of previous withdrawals) have two subdomains:

 • the subdomain of the correct values wherebi,j = 20 - Σk=0
j mk , with m0 = 0, m1 = 12 ,

 • the subdomain of the incorrect values wherebi,j ≠ 20 - Σk=0
j mk , with m0 = 0, m1 = 12.

Thus by uniformity applied to these subdomains we select:

 • the correct valuesb1,0 := 20, b2,0 := 20 andb1,1 := 8 (i.e. 20 - 12),

 • the incorrect valueb1,0 := 40, b2,0 := 40 andb1,1 := 40.

For test cases containing any incorrect value, the variableresult is instantiated by the value
false. Forgroundtest cases containing only correct values, the variableresult is instantiated by
the valuetrue. This leads to theground test setTCardGround represented in figure 24.

This example shows how reduction hypotheses act onHML formulas with variables, replacing
these variables to reduce the formula complexity until the obtention of a ground test set w
is practicable.

c . get-pin 1234

c . withdraw m1
c . get-pin 1234

c . withdraw m1

c . create 123

c . get-pin 1111

c . get-balance b1,0

c . get-pin 1234

c . withdraw m2

c . get-pin 1111

c . get-balance b1,1

c . get-pin 1111

true

false

result
result

true

false

false

Fig. 22.Test set TCard3

c . get-balance b1,0

c . get-pin 1234

c . withdraw m1

c . get-pin 1111

c . get-balance b2,0

true

false

result
result

result
result

m1, m2, b1,0, b2,0, b1,1 ∈ Money, result ∈ {true, false}
89

Theory of Formal Testing for Object-Oriented Software
c . get-balance b1,0

c . get-pin 1234

c . withdraw 12
c . get-pin 1234

c . withdraw 12

c . create 123

c . get-pin 1111

c . withdraw 40

c . get-balance b1,1

c . get-pin 1234

c . withdraw 4

c . get-pin 1111

c . withdraw 40

c . get-pin 1111

c . withdraw 40

true

false

true

false

result

true

false

true

false

result

false

false

Fig. 23.Test set TCard4

c . get-balance b1,0

c . get-balance b2,0

c . get-pin 1234

c . withdraw 12

c . get-pin 1111

c . withdraw 40

true

false

true

false

result

b1,0, b2,0, b1,1 ∈ Money, result ∈ {true, false}

c . get-balance 20

c . get-pin 1234

c . withdraw 12
c . get-pin 1234

c . withdraw 12

c . create 123

c . get-pin 1111

c . get-balance 40

c . withdraw 40

c . get-balance 8

c . get-pin 1234

c . withdraw 4

c . get-pin 1111

c . get-balance 40

c . withdraw 40

c . get-pin 1111

c . withdraw 40

true

false

true

false

true

false

true

false

true

false

true

false

false

false

Fig. 24.Test set TCardGround

c . get-balance 20

c . get-balance 20

c . get-pin 1234

c . withdraw 12

c . get-pin 1111

c . get-balance 40

c . withdraw 40

c . get-balance 40

true

false

true

false

true

false
false
90

Theory of Formal Testing for Object-Oriented Software

s

ns

the

e
tate
4.2.2.6HML discriminating power

Hennessy-Milner Logicpresents advantages with respect to simpler logics likeTraces
[Schnoebelen 90]. Indeed,HML allows to expresscombinationsof events using the operator
Next (<_>), And (∧), andNot (¬), while Tracesallow to express onlysequencesof events
using the operatorNext(<_>). This section exhibits the discriminating power of combinatio
of events which permits to differentiate graphs mixed up with sequences of events.

 • Power of theAnd (∧) operator

Figure 25 presents two different graphs having the same traces:{ e1, e1.e2, e1.e3 }. These two
graphs can be distinguished by theHML formula <e1> (<e2>T ∧ <e3>T). This formula
corresponds to an acceptable scenario in the first graph (result = true), and to a non-acceptable
scenario in the second (result = false). In the second graph, there is a hidden modification of
system state which implies that the fire of the evente1 sometimes leads to the evente2 and
sometimes leads to the evente3, but never leads to both events.

 • Power of theNot (¬) operator

Figure 26 presents two different graphs having the same traces:{ e1, e1.e2 }. These two graphs
can be distinguished by theHML formula <e1> ¬ <e2> T. This formula corresponds to an
acceptable scenario in the first graph (result = true), and to a non-acceptable scenario in th
second (result = false). In the first graph, there is a hidden modification of the system s
which implies that the fire of the evente1 sometimes leads to the evente2 and sometimes leads
to a graph leaf, but never leads to both.

These examples show the discriminating power ofHML versusTracesin the case of hidden
modifications of the system state.

e1

e2 e3

e1

e2 e3

〈 <e1> (<e2> T ∧ <e3> T), true 〉 〈 <e1> (<e2> T ∧ <e3> T), false 〉
Hidden modification of system state

e1

Fig. 25.Power of theand (∧) operator
91

Theory of Formal Testing for Object-Oriented Software

se two

nct

e and
4.2.3 Full agreement betweenCO-OPN and HML

TheCO-OPNequivalence relationship is the strong bisimulation equivalence (↔) presented in
section 4.2.1.2. TheHML equivalence relationship is theHML equivalence (~HML) presented
in section 4.2.2.2. This section establishes that there is a full agreement between the
equivalence relationships, i.e. two systems enjoy the same properties expressible inHML if
and only if they are bisimulation equivalent. In other words, they can be distinguished byHML
if and only if they are not bisimulation equivalent [Hennessy 85b].

4.2.3.1 Full agreement theorem

Theorem 45.Full agreement between bisimulation equivalence and HML equivalence

Given two image-finite transition systemsG1 andG2, we have:
G1 ↔ G2 if and only ifG1 ~HML G2. ◊

This theorem states that two systems having equivalent behaviors in theCO-OPNworld have
equivalent behaviors in theHML world and vice versa, and that two systems having disti
behaviors in theCO-OPNworld have distinct behaviors in theHML world and vice versa. It
justifies the choice ofCO-OPN as the specification formalism and ofHML as the test
formalism.

Proof of the full agreement theorem:

The demonstration of the full agreement theorem between the bisimulation equivalenc
the HML equivalence is based on thesimple equivalence. In [Baeten 87], Klop, Baeten and
Bergstra have shown the adequacy between the simple equivalence (≡) and the bisimulation
equivalence (↔).

e1

e2

e1

e2

e1

〈 <e1> ¬ <e2> T, true 〉 〈 <e1> ¬ <e2> T, false 〉

Hidden modification of system state

Fig. 26.Power of thenot (¬) operator
92

Theory of Formal Testing for Object-Oriented Software

e

simple

en

em to

ng
Theorem 46.Full agreement between simple equivalence and bisimulation equivalenc

Given two transition systemsG1 andG2, if G1 or G2 is image-finite, then:
G1 ≡ G2 if and only ifG1 ↔ G2.

In [Hennessy 85a], Hennessy and Milner have shown the adequacy between the
equivalence (≡) and theHML equivalence (~HML) for image-finite transition systems.

Theorem 47.Full agreement between simple equivalence and HML equivalence

Given two image-finite transition systemsG1 andG2, we have:
G1 ≡ G2 if and only ifG1 ~HML G2.

Consequently, from theorems46 and47 we can deduce the full agreement theorem betwe
the bisimulation equivalence (↔) and theHML equivalence (~HML).

◊

In [Hennessy 85b], Hennessy and Stirling have generalized this full agreement theor
extended bisimulation equivalence on general transition systems and toHML∞ (HML language
with the infinite disjunction). This result allows to eliminate the image-finite constraint.

4.2.3.2 Full agreement corollary

The satisfaction relationship between programs andCO-OPN specifications (|=) has been
defined with respect to the bisimulation equivalence (↔) in definition 39. The satisfaction
relationship between programs and test sets (|= O) has been defined with respect to theHML
equivalence (~HML) in definitions42 and 44. As a consequence, we can state the followi
corollary that expresses the full agreement between theCO-OPNsatisfaction relationship (|=)
and the oracle satisfaction relationship (|= O).

Corollary 48.Full agreement between CO-OPN satisfaction and oracle satisfaction

Let P ∈ PROGbe an object-oriented system under test,SP∈ SPEC its specification, and
EXHAUSTSP, Hoan exhaustive test set obtained fromSPand from a set of hypothesesHO
onP. We have:

(P satisfiesHO) ⇒ (P |= SP⇔ P |= O EXHAUSTSP, Ho). ◊

Proof of the full agreement corollary:

 1. From definition39:
(P |= SP) ⇔ (G(P) ↔ G(SP)).

 2. From the full agreement theorem45:
(P satisfiesHo) ⇒ (G(P) ↔ G(SP)) ⇔ (G(P) ~HMLSP

G(SP)).

 3. From definition42:
(G(P) ~HMLSP

G(SP)) ⇔ (∀ f ∈ HMLSP, G(P) |= HMLSP
f ⇔ G(SP) |= HMLSP

f).
93

Theory of Formal Testing for Object-Oriented Software

ced in
 4. From the lemma of propositional logic (a ⇔ b) ⇔ ((¬ a ∧ ¬ b) ∨ (b ∧ a))3:
(∀ f ∈ HMLSP, G(P) |= HMLSP

f ⇔ G(SP) |= HMLSP
f) ⇔

(∀ f ∈ HMLSP,
(¬ G(P) |= HMLSP

f ∧ ¬ G(SP) |= HMLSP
f) ∨ (G(SP) |= HMLSP

f ∧ G(P) |= HMLSP
f)).

 5. From negation notation:
(∀ f ∈ HMLSP,
(¬ G(P) |= HMLSP

f ∧ ¬ G(SP) |= HMLSP
f) ∨ (G(SP) |= HMLSP

f ∧ G(P) |= HMLSP
f)) ⇔

(∀ f ∈ HMLSP,
(G(P) /|= HMLSP

f ∧ G(SP) /|= HMLSP
f) ∨ (G(SP) |= HMLSP

f ∧ G(P) |= HMLSP
f)).

 6. From definition43:
EXHAUSTSP, Ho ={〈Formula, Result〉 ∈ HMLSP× { true, false} |
(G (SP) |= HMLSP

Formula∧ Result = true) ∨ (G (SP) /|=HMLSP
Formula∧ Result = false)}.

(∀ f ∈ HMLSP,
(G(P) /|= HMLSP

f ∧ G(SP) /|= HMLSP
f) ∨ (G(SP) |= HMLSP

f ∧ G(P) |= HMLSP
f)) ⇔

(∀ < f, r > ∈ EXHAUSTSP, Ho ,
(G(P) /|= HMLSP

f ∧ r = false) ∨ (r = true ∧ G(P) |= HMLSP
f)).

 7. From definition44:
(∀ < f, r > ∈ EXHAUSTSP, Ho, (G(P) /|= HMLSP

f ∧ r = false) ∨ (r = true ∧ G(P) |= HMLSP
f))

⇔ (P |=O EXHAUSTSP, Ho) .

◊

Figure 27 summarizes the correspondences between the different relationships introdu
this section; the test process is built on these relationships.

3. The lemma (a ⇔ b) ⇔ ((¬ a ∧ ¬ b) ∨ (b ∧ a)) can be deduced from the following deduction rules:
■ (a ⇔ b) ⇔ ((a ⇒ b) ∧ (b ⇒ a)),
■ (a ⇒ b) ⇔ (¬ a ∨ b),
■ (a ∧ (b ∨ c)) ⇔ ((a ∧ b) ∨ (a ∧ c)),
■ ((a ∧ ¬ a) ∨ b) ⇔ b.

↔ ⇔ ~HML

|= |=O⇔

⇔ ⇔

Full Agreement Theorem

Definition Definition

Full Agreement Corollary

Fig. 27.The full agreement theorem and its corollary
94

Theory of Formal Testing for Object-Oriented Software

et. For

n are
re not

m

of

e. An

termine

pare
to

tructs
direct

ult, is
rvable
ion of
y.
4.2.4 Oracle construction

The oracle is a decision procedure which verifies that an implementation satisfies a test s
a CO-OPN specification, this verification is performed by handlingHML formulas and
checking the bisimulation property, i.e. checking that events triggerable in the specificatio
triggered by the program and that their output values are correct, and that events that a
triggerable in the specification are not triggered by the program.

Given an elementary test case <Formula, TestResult>, the oracle makes the tested progra
execute the sequenceFormula, and stores the program answer inProgramResult, where:

 • ProgramResult∈ { true, false}: truecorresponds to a correct termination of the execution
the tested program, whilefalse corresponds to a blocking of the program.

Then the oracle consults its truth table to decide the success or failure of the test cas
example of a truth table is given in table 5 where:

 • no means no error detected in the tested program.

 • yes means one error detected in the tested program.

An oracle hypothesis assumes that for any observable test case, the oracle is able to de
whether the test execution yieldsyes or no, i.e. that no test case execution remainsinconclusive.
Inconclusive means no possible conclusion. For instance, it is not always pertinent to com
TestResult =false and ProgramResult =false, because the oracle is not always able
differentiate a blocking due to an error from the blocking required by the specification.

TheHML formulaFormula is a combination of events derived from aCO-OPNspecification.
ThusFormulacontains an algebraic part and an object part.

 • Oracle for algebraic specifications

For the algebraic part, the oracle is built given the correspondence of the program cons
and the algebraic specification language. For functions or procedures, the oracle is a
translation of the axioms into conditional statements.

The observation problem is solved by buildingobservable contexts. For an equality between
two non-observable values, a composition of operations which yield an observable res
added “on top of” each member of the equality. Therefore, the observation of a non-obse
equality is performed through a set of observable equalities corresponding to the addit
observable contexts “on top of” the right and left members of the non-observable equalit

TestResult ProgramResult Error

true true no

true false yes

false true yes

false false no

Table 5.Example of oracle truth table
95

Theory of Formal Testing for Object-Oriented Software

ula (a
be

of the
g new
te or

is is a
m by

ults

his last

,
antics

ics can

is a

at a

to a

e state
 • Oracle for object specifications

For the object part, we can build a simple oracle that handles only the paths of the form
path is a subformula withoutAndoperators). However, a more sophisticated oracle should
built by introducing state memorization to compute theHML operatorAnd (∧).

The bisimulation provides a behavioral equivalence: no direct examination of the state
object is performed. Nevertheless, the system observation can be increased by addin
observers, i.e. methods that allow to observe the state of an object, but not to modify its sta
that of any other connected object.

An example of oracle construction in presented in section 7.5.1.1.

4.3 Summary

This chapter has presented our theory of formal testing for object oriented software. Th
three phase process. It starts with a given requirement, to find errors in a progra
comparing it against a specification. It is decomposed into atest selection phase, in which the
test cases are generated, atest execution phase, in which the test cases are executed and res
of the execution collected, and atest satisfaction phase, in which the results obtained during
the test execution phase are compared to the results expected by the specification. T
phase is performed with the help of an oracle.

Our theory of formal testing is based onCO-OPNas the specification formalism andHML as
the test formalism. The choice ofCO-OPNis motivated by the fact that it is formally defined
has a syntax well adapted to the specification of object-oriented systems, and has a sem
allowing to prove and deduce system properties. Furthermore, behaviors of the semant
be automatically computed by operational techniques. The choice ofHML is motivated by the
following arguments:

 • HML is a temporal logic convenient to use from the tester’s point of view: a test case
couple〈Formula, Result〉 whereFormula is anHML formula built using the operatorsNext
(<_>), And (∧), Not (¬), and the events of the specification.Result is a boolean value
showing whether the expected result of the evaluation ofFormula is true or false with
respect to the specification. Thus, the test case definition allows to verify th
non-acceptable scenario cannot be produced by the program.

 • HML presents advantages with respect to simpler temporal logics likeTraces: in case of
hidden modifications of the system state, the discriminating power ofHML permits to
differentiate graphs mixed up withTraces.

 • There exists a full agreement between theCO-OPNequivalence (bisimulation↔) and the
HML equivalence (~HML). This full agreement between equivalence relationships leads
full agreement between satisfaction relationships:P |= SP⇔ P |= O TSP. The former full
agreement has been shown in this chapter.

An advantage of this approach is to have an observational description, independent of th
notion, of the valid implementation through the test cases.
96

Practical Test Selection

h the
s the

hat the

ll the

e
.

hesis

et. Test
the

es.

d.
n
be
le
. The
C H A P T E R

5
CHAPTER5PRACTICAL TEST SELECTION

The previous description of the test selection process was mainly concerned wit
theoretical justification of the soundness of our approach. This chapter emphasize
problems that appear when practical test sets have to be produced, while taking care t
test selection process has to be semi-automated.

The test selection process starts from an exhaustive test set which allows to test a
specification properties. The exhaustive test set is made of couples〈Formula, Result〉, where
Formula is anHML formula with variables andResultis a boolean value showing whether th
expected result of the evaluation ofFormula is true or falsewith respect to the specification
Then, the test selection process reduces the level of abstraction ofFormulaby constraining the
instantiation of its variables. This is achieved by associating, with each reduction hypot
applied to the program, a correspondent constraint onFormula, as shown in figure 28. The
system of constraints thus defined is solved and the solution leads to a practicable test s
selection is really a sampling activity, the goal of which is to be able to sample, from
possible values ofFormula,those that are most representative of the specification properti

In order to expressHML formulas with variables, theHMLSPlanguage needs to be extende
The HML language with variables, calledHMLSP,X, is presented in this chapter. Likewise, i
order to apply constraints on theHMLSP,X formulas, a language of constraints needs to
defined. This language, calledCONSTRAINTSP,X, is built from elementary constraints applicab
to theHMLSP,Xformulas. The syntax and semantics of this language are given in annex E
elementary constraints are presented in this chapter.
97

Practical Test Selection

of the

their
blem.

ndant

n

ted or

f
e test
ocus

d by
ectly
d
or
The structure of this chapter is the following. First, section 5.1 presents an abstract view
practical test selection process. Second, section 5.2 defines theHMLSP,X language with
variables. Then, section 5.3 presents several reduction hypotheses together with
corresponding constraint, and section 5.4 studies the subdomain decomposition pro
Finally, section 5.5 shows how to transform a test set into a minimal test set free of redu
test cases.

5.1 Practical test selection process

We propose the following steps to implement the practical test selection process:

 1.Define the unit of test:

Focus on a particular unit of interest, thefocus, that we want to test in detail. This unit ca
be an object, a class, or even a subsystem. This unit must be:

• an independent unit (which does not use any other unit), or

• a dependent unit which uses other units assumed to work properly (i.e. already tes
replaced by stubs).

For instance in figure 29, the focus isA, which uses the unitsB andC. The unitA can be
tested using already tested implementations ofB andC or stubs that simulate the behavior o
B and C. An adequate order of testing may reduce the need for stubs. Indeed, th
selection process can be significantly improved by providing a way to progressively f
on successive enrichments of the system specification.

 2. Deduce the test environment from the focus:

The test environment is the set of all units visibly (i.e. appearing in the interface) use
the focus of interest. This test environment includes all units that are directly and indir
used. For instance, in figure 29, the classB uses the classD, and that class must be include
in the environment if it appears in the interface ofB, because it may be useful to create
modify the behavior ofB.

Reduction
of the test set

Fig. 28.Test selection process

(H1,C1)

(Hn,Cn)

(H0,C0)

...

T0

T1

...

T

(H2,C2) T2

Application
of hypotheses Hi

to the program
→

Application
of constraints Ci

on the test set
98

Practical Test Selection

sibility

nces,
same
ing to

n

eses
imal.

size
n 5.4),
ing

lution

free of
n of the
The test environment must also include the subtypes of used units, because of the pos
of substitutions. For instance, although the classesF, G, andH may not be imported in the
specification ofA, they must be integrated in the test environment becauseC is imported,
and objects of the classesF, G, andH can be substituted for objects of the classC (F, G, and
H are subtypes ofC).

For object integration testing, the unit under test will be tested through one of its insta
the object under test. For class integration testing, several objects under test of the
class will be selected. For cluster integration testing, several objects under test belong
the classes in the cluster will be selected.

 3. Define a system of constraints on the exhaustive test set with the help of reductio
hypotheses:

• For the focus of interest: use constraints corresponding toweak reduction hypotheses
(like structural uniformity hypotheses defined in section 5.3.1 or regularity hypoth
defined in section 5.3.2) so that assumptions made about non-tested units are min

• For the other units: use constraints corresponding tostrong reduction hypotheses (like
uniformity hypotheses defined in section 5.3.3) to minimize as much as possible the
of the test set. Uniformity hypotheses can be used on subdomains (see sectio
which implies the computation of the variables’ subdomains of validity by unfold
techniques.

 4. Solve the previously defined system of constraints.

This practical test selection process results in a practicable test set. Constraint reso
techniques will be presented in chapter 6.

Throughout the test process, the test set can be transformed into a minimal test set
redundant test cases (see section 5.5) and the test cases can be validated by computatio
value of the variableResult:

 • true if theHMLSP formula describes an acceptable behavior of the program,

 • false if theHMLSP formula describes a non-acceptable behavior of the program.

Fig. 29.Focus and environment

A
E HFocus

Test environment

B

D C

GF
99

Practical Test Selection

d

5.2 The languageHML SP,X

The languageHMLSP,Xis similar to the languageHMLSP but for the presence of non-groun
terms.HMLSP,X is built using the operatorsNext (<_>), And (∧), Not (¬) andT (always true
constant), the events with variablesEVENT (SP, XS) of the specificationSP ∈ SPEC, and
variables. The variables of the languageHMLSP,X are:

 • XHML : set of variable names of typeHMLSP,X formula,

 • XEvent : set of variable names of type event,

 • XS = XADT∪ XC : set of variable names of type ADT and class,

 • X = XHML ∪ XEvent∪ XS: set of all variable names.

For instance, in the telephone example presented in section 3.2, theHMLSP,X formula
f = <cabin.create> <cabin.insert (o)> <cabin.enter (p)> < e > g T
has the variablesg ∈ XHML, e ∈ XEvent, p ∈ XADT ando ∈ XC .

Thus, the syntax of the languageHMLSP,X is defined as follows:

Definition 49.Syntax of HMLSP,X

Given a specificationSP ∈ SPEC having a global signatureΣ and anS-sorted set of
variablesXS= XADT∪ XC , and given the set of variablesXHML of typeHML formulaand
the set of variablesXEventof type event, theHMLSP,Xlanguage is recursively defined as
follows:

 • T ∈ HMLSP,X

 • f ∈ XHML ⇒ f ∈ HMLSP,X

 • f ∈ HMLSP,X⇒ (¬ f) ∈ HMLSP,X

 • f, g ∈ HMLSP, X⇒ (f ∧ g) ∈ HMLSP,X

 • f ∈ HMLSP,X⇒ (<e> f) ∈ HMLSP,X wheree ∈ XEvent

 • f ∈ HMLSP,X⇒ (<e> f) ∈ HMLSP,X wheree ∈ EVENT(SP, XS)

whereEVENT(SP, XS) is defined as follows:

Definition 50.Terms with variables of Event (SP, XS)

Given a specificationSP ∈ SPEC having a global signatureΣ and anS-sorted set of
variablesXS= XADT∪ XC, andMETHODthe class of all methods in the test environment,
the terms ofEVENT(SP, XS) are built as follows:

∀ xc ∈ XC , ∀ m ∈ METHOD, mc: s1 ... sn , ∀ ti ∈ (TΣ, XS)Si (i = 1 ... n),

xc . m (t1 ... tn) ∈ EVENT(SP, XS)
100

Practical Test Selection

straint

if
where (TΣ, XS)Si is the set of terms (with variables) of typeSi built on the global signature
Σ of the specification. ◊

We define the semantics of the languageHMLSP,X as the semantics of the languageHMLSP.

Throughout this chapter we use the following notations:

 • X = XHML ∪ XEvent∪ XS: set of all variable names.

 • XHML : set of variable names of typeHMLSP,X formula.

 • XEvent : set of variable names of type event.

 • XS = XADT∪ XC : set of variable names of type ADT and class.

 • HMLSP,XS
: theHMLSP,X language in whichX is restricted toXS.

 • METHOD: class of all methods in the test environment.

 • INTER: class of all interpretations.
The interpretation functionΙΙ ID : XID → ID ∈ INTER is presented in annex E, definition87.

 • SUBS: class of all substitutions.
The substitution function / ∈ SUBSis presented in annex E, definition110.

 • |=C
II : satisfaction relationship onCONSTRAINTSP,X.

This constraint satisfaction relationship is presented in annex E, definition83.

5.3 Reduction hypotheses

This section presents several reduction hypotheses together with their corresponding con
used in practice. First, the general definition of reduction hypothesis is introduced.

For test cases〈 f, r 〉 in which the formulaf ∈ HMLSP,X, a reduction hypothesis stipulates that
a test case, in which the formulaf contains a variablev, is successful for all instances ofv
satisfying a constraintC, then it is successful for all possible instances ofv.

Definition 51.Reduction hypothesis

Given a specificationSP∈ SPEC, a test case〈 f, r 〉 ∈ HMLSP,X× { true, false}, a variable
v ∈ Var (f), and a constraintC ∈ CONSTRAINTSP,X, a reduction hypothesis of constraintC
applied to a variablev for a test case〈 f, r 〉 and a programP ∈ PROG, is such that:

∀ r ∈ { true, false},

((∀ [v0 / v] ∈ SUBS, (∀ ΙΙ 0 ∈ INTER, (|=C
II 0 C [v0 / v] ⇒ P |=O 〈 ΙΙ 0 (f [v0 / v]), r 〉))) ⇒

(∀ [v1 / v] ∈ SUBS, (∀ΙΙ 1 ∈ INTER,(P |=O 〈 ΙΙ 1 (f [v1 / v]), r 〉)))).

◊

101

Practical Test Selection

ts and

e

ing to

raint.

n, we
s, and
This definition means that for all resultsr of { true, false}, if for all substitutions [v0 / v] the
satisfaction of the constraintC implies that the programP satisfies the formulaf in which v is
replaced byv0, then for all substitutions [v1 / v] the programP will satisfy the formulaf in
which v is replaced byv1. The role of the two interpretationsΙΙ 0 and ΙΙ 1 is to replace the
remaining variables by values so that the evaluations are performed on ground constrain
formulas.

For instance, if the constraintC and the substitution [v0 / v] force theHML formula f to have
the shapef = <m> g wherem is a method name andg a variable of typeHML, g must be
replaced by all its possible interpretationsΙΙ 0 to obtain ground formulas which can b
evaluated. For instance:

ΙΙ 0, α (g) = <m> T ⇒ f = <m> <m> T

ΙΙ 0, β (g) = (not <m> T) ⇒ f = <m> (not <m> T)

With each reduction hypothesis applied to the program is associated a predicate. Accord
the former definition, the predicate is a constraintC ∈ CONSTRAINTSP,X. Then, with each
constraint is associated a strategy which aims to find the test cases satisfying this const

Depending on the definition given to the constraintC ∈ CONSTRAINTSP,X, the reduction
hypothesis definition can be refined to obtain different types of hypotheses. In this sectio
present three types of hypotheses: the regularity hypothesis, the uniformity hypothesi
another called a structural uniformity hypothesis (see figure 30).

 • If the constraintC ∈ CONSTRAINTSP,Xis a predicate of the formα (v0) ≤ k corresponding to a
complexity measure, the reduction hypothesis becomes aregularity hypothesis. Tests
selected by this hypothesis have a complexity less than or equal to the boundk.

 • If the constraintC ∈ CONSTRAINTSP,Xis a predicate of the formα (v0) = k corresponding to a
given complexity, the reduction hypothesis becomes astructural uniformity hypothesis.
Tests selected by this hypothesis have a complexity equal tok.

 • If the constraintC ∈ CONSTRAINTSP,X is a predicate of the formv = v0 corresponding to a
given variable instantiation, the reduction hypothesis becomes auniformity hypothesis.
Tests selected by this hypothesis have their variablesv instantiated byv0.

Constraint:α (v0) ≤ kConstraint: v = v0

Fig. 30.Reduction hypotheses

Reduction Hypotheses

Uniformity Hypotheses
Structural

Regularity Hypotheses
Uniformity Hypotheses

Constraint:α (v0) = k
102

Practical Test Selection

, but
initial

ity or

f the

their
tisfying

a

ree
the
The definition given to the constraint refines the definition of the reduction hypothesis
does not change its semantics. This guarantees to keep the good properties of the
exhaustive test set: validity and unbiasedness.

It is often reasonable to start the test set selection process by applying structural uniform
regularity hypotheses to the program, i.e. by constraining theHMLSP,X formulas. Then
uniformity hypotheses can be applied, i.e. the instantiation of the remaining variables o
HMLSP,Xformulas can be constrained.

5.3.1 Structural uniformity hypotheses

This section gives some examples of structural uniformity hypotheses, together with
corresponding constraint and the associated strategy which aims to find test cases sa
this constraint.

5.3.1.1 Number of events

 • Hypothesis

If a test case〈 f, r 〉 is successful for all instances off having a number of events equal to
boundk, then it is successful for all possible instances off.

The number of events is computed recursively with the functionnb-eventsas follows:

Definition 52.Semantics of the function nb-events : HMLSP,X→ IN

 • nb-events (T) = 0

 • nb-events(¬ f) = nb-events(f)

 • nb-events(f ∧ g) = nb-events(f) + nb-events(g)

 • nb-events(<e> f) = nb-events(f) + 1 wheree ∈ XEvent

 • nb-events(<e> f) = nb-events(f) + 1 wheree ∈ EVENT(SP, XS). ◊

 • Constraint

The constraint C ∈ CONSTRAINTSP,Xis the predicate nb-events(f) = k.

 • Strategy

The strategy used to solve the former constraintC generates allHMLSP,X formulas with a
number of events equal tok. This strategy allows to generate formula skeletons. Later, f
variables of type event will be instantiated to events which include methods of
environment.

For instance, the constraintnb-events(f) = 2 produces the following test cases:
103

Practical Test Selection

h.

y the
lude
T1: 〈 (not <v0> T) and (not <v1> T), result 〉

T2: 〈 (not <v0> T) and (<v1> T), result 〉

T3: 〈 (<v0> T) and (<v1> T), result 〉

T4: 〈 <v0> not (<v1> T), result 〉

T5: 〈 <v0> <v1> T, result 〉

where the variablesv0 andv1 are of type event, and the variableresult is of type boolean.

5.3.1.2 Depth of a formula

The depth of a formula corresponds to the number of events constituting the longest pat

 • Hypothesis

If a test case〈 f, r 〉 is successful for all instances off having a depth equal to a boundk, then it
is successful for all possible instances off.

The depth is computed recursively with the functiondepthas follows:

Definition 53.Semantics of the function depth : HMLSP,X→ IN

 • depth (T) = 0

 • depth(¬ f) = depth(f)

 • depth(f ∧ g) = maximum (depth(f), depth(g))

 • depth(<e> f) = depth(f) + 1 wheree ∈ XEvent

 • depth(<e> f) = depth(f) + 1 wheree ∈ EVENT(SP, XS)

with maximum: IN × IN → IN, maximum (x, y) = x if x > y andy otherwise. ◊

 • Constraint

The constraint C ∈ CONSTRAINTSP,Xis the predicate depth(f) = k.

 • Strategy

The strategy used to solve the former constraintC generatesHMLSP,Xformulas with a depth
equal tok. With this strategy, only skeletons are generated and nothing is imposed b
specification. Later, free variables of type event will be instantiated to events which inc
methods of the environment.

For instance, the constraintdepth(f) = 1 produces the following test cases:

T1: 〈 (not (<v0> T)) and (not (<v1> T)), result 〉

T2: 〈 (not (<v0> T)) and (<v1> T), result 〉

T3: 〈 (<v0> T) and (<v1> T), result 〉

T4: 〈 <v0> T, result 〉

where the variablesv0 andv1 are of type event, and the variableresult is of type boolean.
104

Practical Test Selection

arrier to
e used

given

n

a

lowing
For both thenb-eventsand thedepthconstraints, it is very difficult to prove that the program
satisfies the associated hypothesis. Thus, these hypotheses should only be used as a b
avoid a combinatorial explosion, and the other (semantics-oriented) hypotheses should b
to select meaningful test cases.

5.3.1.3 Number of occurrences of a given method

Another way to reduce the size of a test set is to constrain the number of occurrences of a
method in each test case.

 • Hypothesis

If a test case〈 f, r 〉 is successful for all instances off having a number of occurrences of a give
methodm equal to a boundk, then it is successful for all possible instances off.

The number of occurrences of a given methodm is recursively computed with the function
nb-occurrences as follows:

Definition 54.Semantics of nb-occurrences: HMLSP,XS
× METHOD→ IN

 • nb-occurrences(T, m) = 0

 • nb-occurrences(¬ f, m) = nb-occurrences(f, m)

 • nb-occurrences(f ∧ g, m) = nb-occurrences(f, m) + nb-occurrences(g, m)

 • nb-occurrences(<e> f, m) = nb-occurrences(f, m) + 1 if e is based onm

 • nb-occurrences(<e> f, m) = nb-occurrences(f, m) if e is not based onm

where e∈ EVENT(SP, XS). ◊

 • Constraint

Thus the constraint C ∈ CONSTRAINTSP,Xis the predicate nb-occurrences (f, m) = k.

 • Strategy

The strategy used to solve the former constraintC generates allHMLSP,XS
formulas with a

number of events based on the methodm equal tok. Depending on the context, it could be
strong or a weak hypothesis.

For instance, in the telephone example presented in section 3.2, we can make the fol
assumptions about a phonecardc:

nb-occurrences (f, withdraw) = 2 -- 2 occurrences of the method withdraw

nb-occurrences (f, get-balance) = 1 -- 1 occurrence of the method get-balance

nb-occurrences (f, get-pin) = 0 -- 0 occurrence of the method get-pin
105

Practical Test Selection

nt. The

, as

s
n it is
The combination of these three assumptions will lead to this kind of test case:

T1: 〈<c.create (v0)> <c.get-balance (v1)> <c.withdraw (v2)> <c.withdraw (v3)> T, result 〉

T2: 〈<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.withdraw (v3)> T, result 〉

T3: 〈<c.create (v0)> <c.withdraw (v1)> <c.withdraw (v2)> <c.get-balance (v3)> T, result 〉

where the variablev0 is of typePin, v1, v2, v3 are of typeMoney, andresult is of typeBooleans.

These hypotheses seem reasonable to test the interactions withbalance. However, the
interactions withid are not tested at all.

5.3.1.4 Event classification

The events used in the test cases are based on the kinds of methods of the environme
kinds of actions performed by the events are classified intoconstructor(constructors allow to
create objects and to initialize their state),mutator (mutators allow to modify the state of an
object) andobserver(observers allow to observe the state of an object but not to modify it)
illustrated in figure 31.

For instance, in the classPhoneCard of the telephone example, the events based oncreate are
constructors, the events based onwithdraw are mutators and the events based onget-pin and
get-balance are observers.

 • Hypothesis

If a test case〈 f, r 〉 is successful for all instances off which are a combination of constructor
followed by a combination of mutators and terminated by a combination of observers, the
successful for all possible instances off.

 • Constraint

The constraintC ∈ CONSTRAINTSP,Xis the following:

(f = (fc | (fm | fo))) ∧ onlyconstructor(fc) ∧ onlymutator(fm) ∧ onlyobserver(fo) = true

where the concatenationf | g is a formula obtained by replacing allT in f by g (see definition96
of annex E), and where the functiononlyi (i ={constructor, mutator, observer}) is recursively
defined as follows:

mutatora mutatorb

observera

observerb

constructora

system’s state

Fig. 31.Classification of the operations and evolution of the system’s state
106

Practical Test Selection

by a
ion of
Definition 55.Semantics of the function onlyi: HMLSP,XS
→ { true, false}

 • onlyi (T) = true

 • onlyi (¬ f) = onlyi (f)

 • onlyi (f ∧ g) = onlyi (f) ∧ onlyi (g)

 • onlyi (<e> f) = onlyi (f) if e ∈ EVENT(SP, XS) is ani

 • onlyi (<e> f) = false if e ∈ EVENT(SP, XS) is not ani ◊

 • Strategy

The strategy used to solve the former constraintC generates allHMLSP,XS
formulas which are a

combination of constructors (used to create the objects of the system) followed
combination of mutators (used to describe state evolution) and terminated by a combinat
observers.

For instance, in the telephone example, using this strategy on a phonecardc with the
constructorcreate, the mutatorwithdraw and the observersget-pin and get-balance allow to
generate the following test case:

〈 <c.create (v0)> <c.withdraw (v1)> <c.get-pin (v2)> <c.get-balance (v3) T >, result 〉

where the variablesv0, v2 are of typePin, the variablesv1, v3 are of typeMoney, andresult is of
typeBooleans.

5.3.1.5 Shape ofHML formulas

 • Hypothesis

If a test case〈 f, r 〉 is successful for all instances off having a given shapes, then it is
successful for all possible instances off. The formulasf of shapes are detected using the
functionshape (f, s):

Definition 56.Semantics of shape: HMLSP,X× HMLSP,X→ { true, false}

 • shape (T, T) = true

 • x ∈ XHML ⇒ shape(f, x) = true

 • shape(¬ f, ¬ s) = shape(f, s)

 • shape(f ∧ g, s∧ t) =
(shape(f, s) and shape(g, t)) or (shape(f, t) and shape(g, s))

 • shape(<ef > f, <es> s) = shape(f, s)
whereef andes∈ XEvent

 • shape(<ef > f, <es> s) = shape(f, s) whereef ∈ EVENT(SP, XS) andes ∈ XEvent

 • shape(<ef > f, <es> s) = (ef = es) and shape(f, s)
whereef andes ∈ EVENT(SP, XS).

In all other cases the result isfalse. ◊
107

Practical Test Selection

he

e

 • Constraint

The constraintC ∈ CONSTRAINTSP,Xis the predicateshape (f, s) = true.

 • Strategy

The strategy used to solve the constraintC generates allHMLSP,X formulasf of shapes.

For instance, in the telephone example presented in section 3.2, for a phonecardc containing
the pin-code1234 and the initial balance20, and an object under test of classTelephone, we can
express the following constraints:

C1: shape (f, <c.create (1234)> <c.withdraw (v0)> <e0> T) = true

C2: shape (f, <c.create (1234)> (f0 and not <c.get-balance (25)> f1)) = true

C3: shape (f, <c.insert (o)> <c.enter (1234)> T) = true

 • Constraint C1

The constraintC1 leads to the following test case:

〈<c.create (1234)> <c.withdraw (vo)> <eo> T, result 〉

in which the first eventc.create (1234) is instantiated, the second eventc.withdraw (v0) is
partially instantiated (the method is instantiated but not its variable parameterv0 of ADT),
and the third evente0 is a variable.

 • Constraint C2

The constraintC2 leads to the following test case:

〈<c.create (1234)> (f0 and (not <c.get-balance (25)> f1)), result 〉

in which the two variablesf0 andf1 areHMLSP,X formulas.

The constraintC2 could be applied in conjunction with other constraints working on t
subformulasf0 andf1. For instance the conjunction

C2 ∧ (nb-occurrences (f0, get-pin) = 1) ∧ (shape (f1, T) = true)

is a constraint leading to these kinds of test cases:

〈<c.create (1234)> (<c.get-pin (v0)> T and (not <c.get-balance (25)> T)), result 〉

〈<c.create (1234)> (<c.get-pin (v0)> <get-balance (v1)> T and (not <c.get-balance (25)> T)), result 〉

in which the variablef0 has been instantiated withHMLSP,XS
formulas obtained by

application of the constraintnb-occurrences (f0, get-pin) = 1, and the variablef1 has been
instantiated by the formulaT obtained by application of the constraintshape (f1, T)= true.

 • Constraint C3

The constraintC3 leads to the following test case:

〈<c.insert (o)> <c.enter (1234)> T, result 〉

in which the variableo is an object of classPhoneCard.

Similarly, we can define a constraintsequencethat would only select test formulas without th
and operator, a constraintpositivethat would only select formulas without thenot operator, and
a constrainttracethat would mix both conditions.
108

Practical Test Selection

g the
this
Definition 57.Semantics of sequence: HMLSP,X→ { true, false}

 • sequence (T) = true

 • sequence(¬ f) = sequence(f)

 • sequence(f ∧ g) = false

 • sequence(<e> f) = sequence(f) wheree ∈ XEvent

 • sequence(<e> f) = sequence(f) wheree ∈ EVENT(SP, XS)

◊

Definition 58.Semantics of positive: HMLSP,X→ { true, false}

 • positive (T) = true

 • positive(¬ f) = false

 • positive(f ∧ g) = positive(f) ∧ positive(g)

 • positive(<e> f) = positive(f) wheree ∈ XEvent

 • positive(<e> f) = positive(f) where e∈ EVENT(SP, XS)

◊

Definition 59.Semantics of trace : HMLSP,X→ { true, false}

 • trace(f) = sequence (f) ∧ positive(f) ◊

For instance, the constraint

C: (nb-events (f) = 3) ∧ (trace (f) = true)

would result in one test

T: <e1> <e2> <e3> T

wheree1, e2 ande3 are of type event.

This section shows that it is possible to reduce the combinatorial explosion by constrainin
structure of theHMLSP, Xformulas. Obviously, we can imagine several other constraints of
type, for instance “the method m1 is always followed by the method m2” or “ HMLSP,Xformulas
with a given number of ‘not’ operators”, or traces as defined inASTOOT [Doong 94]:

trace_ASTOOT (f) =
trace(f) ∧

(f = (fc | (fm| fo))) ∧ onlyconstructor(fc) ∧ onlymutator(fm) ∧ onlyobserver(fo) ∧
(nb-events(fo) = 1).
109

Practical Test Selection

to

l to the

(i.e.
.

ngth
ber of

s
sing
le
e time
e this

t

to
f

5.3.2 Regularity hypotheses

The functionsnb-events, depthandnb-occurrences,presented in section 5.3.1, can be used
define regularity hypotheses:

 • nb-events(f) ≤ k,

 • depth(f) ≤ k,

 • nb-occurrences(f) ≤ k.

Test cases selected with the help of these constraints have a complexity less than or equa
boundk.

In the case ofnb-eventsanddepth,test sets produced by regularity (i.e.nb-events(f) ≤ k,
depth (f) ≤ k) are larger in size than test sets produced by structural uniformity
nb-events(f) = k, depth(f) = k), but they are equivalent in quality (power to reveal errors)

5.3.3 Uniformity hypotheses

Whereas the structural uniformity and regularity hypotheses are useful for limiting the le
and shape of test cases, they are generally not sufficient to effectively minimize the num
test cases, because they provide no satisfactory means of selection for variables in anHMLSP,X
formula. The application of constraints onHMLSP,Xformulas produces formulas with variable
of four types:HMLSP,Xformula, event, ADT and object. These variables can be replaced u
various strategies, likeexhaustivenessor uniformity. Exhaustiveness implies that each variab
is replaced by all its possible instances. Exhaustiveness can be very useful, but most of th
it can lead to an infinite test set or to a test set having an “unreasonable” size. To overcom
problem, uniformity hypotheses can be used.

For test cases〈 f, r 〉 in which the formulaf ∈ HMLSP,X, the uniformity hypotheses stipulate tha
if a test case〈 f, r 〉, in which the formulaf contains a variablev, is successful for a given value
of v, then it is successful for all possible values ofv. Thus uniformity hypotheses are used
limit the test cases selected for the variables in a formulaf by selecting a unique instance o
each variablev in Var (f), the set of variables in the formulaf.

Definition 60.Uniformity hypothesis

Given a specificationSP∈ SPEC, a test case〈 f, r 〉 ∈ HMLSP,X× { true, false}, and a
variablev ∈ Var (f), a uniformity hypothesis applied to a variablev for a test case〈 f, r 〉
and a programP ∈ PROG, is such that:

∀ r ∈ { true, false} , ∀ [v0 / v] ∈ SUBS,

((∀ ΙΙ 0 ∈ INTER,(P |=O 〈 ΙΙ 0 (f [v0 / v]), r 〉)) ⇒

(∀ΙΙ 1 ∈ INTER,(∀ [v1 / v] ∈ SUBS, P |=O 〈 ΙΙ 1 (f [v1 / v]), r 〉))).

◊

110

Practical Test Selection

hat

onent
e been

d on

to an

n of

lected,
plex
This definition means that for all resultsr of { true, false} and for all substitutions [v0 / v] we
have: if the programP satisfies the formulaf in which v is replaced byv0, then for all
substitutions [v1 / v] the programP will satisfy the formulaf in whichv is replaced byv1. The
role of the two interpretationsΙΙ 0 and ΙΙ 1 is to replace the remaining variables by values so t
the evaluations are performed on ground formulas.

Since the uniformity hypotheses are very strong, they are usually not applied to the comp
under test, but to the components imported into the specification, which we assume hav
already tested or replaced by stubs.

Four kinds of variables can occur in a formulaf : HMLSP,Xformulas ofXHML, events ofXEvent,
objects (class instances) ofXC, and algebraic values (ADT instances) ofXADT. The strategy for
uniformity applied to the four kinds of variables is the following:

 • Uniformity applied to HML SP,X formulas

Any HMLSP,Xformula can be randomly selected, with respect to the constraints applie
the enclosing test formula.

For instance, applying uniformity to the variableg of the test case

〈 <card.create (1234)> g, result 〉

with the constraint on the enclosing formulanb-events(f) = 2 could result in the test case

〈 <card.create (1234)> <e>T , result 〉

where the variablee is of type event, and the variableresult is of type boolean.

 • Uniformity applied to events

Any event can be randomly selected, with respect to the constraint that it is applied
object in the focus environment.

For instance, applying uniformity to the variablee of the test case

〈 <card.create (1234)> <e> T, result 〉

with the constraint on the enclosing formulanb-occurrences(withdraw) = 1 could result in
the test case

〈 <card.create (1234)> <card.withdraw (m) > T, result 〉

where the variablem is of the ADT typeMoney, and the variableresult is of type boolean.

 • Uniformity applied to algebraic values

Any algebraic value can be selected by randomly applying a well-formed compositio
the functions defined in the corresponding ADT.

For instance, applying uniformity to the variablem of the test case

〈 <card.create (1234)> <card.withdraw (m)> T, result 〉

could result in the test case

〈 <card.create (12)> <card.withdraw (25 + succ (succ (43)) - 60)> T, true〉.

Another strategy, which reduces the state space from which the algebraic value is se
is to select generator functions only. In the above example, it would avoid selecting com
expressions, and limit the uniformity with the generators of the ADTMoney. It would forbid
to use the operations “+” and “-”.
111

Practical Test Selection

amic

cts,
 • Uniformity applied to objects

Any object of the environment can be selected. This can be a static object, or a dyn
object which has already been created.

For instance, applying uniformity to the variableo of the test case

〈 <card1.create (1111)> <card1.withdraw (20)> <card2.create (2222)> <card2.withdraw (10)>
<cabin.create> <cabin.insert (o)>T, result 〉

could result in the test case

〈 <card1.create (1111)> <card1.withdraw (20)> <card2.create (2222)> <card2.withdraw (10)>
<cabin.create> <cabin.insert (card2)>T, true 〉.

The uniformity hypothesis can be defined as a functionuniformityII working on a variablex in
a formulaf. The variablex is instantiated using the interpretationII = ∪ ∪

∪ ∈ INTER. The semantics of the functionuniformityII is recursively defined as
follows (special functions are given for uniformity applied to references to obje
uniformityII

C, and to algebraic values, uniformityIIADT):

Definition 61.Semantics of uniformityII : HMLSP,X× X → HMLSP,X

 • uniformityII (T, x) = T

 • uniformityII (¬ f, x) = ¬ uniformityII (f, x)

 • uniformityII (f ∧ g, x) = uniformityII (f, x) ∧ uniformityII (g, x)

 • f, x ∈ XHML, x ≠ f ⇒ uniformityII (f, x) = f

 • f, x ∈ XHML, x = f ⇒ uniformityII (f, x) =

 • e, x∈ XEvent, x ≠ e ⇒ uniformityII (<e> f, x) = <e> uniformityII (f, x)

 • e, x∈ XEvent, x = e⇒ uniformityII (<e> f, x) = < > uniformityII (f, x)

 • o, x∈ XC ⇒ uniformityII (< o . m (t1, ..., tn)> f, x) = < uniformityII
C (o, x) .

m (uniformityII
C (t1, x), ...,uniformityII

C (tn, x))> uniformityII (f, x)

 • o ∈ XC , x ∈ XADT ⇒ uniformityII (< o . m (t1 , ..., tn)> f, x) =
(<o . m (uniformityII

ADT (t1, x), ...,uniformityII
ADT (tn, x))> uniformityII (f, x)

wherem ∈ METHOD, m : s1, ...,sn → s andti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

The semantics assumes that the interpretations , ofINTERare well-formed:
∀ x ∈ HMLSP,X, x ∉ Var () and∀ x ∈ EVENT(SP, XS), x ∉ Var ().

Definition 62.Semantics of uniformityII
C : TΣ, XS

× XC → TΣ, XS

 • v ∈ XC , x ≠ v ⇒ uniformityIIC (v, x) = v

 • v ∈ XC , x = v ⇒ uniformityIIC (v, x) =

 • v ∈ XADT ⇒ uniformityIIC (v, x) = v

 • uniformityII
C (f (t1, ...,tn), x) = f (uniformityII

C (t1, x), ...,uniformityII
C (tn, x))

whereti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

II HMLSP X, II EVENTSP XS,

II T
ΣC

II T
ΣA

II HMLSP X,
x()

II EVENTSP XS,
x()

II HMLSP X,
II EVENTSP XS,

x()
II HMLSP X,

x() II EVENTSP XS,
x()

II T
ΣC

x()
112

Practical Test Selection

es a

re

ics of
h the
ot its
rmity
plied.

of the
s an
tem.

phical
the

the

“
ically

enarios,
Definition 63.Semantics ofuniformityII
ADT : TΣ, XS

× XADT→ TΣ, XS

 • v ∈ XADT , x ≠ v ⇒ uniformityIIADT (v, x) = v

 • v ∈ XADT , x = v ⇒ uniformityIIADT (v, x) =

 • v ∈ XC ⇒ uniformityIIADT (v, x) = v

 • uniformityII
ADT (f (t1, ...,tn), x) =

f (uniformityII
ADT (t1 , x), ...,uniformityII

ADT (tn, x))

whereti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

As we did for the structural uniformity hypotheses, we can define for uniformity hypothes
constraint ofCONSTRAINTSP,Xwhich is the predicateg = uniformityII (f, x).

Applying uniformity to a whole formula consists of applyinguniformityII independently to all
variables in the formula, untilVar (f) is empty. Since the interpretation functions a
deterministic, variables with the same name will have the same interpretation.

Uniformity hypotheses can only be applied with a satisfying coverage when the semant
the method includes no calculation based on the value of the parameter on whic
hypothesis is applied, or if the method considers only the reference to the object and n
state. In some cases, a static analysis of the program can exhibit the validity of a unifo
hypothesis by examining the use of the object on which the uniformity hypotheses are ap

5.3.4 Choosing reduction hypotheses

The choice of reduction hypotheses can be guided by the graphical representation
CO-OPNspecification. Indeed, this representation (equivalent to the textual one) allow
intuitive comprehension of the specification and of the behavior of each unit of the sys
This is very helpful for the use of hypotheses like“number of events”, “depth of a formula”,
“number of occurrences of a given method”and“shape of the HML formula”which require
from the tester a certain understanding of the specification. For instance, the gra
representation of theTelephone (see figure 6) shows that a phone call always begins with
insertion of a phonecard (methodinsert) followed by the entry of the pin-code (methodenter).
Thus for the test of the objectcabin, the tester can chose to use only test cases satisfying
constraint:

C: shape (f, <cabin.insert (o)> <cabin.enter (p)> g) = true.

Other hypotheses less dependent on the tester’s knowledge of the specification, likeevent
classification”, can be applied systematically. These hypotheses can possibly be stat
verified for the program.

Moreover, other models produced during the development, such as use cases and sc
can be helpful in choosing reduction hypotheses.

II T
ΣA

x()
113

Practical Test Selection

test
ion are
aints

g

a call,

are

case

n

— a
ion on
free
g in
ust

an be
5.4 Uniformity hypotheses with subdomain decomposition

Applying uniformity hypotheses can provide an insufficient coverage of a specification by
cases if, by selecting an unique instance for a variable, cases described in the specificat
not covered, i.e. if the uniformity hypothesis does not take into account the constr
imposed by the conditions occurring in the axioms.

For example, the methodenter of the classTelephone specifies a different behavior dependin
on whether the condition(pp = p) is true or false, p being the parameter ofenter and pp the
pin-code stored on the card: if the condition is true, the telephone will be ready to accept
otherwise, it will eject the card. For a good coverage of the methodenter, testing must be
performed to verify the behavior by introducing a valid code ((pp = p) = true) and an invalid
code ((pp = p) = false). Uniformity applied to the parameterp of the methodenter will select
only one value ofpp, and will miss one of the two specified behaviors, although they
obviously relevant. Thus, applying a uniformity hypothesis topp will result in not covering all
specified behaviors, leading to a test set of low quality.

To obtain a good coverage of the specification for a formulaf, the different domains for which
different behaviors are specified must be extracted from the specification by performing a
analysis of the axioms of the occurring events. The domainD(f) of f must be decomposed into
subdomainsDi (f), such thatD(f) = ∪i=1..n Di (f). The subdomainsDi (f) can be disjoint or
overlapping [Chen 96]. Afterwards, uniformity hypotheses are applied to each subdomaiDi.

Moreover, inCO-OPN, variables with a domain belong toXS, i.e. to algebraic values of ADTs
and objects of classes, excluding variables inXEvent and XHML, because it is impossible to
analyze the possible behaviors of — and thus to perform subdomain decomposition on
formula if these variables have not been fixed. Thus, the goal of subdomain decomposit
a formulaf is to obtain a good coverage of the specification by selecting values for the
variablesxS ∈ XS in f that cover the choices offered by the axioms of the methods appearin
f. Consequently, the formulasf on which subdomain decomposition can be performed m
belong toHMLSP,XS.

As stated in section 4.1.4.2, the uniformity hypothesis with subdomain decomposition c
enunciated as follows. Consider a formulaf having a domainD(f) = ∪i=1..n Di (f), a set ofn
conjunctions of equationsCSi (expressed as constraints) characterizing each subdomainDi(f),
and substitutionsθi of the variables ofCSi satisfyingCSi. If a test of a formulaf is successful
for a given substitutionθi for each subdomainDi (f), then the test off is successful for all
possible substitutions of the variables off.
114

Practical Test Selection

the

y a
Definition 64.Uniformity hypothesis with subdomain decomposition

Given a specificationSP∈ SPEC, a test case〈 f, r 〉 ∈ HMLSP,XS × { true, false} having a
domain D (f) = ∪i=1..n Di (f), and a set ofn conjunctions of equationsCSi ∈
CONSTRAINTSP,Xcharacterizing each subdomainDi (f), a uniformity hypothesis with
subdomain decomposition for a test case〈 f, r 〉 and a programP ∈ PROG, is such that:

∀ r ∈ { true, false} , ∀i ∈ [1..n] , ∀ ΙΙ i ∈ INTER,∀ θi ∈ SUBS, |=C
II i θi (CSi),

((∧j = 1..n P |= O 〈 ΙΙ j (θj (f)), r 〉) ⇒

(∀ ΙΙ ∈ INTER,∀ θ ∈ SUBS, (P |= O 〈 ΙΙ (θ (f)), r 〉))).

◊

This definition means that for all resultsr of { true, false} and for all substitutionsθi (i = 1..n)
such that the constraintθi (CSi) is satisfied, we have: if the programP satisfies the formulaf for
all the substitutionsθi, then for all substitutionsθ the programP will satisfy the formulaf. The
role of the interpretationsΙΙ is to replace the remaining variables by values so that
evaluations are performed on ground constraints and formulas.

Similarly to the function uniformityII , the uniformity hypothesis with subdomain
decomposition can be recursively defined by a functionsubuniformityII . The function
subuniformityII for a formulaf is applied to each subdomain. A subdomain is described b
constraintCSof CONSTRAINTSP, X. The variables off are instantiated using the substitutionθ of
SUBS and the interpretationII = ∪ ∈ INTER.

Definition 65.Semantics of subuniformityII

subuniformityII : HMLSP,XS× CONSTRAINTSP,X × SUBS→ HMLSP,XS

 • subuniformityII (T, CS,θ) = T

 • subuniformityII (¬ f, CS,θ) = ¬ subuniformityII (f, CS,θ)

 • subuniformityII (f ∧ g, CS,θ) =
subuniformityII (f, CS,θ) ∧ subuniformityII (g, CS,θ)

 • subuniformityII (< o . m (t1, ..., tn)> f, CS,θ) = <subuniformityIIS (o, CS,θ) .
m (subuniformityIIS (t1, CS,θ), ...,subuniformityIIS (tn, CS,θ)) >
subuniformityII (f, CS,θ)

whereo ∈ XC, m ∈ METHOD, m : s1, ...,sn → s andti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

II T
ΣC

II T
ΣA
115

Practical Test Selection

ain

of

hese
ula
ents

e
f the
ood

g all

the
Definition 66.Semantics of subuniformityII
S : TΣ, XS

× CONSTRAINTSP,X × SUBS→ TΣ, XS

 • v ∈ XC , v Var (CS) ⇒ subuniformityIIS (v, CS,θ) = v

 • v ∈ XC , v ∈ Var (CS) ⇒
subuniformityIIS (v, CS,θ) = such that|=C

II θ (CS)

 • v ∈ XADT , v Var (CS) ⇒ subuniformityIIS (v, CS,θ) = v

 • v ∈ XADT , v ∈ Var (CS) ⇒
subuniformityIIS (v, CS,θ) = such that|=C

II θ (CS)

 • subuniformityIIS (f (t1, ...,tn), CS,θ) =

f (subuniformityIIS (t1, CS,θ), ...,subuniformityIIS (tn, CS,θ))

whereti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

As we did for uniformity hypotheses, we can define for uniformity hypotheses with subdom
decomposition a constraint∈ CONSTRAINTSP,Xwhich is the predicate:
g = subuniformityII (f, CS,θ).

In the rest of this section, all formulas belong toHMLSP,XS unless mentioned otherwise.

5.4.1 General strategy for subdomain decomposition

Subdomain decomposition on a formulaf of HMLSP,XS having a domainD(f) = ∪i=1..n Di(f)
is a three step process:

Step 1 Find constraint systems characterizing the subdomains.

The goal is to findn constraint systemsCSi (i = 1..n) on the variables off
characterizing each subdomainDi (f).

Each constraint systemCSi is obtained from the behavioral axioms of the events
the formula f and from the derivation trees built by applying theCO-OPN
inference rules described in section 3.4.4.

The constraints can be divided into two groups:β-constraints andσ-constraints.

• β-constraints — behavioral constraints — drive the possible executions. T
are constraints that can influence the ability to trigger the events of the form
f. Since we are not only interested in the cases of valid behaviors (all the ev
of f are firable), but also in the cases of invalid behaviors (some events off are
not firable), we will not only consider the cases where theβ-constraints are
satisfied, but also the cases where theβ-constraints are not satisfied. Thes
constraints are excerpted from the behavioral axioms of each event o
formula f, and can be either algebraic conditions or state conditions. For a g
coverage of the specification, subdomain decomposition involves applyin
β-constraints existing in each event of the formula.

• σ-constraints — substitution constraints — are substitutions which specify
relations betweenβ-constraints of different events in the formulaf.
σ-constraints make up the “glue” between the different events off by providing

∉

II T
ΣC

θ x()()

∉

II T
ΣA

θ x()()
116

Practical Test Selection

ther
using

ioms.
ms of

each
the

.
ccess
ics of

is not
equalities between their states. Moreover, if an event is synchronized with o
events, the relations between the states of these events are also specified
σ-constraints.

The result of this first step is a set ofn constraint systemsCSi which encompasses
the possible behaviors off.

Step 2 Solve the constraint systems to find substitutions.

The goal is to solve each constraint systemCSi (i = 1..n) elaborated in step 1.
The result is a set ofn substitutionsθi of the variables ofCSi satisfyingCSi.

Step 3 Select from the substitutions values satisfying the constraint systems.

For each subdomainDi (f) characterized by a constraint systemCSi, the
substitutionθi is applied to the variables off, i.e. for each constraint systemCSi and
substitutionθi the variables off are instantiated using thesubuniformityII function:
fi = subuniformityII (f, CSi, θi).

The result is a set ofn formulasfi (i = 1..n). Each formulafi represents the specified
behavior of the formulaf on the subdomainDi (f).

5.4.2 Where to findβ-constraints?

β-constraints are found by performing a case analysis of the specification’s behavioral ax
As mentioned in section 3.2.2, each method is specified by one or several behavioral axio
this shape:

Axiomn : Event ({Parameterm}) [With SynchroExpression] :: [Condition ⇒] Precondition → Postcondition

The case analysis is performed on the various constructs found in this formula:

• Algebraic conditions (Condition):
this case analysis is presented in section 5.4.3.

• Method parameters (Event ({Parameterm})):
this case analysis is presented in section 5.4.4.

• Pre- and postconditions (Precondition → Postcondition)
without synchronization expressions:
this case analysis is presented in section 5.4.5.

• Pre- and postconditions (Precondition → Postcondition)
in the presence of synchronization expressions on other objects (With SynchroExpression):
this case analysis is presented in section 5.4.6.

Since we are not only interested in selecting test cases in the domains of validity of
construct, but also in its possible failures, we will not only consider the cases where
β-constraints are satisfied, but also the cases where theβ-constraints are not satisfied
Consequently, we will discern two kinds of choice for each construct: the cases of a su
(i.e. valid behaviors), and the cases of failure (invalid behaviors). Moreover, the semant
an event can be described with several behavioral axioms (Axiomn). In this case,β-constraints
are drawn up from each of these axioms. When the axioms cover each other, the system
deterministic, and it may not be possible to ensure the coverage of all axioms.
117

Practical Test Selection

on
braic
are

of the

rom a
when
e

its
which

e rise

of the
5.4.3 How to findβ-constraints in algebraic conditions?

An algebraic condition on an axiom limits its domain of validity. An algebraic conditi
contains algebraic operations, the behavior of which are defined in ADT modules by alge
axioms. To draw upβ-constraints from these algebraic axioms, the algebraic operations
unfolded as described in [Marre 91] (see section 2.3.1).

For instance, in the case of the telephone system presented in section 3.2, the axiom
classPhoneCard:

withdraw (m) :: (b ≥ m) ⇒ balance b → balance b - m;

draws up twoβ-constraints by unfolding of the operation≥ :

 • aβ-constraint characterizing the subdomain of the correct values:(b ≥ m) = true,

 • aβ-constraint characterizing the subdomain of the incorrect values:(b ≥ m) = false.

Moreover, as stated in [Marre 91], more than two cases can possibly be selected f
condition, depending on how the axioms for the condition are defined. For example,
unfolding the condition(b ≥ m), the number of uniformity subdomains will usually not b
limited to two cases (a satisfying case(b ≥ m) = true and an unsatisfying case(b ≥ m) = false), but
will include two satisfying cases: a case for(b > m) = true and a case for(b = m) = true. This
decomposition into finer domains results in the selection of more interesting cases.

5.4.4 How to findβ-constraints in method parameters?

Method parameters limit the domain of validity of an axiom to specific values of
parameters. Each event name can be followed by parameters, which are expressions to
the effective parameter should be equal when invoking the method. These equalities giv
to β-constraints.

Method parameters are handled like algebraic conditions. For instance, in the case
telephone system, the axiom of the classPhoneCard:

get-balance (b) :: balance b → balance b;

has the implicit equalityb = b between the parameterb and the valueb in the placebalancein the
precondition. Consequently, it is equivalent to the axiom:

get-balance (v) :: (v = b) ⇒ balance b → balance b;

and thus draws up twoβ-constraints by unfolding of the operation= :

 • aβ-constraint characterizing the subdomain of the correct values:(v = b) = true,

 • aβ-constraint characterizing the subdomain of the incorrect values:(v = b) = false.
118

Practical Test Selection

and
to the
g the
are

and the
ns give

et

t,

rces
5.4.5 How to findβ-constraints in pre- and postconditions
(without synchronization expressions)?

Pre- and postconditions limit the domain of validity of an axiom to specific states. Pre-
postconditions correspond respectively to the resources that must be consumed and
resources that must be produced in the different places within the Petri net describin
behavior of an object. An event can occur if and only if the pre- and postconditions
satisfied: the resources required by the preconditions can be consumed from the places
resources required by the postconditions can be produced in the places. These conditio
rise toβ-constraints.

Given a methode having the axiome :: pree → poste, the fire of the evente is illustrated by the
following deduction tree:

where:

 • pree denotes the resources the evente must consume from the places within the n
describing the behavior of the object,

 • poste denotes the resources the evente must produce in the places of the net,

 • s denotes the system statebefore the fire ofe,

 • s’ denotes the system stateafter the fire ofe.

The evente occurs if and only if the transition〈s, e, s’〉 is valid:

β-constraint 1 The system states allows the evente to consume, from the places of the ne
the resourcespree required by the preconditions, i.e. the states covers the
statepree.
In other words, the statepree is included in the states: pree ⊆ s.

β-constraint 2 The evente succeeds in consuming, from the places of the net, the resou
pree required by the preconditions, and in producing the resourcesposte
required by the postconditions:s’ = s - pree + poste.

The satisfaction of the two precedingβ-constraints is notedValid 〈s, e, s’〉 = true.

CLASS

e :: pree → poste

MONO

pree poste
e

s s’
e

119

Practical Test Selection

the

valid
ing to
Since we are not only interested in the cases of valid behaviors (Valid 〈s, e, s’〉 = true), but also in
the cases of invalid behaviors (Valid 〈s, e, s’〉 = false), the formerβ-constraints lead to the three
following constraint systems:

Example 1.In the case of the telephone system, the fire of the eventc.withdraw(v) is illustrated
as follows:

The eventc.withdraw(v) occurs if the two followingβ-constraints are satisfied (β-constraints
related to algebraic conditions and method parameters are not treated in this example):

The condition(id ∅ ⊆ id i0) requires that∅ be included in the multi-set[i0]; this is always
satisfied. The condition(balance b ⊆ balance b0) requires that the non-empty multi-set[b] be
included in the multi-set[b0], and thus requires that(b = b0). Consequently,β-constraint 1
requires that(b = b0).

The condition(id i1 = id i0) requires that the multi-set[i1] be equal to the multi-set[i0], and thus
requires that(i1 = i0). Similarly, the condition(balance b1 = balance b0 - balance b + balance (b - m))
requires that(b1 = b0 - m). Consequently,β-constraint 2 requires that(i1 = i0) ∧ (b1 = b0 - m).

The precedingβ-constraints lead to the following constraint systems by unfolding of
operations= and∧ :

 • CS1 = { (b = b0) = true, (i1 = i0) = true ∧ (b1 = b0 - m) = true },

 • CS2 = { (b = b0) = true, (i1 = i0) = true ∧ (b1 = b0 - m) = false },

 • CS3 = { (b = b0) = true, (i1 = i0) = false ∧ (b1 = b0 - m) = true },

 • CS4 = { (b = b0) = true, (i1 = i0) = false ∧ (b1 = b0 - m) = false },

 • CS5 = { (b = b0) = false }.

The first constraint system characterizes the subdomain of the correct values leading to
behaviors, while the others characterize the subdomains of the incorrect values lead
failures.

 • CS1 = { (pree ⊆ s) = true, (s’ = s - pree + poste) = true },

 • CS2 = { (pree ⊆ s) = true, (s’ = s - pree + poste) = false },

 • CS3 = { (pree ⊆ s) = false }.

id i0

balance b0 c

c.withdraw m():: b m≥() balance b balance b m–()→⇒ id i1

balance b1 c

⋅

β-constraint 1:
id ∅

balance bc

id i0

balance b0 c

⊆ ,

β-constraint 2:
id i1

balance b1 c

id i0

balance b0 c

id ∅
balance bc

–
id ∅

balance b m–() c
+= ⋅
120

Practical Test Selection

nized
single
Three

ating

rces
5.4.6 How to findβ-constraints in pre- and postconditions
in the presence of synchronization expressions?

A synchronization expression offers an object the means of choosing how to be synchro
with other partners (even itself). The synchronization expression involves a single event (
synchronization) or a combination of events by means of synchronization operators.
synchronization operators are provided: “..” for sequence, “//” for simultaneity, and “⊕” for
alternative.β-constraints can be drawn up from synchronization expressions by enumer
the possible synchronization cases.

Given a methode having the axiome With synchro :: pree → poste, the fire of the evente is
illustrated by the following deduction tree:

where:

 • pree denotes the resources the evente must consume from the places of the net,

 • poste denotes the resources the evente must produce in the places of the net,

 • s denotes the system statebefore the fire ofe,

 • s’ denotes the system stateafter the fire ofe,

 • synchro denotes a synchronization expression,

 • s’’ denotes the system statebefore the fire ofsynchro,

 • s’’’ denotes the system stateafter the fire ofsynchro.

The evente occurs if and only if the transition〈s, e, s’〉 is valid (Valid 〈s, e, s’〉 = true), i.e. the
three followingβ-constraints are satisfied:

β-constraint 1 The transition〈s’’, synchro, s’’’〉 is valid:Valid 〈s’’, synchro, s’’’〉 = true.

β-constraint 2 The statepree is included in the states: pree ⊆ s.

β-constraint 3 The evente succeeds in consuming, from the places of the net, the resou
pree required by the preconditions, and in producing the resourcesposte
required by the postconditions. Moreover,e is synchronized withsynchro:
s’ = s - pree + poste - s’’ + s’’’ = s’’’ + poste (seeσ-constraint 4).

with the following substitution (σ-constraint):

σ-constraint 4 The system states’’ is equal to the system states minus the preconditions
pree: s’’ = s - pree.

CLASS

e With synchro :: pree → poste

pree poste

e With synchro
s’’ s’’’

synchro

SYNC

s s’
e

121

Practical Test Selection

gle
Since we are not only interested in the cases of valid behaviors (Valid 〈s, e, s’〉 = true), but also
in the cases of invalid behaviors (Valid 〈s, e, s’〉 = false), the precedingβ-constraints lead to the
four following constraint systems:

The predicateValid 〈s’’, synchro, s’’’〉 needs to be refined in order to deal with the cases of sin
synchronization (synchro = sync), sequential synchronization (synchro = sync1 .. sync2),
simultaneous synchronization (synchro = sync1 // sync2) and alternative synchronization
(synchro = sync1 ⊕ sync2).

5.4.6.1 Single synchronization

Given a methode having the axiome With synchro :: pree → poste in which the synchronization
expressionsynchro involves a single eventsync such thatsync :: presync → postsync, the portion of
the deduction tree for the synchronization expression is the following:

where:

 • sync denotes an event of a connected object with which the evente wants to synchronize,

 • presync denotes the resources the eventsync must consume from the places of the net,

 • postsync denotes the resources the eventsync must produce in the places of the net.

β-constraint 1 of section 5.4.6 (Valid 〈s’’, synchro, s’’’〉 = true) becomes:

β-constraint 1 The transition〈s’’, sync, s’’’〉 is valid:Valid 〈s’’, sync, s’’’〉 = true.

This condition implies thatpresync ⊆ s’’ (β-constraint 1.1)
ands’’’ = s’’ - presync + postsyn (β-constraint 1.2).

 • CS1 = { Valid 〈s’’, synchro, s’’’〉 = true, (pree ⊆ s) = true, (s’ = s’’’ + poste) = true },

 • CS2 = { Valid 〈s’’, synchro, s’’’〉 = true, (pree ⊆ s) = true, (s’ = s’’’ + poste) = false },

 • CS3 = { Valid 〈s’’, synchro, s’’’〉 = true, (pree ⊆ s) = false },

 • CS4 = { Valid 〈s’’, synchro, s’’’〉 = false },

with s’’ = s - pree.

CLASS

synchro = sync :: presync → postsync

MONO

 presync postsync
sync

 s’’ s’’’
sync

Valid 〈s’’, synchro, s’’’〉 = Valid 〈s’’, sync, s’’’〉
122

Practical Test Selection

t

Example 2. In the case of the telephone system, when the amount of moneym that the client
wants to withdraw is greater than the balanceb available on the card, the fire of the even
t.buy(m) is illustrated as follows (the vectors representing the states of the objectst andc are
simplified to focus only on places involved in the computation of the transition):

The eventt.buy(m) occurs if the followingβ-constraints are satisfied (β-constraints related to
algebraic conditions and method parameters are not treated in this example):

wait-for-buy c1 s1

ready-to-eject c2 s2 t

balance b0[]
c

t.buy m() With c.get-balance b()::
m b>() wait-for-buy c s ready-to-eject c s→⇒

wait-for-buy c1' s1'

ready-to-eject c2' s2' t

balance b0'
c

⋅

wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

c.get-balance b():: balance b balance b→
wait-for-buy c1''' s1'''

ready-to-eject c2''' s2''' t

balance b0'''
c

⋅

β-constraint 1.1:

wait-for-buy ∅ ∅

ready-to-eject ∅ ∅ t

balance b[]
c

 wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

⊆ ⋅

β-constraint 1.2:

wait-for-buy c1''' s1'''

ready-to-eject c2''' s2''' t

balance b0'''
c

 wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

=

wait-for-buy ∅ ∅
ready-to-eject ∅ ∅ t

balance b[]c

–

wait-for-buy ∅ ∅
ready-to-eject ∅ ∅ t

balance b[]c

⋅+

β-constraint 2:

wait-for-buy c s

ready-to-eject ∅ ∅ t

balance∅[]
c

 wait-for-buy c1 s1

ready-to-eject c2 s2 t

balance b0[]
c

⋅⊆

β-constraint 3:

wait-for-buy c1' s1'

ready-to-eject c2' s2' t

balance b0'
c

 wait-for-buy c1''' s1'''

ready-to-eject c2''' s2''' t

balance b0'''
c

 wait-for-buy ∅ ∅

ready-to-eject c st

balance∅[]
c

+= ⋅

σ-constraint 4:

wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

 wait-for-buy c1 s1

ready-to-eject c2 s2 t

balance b0[]
c

 wait-for-buy c s

ready-to-eject ∅ ∅ t

balance∅[]
c

–= ⋅
123

Practical Test Selection

ns
e

ing to
β-constraint 1 requires that:
(b = b0’’), (c1’’’ = c1’’) ∧ (c2’’’ = c2’’) ∧ (s1’’’ = s1’’) ∧ (s2’’’ = s2’’) ∧ (b0’’’ = b0’’),
β-constraint 2 requires that:
(c = c1) ∧ (s = s1),
andβ-constraint 3 requires that:
(c1’ = c1’’’) ∧ (c2’ = c2’’’+ c) ∧ (s1’ = s1’’’) ∧ (s2’ = s2’’’+ s) ∧ (b0’ = b0’’’),
with the substitutions (σ-constraint 4):
c1’’ = c1 - c, c2’’ = c2, s1’’ = s1 - s, s2’’ = s2, b0’’ = b0.

The precedingβ-constraints lead to a set of constraint systems by unfolding the operatio=
and ∧ , and by applying the substitutionsσ. The constraint system characterizing th
subdomain of the correct values, leading to valid behaviors, is the following:

CS1 = {
(b = b0) = true, (c1’’’= c1 - c) = true ∧ (c2’’’= c2) = true ∧ (s1’’’= s1 - s) = true ∧ (s2’’’= s2) = true ∧ (b0’’’= b0) = true,
(c = c1) = true ∧ (s = s1) = true,
(c1’= c1’’’) = true ∧ (c2’= c2’’’+ c) = true ∧ (s1’= s1’’’) = true ∧ (s2’= s2’’’+ s) = true ∧ (b0’= b0’’’) = true }.

The constraint systems characterizing the subdomains of the incorrect values, lead
failures, are not given in this document.

5.4.6.2 Sequential synchronization

Given a methode having the axiome With synchro :: pree → poste in which the synchronization
expressionsynchro is a sequential synchronizationsynchro = sync1 .. sync2, the portion of the
deduction tree for the synchronization expression is the following:

where:

 • sync1 denotes a synchronization expression,

 • sync2 denotes a synchronization expression,

 • s11 denotes the system statebefore the fire ofsync1,

 • s12 denotes the system stateafter the fire ofsync1,

 • s21 denotes the system statebefore the fire ofsync2,

 • s22 denotes the system stateafter the fire ofsync2.

β-constraint 1 of section 5.4.6 (Valid 〈s’’, synchro, s’’’〉 = true) becomes:

SEQ

synchro = sync1 .. sync2

s21 s22

sync2

s11 s12

sync1

s’’ s’’’
124

Practical Test Selection

e

β-constraint 1:

β-constraint 1.1 The transition〈s11, sync1, s12〉 is valid:Valid 〈s11, sync1, s12〉 = true.

If the synchronization expressionsync1 is a single event
(sync1 :: presync1 → postsync1), this condition implies that:
■ presync1 ⊆ s11 (condition 1.1.1),
■ s12 = s11 - presync1 + postsyn1 (condition 1.1.2).

β-constraint 1.2 The transition〈s21, sync2, s22〉 is valid:Valid 〈s21, sync2, s22〉 = true.

If the synchronization expressionsync2 is a single event
(sync2 :: presync2 → postsync2), this condition implies that:
■ presync2 ⊆ s21 (condition 1.2.1),
■ s22 = s21 - presync2 + postsyn2 (condition 1.2.2).

with the following substitutions (σ-constraints):

σ-constraint 1.3 The system states’’ is equal to the system states11: s’’ = s11.

σ-constraint 1.4 The system states12 is equal to the system states21: s12 = s21.

σ-constraint 1.5 The system states’’’ is equal to the system states22: s’’’ = s22.

Example 3. In the case of the telephone system, when the balanceb available on the card is
greater than or equal to the amount of moneym that the client wants to withdraw, the fire of th
eventt.buy(m) is illustrated as follows (the vectors representing the states of the objectst andc
are simplified to focus only on places involved in the computation of the transition):

Valid 〈s’’, synchro, s’’’〉 =

Valid 〈s11, sync1, s12〉 ∧ Valid 〈s21, sync2, s22〉

with s’’ = s11, s12 = s21, s’’’ = s22.

wait-for-buy c1 s1

ready-to-eject c2 s2 t

balance b0[]
c

 t.buy m()

With c.get-balance b()..c.withdraw m()::
b m≥() wait-for-buy c s ready-to-eject c s+m→⇒

wait-for-buy c1' s1'

ready-to-eject c2' s2' t

balance b0'
c

⋅

wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

c.get-balance b()..c.withdraw m()
wait-for-buy c1''' s1'''

ready-to-eject c2''' s2''' t

balance b0'''
c

⋅

wait-for-buy c11
1

s11
1

ready-to-eject c11
2

s11
2

t

balance b11
0[]c

c.get-balance b():: balance b balance b→
wait-for-buy c12

1
s12
1

ready-to-eject c12
2

s12
2

t

balance b12
0[]c

⋅

125

Practical Test Selection
The eventt.buy(m) occurs if the followingβ-constraints are satisfied (β-constraints related to
algebraic conditions and method parameters are not treated in this example):

wait-for-buy c21
1

s21
1

ready-to-eject c21
2

s21
2

t

balance b21
0[]c

c.withdraw m()::
b m≥() balance b balance b m–()→⇒

wait-for-buy c22
1

s22
1

ready-to-eject c22
2

s22
2

t

balance b22
0[]c

⋅

β-constraint 1.1.1:

wait-for-buy ∅ ∅

ready-to-eject ∅ ∅ t

balance b[]c

 wait-for-buy c11

1
s11
1

ready-to-eject c11
2

s11
2

t

balance b11
0[]c

⊆ ⋅

β-constraint 1.1.2:

wait-for-buy c12
1

s12
1

ready-to-eject c12
2

s12
2

t

balance b12
0[]c

 wait-for-buy c11

1
s11
1

ready-to-eject c11
2

s11
2

t

balance b11
0[]c

=

wait-for-buy ∅ ∅
ready-to-eject ∅ ∅ t

balance b[]c

–

wait-for-buy ∅ ∅
ready-to-eject ∅ ∅ t

balance b[]c

⋅+

β-constraint 1.2.1:

wait-for-buy ∅ ∅

ready-to-eject ∅ ∅ t

balance b[]c

 wait-for-buy c21

1
s21
1

ready-to-eject c21
2

s21
2

t

balance b21
0[]c

⊆ ⋅

β-constraint 1.2.2:

wait-for-buy c22
1

s22
1

ready-to-eject c22
2

s22
2

t

balance b22
0[]c

 wait-for-buy c21

1
s21
1

ready-to-eject c21
2

s21
2

t

balance b21
0[]c

=

wait-for-buy ∅ ∅
ready-to-eject ∅ ∅ t

balance b[]c

–

wait-for-buy ∅ ∅
ready-to-eject ∅ ∅ t

balance b m–()[]c

⋅+

σ-constraint 1.3:

wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

 wait-for-buy c11

1
s11
1

ready-to-eject c11
2

s11
2

t

balance b11
0[]c

= ⋅

σ-constraint 1.4:

wait-for-buy c12
1

s12
1

ready-to-eject c12
2

s12
2

t

balance b12
0[]c

 wait-for-buy c21

1
s21
1

ready-to-eject c21
2

s21
2

t

balance b21
0[]c

= ⋅
126

Practical Test Selection

on
g

ing to
β-constraint 1.1 requires that:
(b = 0b11), (c12

1 = 1c11) ∧ (c12
2 = 2c11) ∧ (s12

1 = 1s11) ∧ (s12
2 = 2s11) ∧ (b12

0 = 0b11),
β-constraint 1.2 requires that:
(b = 0b21), (c22

1 = 1c21) ∧ (c22
2 = 2c21) ∧ (s22

1 = 1s21) ∧ (s22
2 = 2s21) ∧ (b22

0 = 0b21 - m),
β-constraint 2 requires that:
(c = c1) ∧ (s = s1),
andβ-constraint 3 requires that:
(c1’ = c1’’’) ∧ (c2’ = c2’’’+ c) ∧ (s1’ = s1’’’) ∧ (s2’ = s2’’’+ s + m) ∧ (b0’ = b0’’’),
with the substitutions (σ-constraints 1.3, 1.4, 1.5 and 4):
(c1’’ = 1c11), (c2’’ = 2c11), (s1’’ = 1s11), (s2’’ = 2s11), (b0’’ = 0b11),
(c12

1 = 1c21), (c12
2 = 2c21), (s12

1 = 1s21), (s12
2 = 2s21), (b12

0 = 0b21),
(c1’’’ = 1c22), (c2’’’ = 2c22), (s1’’’ = 1s22), (s2’’’ = 2s22), (b0’’’ = 0b22),
(c1’’ = c1 - c), (c2’’ = c2), (s1’’ = s1 - s), (s2’’ = s2), (b0’’ = b0).

The precedingβ-constraints lead to a set of constraint systems by unfolding the operati=
and the operation∧ , and by applying the substitutionsσ. The constraint system characterizin
the subdomain of the correct values, leading to valid behaviors, is the following:

CS1 = {
(b = b0) = true, (c12

1 = c1 - c) = true ∧ (c12
2 = c2) = true ∧ (s12

1 = s1 - s) = true ∧ (s12
2 = s2) = true ∧ (b12

0 = b0) = true,
(b = 0b12) = true, (c22

1 = 1c12) = true ∧ (c22
2 = 2c12) = true ∧ (s22

1 = 1s12) = true ∧ (s22
2 = 2s12) = true ∧ (b22

0 = 0b12 - m) = true,
(c = c1) = true ∧ (s = s1) = true,
(c1’ = 1c22) = true ∧ (c2’ = 2c22 + c) = true ∧ (s1’ = 1s22) = true ∧ (s2’ = 2s22 + s + m) = true ∧ (b0’ = 0b22) = true }.

The constraint systems characterizing the subdomains of the incorrect values, lead
failures, are not given in this document.

σ-constraint 1.5:

wait-for-buy c1''' s1'''

ready-to-eject c2''' s2''' t

balance b0'''
c

 wait-for-buy c22

1
s22
1

ready-to-eject c22
2

s22
2

t

balance b22
0[]c

= ⋅

β-constraint 2:

wait-for-buy c s

ready-to-eject ∅ ∅ t

balance∅[]
c

 wait-for-buy c1 s1

ready-to-eject c2 s2 t

balance b0[]
c

⋅⊆

β-constraint 3:

wait-for-buy c1' s1'

ready-to-eject c2' s2' t

balance b0'
c

 wait-for-buy c1''' s1'''

ready-to-eject c2''' s2''' t

balance b0'''
c

 wait-for-buy ∅ ∅

ready-to-eject c s m+ t

balance∅[]
c

+= ⋅

σ-constraint 4:

wait-for-buy c1'' s1''

ready-to-eject c2'' s2'' t

balance b0''[]
c

 wait-for-buy c1 s1

ready-to-eject c2 s2 t

balance b0[]
c

 wait-for-buy c s

ready-to-eject ∅ ∅ t

balance∅[]
c

–= ⋅
127

Practical Test Selection
5.4.6.3 Simultaneous synchronization

Consider a methode having the axiome With synchro :: pree → poste in which the
synchronization expressionsynchro is a simultaneous synchronizationsynchro = sync1 // sync2.
The portion of the deduction tree for the synchronization expression is the following:

where:

 • sync1 denotes a synchronization expression,

 • sync2 denotes a synchronization expression,

 • s11 denotes the system statebefore the fire ofsync1,

 • s12 denotes the system stateafter the fire ofsync1,

 • s21 denotes the system statebefore the fire ofsync2,

 • s22 denotes the system stateafter the fire ofsync2.

β-constraint 1 of section 5.4.6 (Valid 〈s’’, synchro, s’’’〉 = true) becomes:

β-constraint 1:

β-constraint 1.1 The transition〈s11, sync1, s12〉 is valid:Valid 〈s11, sync1, s12〉 = true.

β-constraint 1.2 The transition〈s21, sync2, s22〉 is valid:Valid 〈s21, sync2, s22〉 = true.

with the following substitutions (σ-constraints):

σ-constraint 1.3 The system states’’ is equal to the sum of the system statess11 ands21:
s’’ = s11 + s21.

σ-constraint 1.4 The system states’’’ is equal to the sum of the system statess12 ands22:
s’’’ = s12 + s22.

SIM

synchro = sync1 // sync2

s21 s22

sync2

s11 s12

sync1

s’’ s’’’

Valid 〈s’’, synchro, s’’’〉 =

Valid 〈s11, sync1, s12〉 ∧ Valid 〈s21, sync2, s22〉

with (s’’ = s11 + s21) and(s’’’ = s12 + s22).
128

Practical Test Selection
5.4.6.4 Alternative synchronization

Consider a methode having the axiome With synchro :: pree → poste in which the
synchronization expressionsynchro is an alternative synchronizationsynchro = sync1 ⊕ sync2.
The portion of the deduction tree for the synchronization expression is the following:

where:

 • sync1 denotes a synchronization expression,

 • sync2 denotes a synchronization expression,

 • s11 denotes the system statebefore the fire ofsync1,

 • s12 denotes the system stateafter the fire ofsync1,

 • s21 denotes the system statebefore the fire ofsync2,

 • s22 denotes the system stateafter the fire ofsync2.

β-constraint 1 of section 5.4.6 (Valid 〈s’’, synchro, s’’’〉 = true) becomes:

β-constraint 1:

β-constraint 1.1 The transition〈s11, sync1, s12〉 is valid:Valid 〈s11, sync1, s12〉 = true.

with the following substitutions (σ-constraints):

σ-constraint 1.2 The system states’’ is equal to the system states11: (s’’ = s11).

σ-constraint 1.3 The system states’’’ is equal to the system states12: (s’’’ = s12).

or,

β-constraint 1.1 The transition〈s21, sync2, s22〉 is valid:Valid 〈s21, sync2, s22〉 = true.

with the following substitutions (σ-constraints):

σ-constraint 1.2 The system states’’ is equal to the system states21: (s’’ = s21).

σ-constraint 1.3 The system states’’’ is equal to the system states22: (s’’’ = s22).

ALT-1

synchro = sync1 ⊕ sync2

s11 s12

sync1

s’’ s’’’

ALT-2

synchro = sync1 ⊕ sync2

s21 s22

sync2

s’’ s’’’

or
129

Practical Test Selection

case,
built

.

5.4.7 Example of subdomain decomposition

This section presents a complete example of subdomain decomposition on a test
performed from the behavioral axioms of the specification and from the derivation trees
up by applying theCO-OPN inference rules described in section 3.4.4.

The test case is〈 <c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-in (v3)> T, result 〉
where the variablesv0, v3 are of typePin, the variablesv1, v2 are of typeMoney, andresult is of
typeBooleans. The derivation tree corresponding to this test case is presented in figure 32

5.4.7.1 Finding constraint systems characterizing the subdomains

➤ Axiom create

The axiom ofcreate gives rise to a set ofβ-constraintsβ0:

 • β-constraint related to the parameterv0 of create: v0 = i,

 • β-constraints related to pre- and postconditions ofcreate:

Consequentlyβ0 = { (v0 = i), (i0 = i) ∧ (b0 = 20) }.

➤ Axiom withdraw

The axiom ofwithdraw gives rise to a set ofβ-constraintsβ1:

 • β-constraint related to the parameterv1 of withdraw: v1 = m,

 • β-constraint related to the algebraic condition ofwithdraw: b ≥ v1,

 • β-constraints related to pre- and postconditions ofwithdraw:

Valid 〈s’’, synchro, s’’’〉 = Valid 〈s11, sync1, s12〉

with s’’ = s11 ands’’’ = s12

or

Valid 〈s’’, synchro, s’’’〉 = Valid 〈s21, sync2, s22〉

with s’’ = s21 ands’’’ = s22.

β-constraint 1:
id ∅

balance∅ c

id ∅
balance20 c

⊆ ,

β-constraint 2:
id i0

balance b0 c

id ∅
balance20 c

id ∅
balance∅ c

–
id i

balance∅ c
+= ⋅
130

Practical Test Selection
Consequentlyβ1 = { (v1 = m), (b ≥ v1), (b = b1), (i2 = i1) ∧ (b2 = b1 - m) }.

R1:

CREATE
id ∅

balance 20 c

c.create v0():: (v0= i) id i→⇒

β0

id i0

balance b0 c

STAB-2
id ∅

balance 20 c

c.create v0():: (v0= i) id i→⇒

β0
*

id i0

balance b0 c

--

R2:

R1

CLASS balance b1[]
c

c.withdraw v1():: (v1= m) b v1≥()∧ balance b balance b m–()→⇒

β1

balance b2[]
c

MONO

id i1

balance b1 c

c.withdraw v1():: (v1= m) b v1≥()∧ balance b balance b m–()→⇒

β1

id i2

balance b2 c

--

SEQ

id i3

balance b3 c

c.create v0()..c.withdraw v1()

β0 β1 σ0∧ ∧

id i4

balance b4 c

STAB-2
id i3

balance b3 c

c.create v0()..c.withdraw v1()

β0 β1 σ0∧ ∧
*

id i4

balance b4 c

R3:

R2

CLASS balance b5[]
c

c.get-balance v2():: (v2= b′) balance b′ balance b′→⇒

β2

balance b6[]
c

--

MONO

id i5

balance b5 c

c.get-balance v2():: (v2= b′) balance b′ balance b′→⇒

β2

id i6

balance b6 c

--

SEQ

id i7

balance b7 c

c.create v0()..c.withdraw v1()..c.get-balance v2()

β0 β1 β2 σ1∧ ∧ ∧

id i8

balance b8 c

STAB-2
id i7

balance b7 c

c.create v0()..c.withdraw v1()..c.get-balance v2()

β0 β1 β2 σ1∧ ∧ ∧
*

id i8

balance b8 c

--

R3

CLASS id bi9[]
c

c.get-pin v3():: (v3= i ′) id i ′ id i ′→⇒

β3

id bi10[]
c

MONO

id i9

balance b9 c

c.get-pin v3():: (v3= i ′) id i ′ id i ′→⇒

β3

id i10

balance b10 c

SEQ

id i11

balance b11 c

c.create v0()..c.withdraw v1()..c.get-balance v2()..c.get- pin v3()

β0 β1 β2 β3 σ2∧ ∧ ∧ ∧

id i12

balance b12 c

STAB-2
id i11

balance b11 c

c.create v0()..c.withdraw v1()..c.get-balance v2()..c.get- pin v3()

β0 β1 β2 β3 σ2∧ ∧ ∧ ∧
*

id i12

balance b12 c

--

Fig. 32.Derivation tree for the test
〈<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-pin (v3)>T, result〉

β-constraint 1:
id ∅

balance bc

id i1

balance b1 c

⊆ ,

β-constraint 2:
id i2

balance b2 c

id i1

balance b1 c

id ∅
balance bc

–
id ∅

balance b m–() c
+= ⋅
131

Practical Test Selection
➤ Event c.create (v 0) .. c.withdraw (v 1)

The eventc.create (v0) .. c.withdraw (v1) gives rise to a set ofσ-constraintsσ0:

Consequentlyσ0 = { ∅ = i3, 20 = b3, i0 = i1, b0 = b1, i2 = i4, b2 = b4 }.

➤ Axiom get-balance

The axiom ofget-balance gives rise to a set ofβ-constraintsβ2:

 • β-constraint related to the parameterv2 of get-balance: v2 = b’,

 • β-constraints related to pre- and postconditions ofget-balance:

Consequentlyβ2 = { (v2 = b’), (b’ = b5), (i6 = i5) ∧ (b6 = b5) }.

➤ Event c.create (v 0) .. c.withdraw (v 1) .. c.get-balance (v 2)

The eventc.create (v0) .. c.withdraw (v1) .. c.get-balance (v2) gives rise to a set ofσ-constraintsσ1:

Consequentlyσ1 = { i7 = i3, b7 = b3, i4 = i5, b4 = b5, i8 = i6, b8 = b6 }.

➤ Axiom get-pin

The axiom ofget-pin gives rise to a set ofβ-constraintsβ3:

 • β-constraint related to the parameterv3 of get-pin: v3 = i’,

 • β-constraints related to pre- and postconditions ofget-pin:

Consequentlyβ3 = { (v3 = i’), (i’ = i9), (i10 = i9) ∧ (b10 = b9) }.

➤ Event c.create(v 0) .. c.withdraw(v 1) .. c.get-balance(v 2) .. c.get-pin(v 3)

c.create(v0) .. c.withdraw(v1) .. c.get-balance(v2) .. c.get-pin(v3) gives rise to theσ-constraintsσ2:

id ∅
balance20 c

id i3

balance b3 c

=
id i0

balance b0 c

id i1

balance b1 c

=
id i2

balance b2 c

id i4

balance b4 c

⋅=, ,

β-constraint 1:
id ∅

balance b' c

id i5

balance b5 c

⊆ ,

β-constraint 2:
id i6

balance b6 c

id i5

balance b5 c

id ∅
balance b' c

–
id ∅

balance b' c
+= ⋅

id i7

balance b7 c

id i3

balance b3 c

=
id i4

balance b4 c

id i5

balance b5 c

=
id i8

balance b8 c

id i6

balance b6 c

⋅=, ,

β-constraint 1:
id i ′

balance∅ c

id i9

balance b9 c

⊆ ,

β-constraint 2:
id i10

balance b10 c

id i9

balance b9 c

id i ′
balance∅ c

–
id i ′

balance∅ c
+= ⋅
132

Practical Test Selection

invalid
by

n

g to
Consequentlyσ2 = { i11 = i7, b11 = b7, i8 = i9, b8 = b9, i12 = i10, b12 = b10 }.

By applying the substitutionsσ0, σ1 andσ2, and by dropping theβ-constraints not useful for
the computation of the instantiation of the variablesv0, v1, v2 andv3, we obtain:

β0 = { (v0 = i), (i1 = i) ∧ (b1 = 20) },
β1 = { (v1 = m), (b ≥ v1), (b = b1), (i2 = i1) ∧ (b2 = b1 - m) },
β2 = { (v2 = b’), (b’ = b2), (i6 = i2) },
β3 = { (v3 = i’), (i’ = i6) }.

Since we are not only interested in the cases of valid behaviors, but also in the cases of
behaviors, the precedingβ-constraints lead to the following set of constraint systems
unfolding of the operations= and∧ :

CSk= { (v0 = i) = r1, (i1 = i) = r2 ∧ (b1 = 20) = r3, (v1 = m) = r4, (b ≥ v1) = r5, (b = b1) = r6, (i2 = i1) = r7
∧ (b2 = b1 - m) = r8, (v2 = b’) = r9, (b’ = b2) = r10, (i6 = i2) = r11, (v3 = i’) = r12, (i’ = i6) = r13 },

wherer1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 andr13 are variables of typeBooleans.

5.4.7.2 Solving constraint systems and selecting values

➤ Constraint systemCS1

For instance, the resolution of the constraint systemCS1:

{ (v0 = i) = true, (i1 = i) = true ∧ (b1 = 20) = true, (v1 = m) = true, (b ≥ v1) = true, (b = b1) = true, (i2 = i1) = true
∧ (b2 = b1 - m) = true, (v2 = b’) = true, (b’ = b2) = true, (i6 = i2) = true, (v3 = i’) = true, (i’ = i6) = true },

leads to the substitutionθ1:

{ v0 = v3, 20 ≥ v1, v2 = 20 - v1 }.

Values satisfying the constraint systemCS1 are randomly selected using the functio
subuniformityII (<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-in (v3)> T, CS1, θ1).
For instance, the following test case could be selected:

Τ1: 〈<c.create (1234)> <c.withdraw (8)> <c.get-balance (12)> <c.get-pin (1234)>T, true〉.

Since the constraint systemCS1 characterizes the subdomain of the correct values, leadin
valid behaviors, the boolean variableresult has been instantiated totrue.

➤ Constraint systemCS2

Similarly, the resolution of the constraint systemCS2:

{ (v0 = i) = true, (i1 = i) = true ∧ (b1 = 20) = true, (v1 = m) = true, (b ≥ v1) = true, (b = b1) = true, (i2 = i1) = true
∧ (b2 = b1 - m) = true, (v2 = b’) = true, (b’ = b2) = false, (i6 = i2) = true, (v3 = i’) = true, (i’ = i6) = true },

leads to the substitutionθ2:

{ v0 = v3, 20 ≥ v1, v2 ≠ 20 - v1 }.

id i11

balance b11 c

id i7

balance b7 c

=
id i8

balance b8 c

id i9

balance b9 c

=
id i12

balance b12 c

id i10

balance b10 c

⋅=, ,
133

Practical Test Selection

n

g to

n

g to

n

g to
Values satisfying the constraint systemCS2 are randomly selected using the functio
subuniformityII (<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-in (v3)> T, CS2, θ2).
For instance, the following test case could be selected:

Τ2: 〈<c.create (1111)> <c.withdraw (6)> <c.get-balance (20)> <c.get-pin (1111)>T, false〉.

Since the constraint systemCS2 characterizes the subdomains of the incorrect values leadin
failures, the boolean variableresult has been instantiated tofalse.

➤ Constraint systemCS3

The resolution of the constraint systemCS3:

{ (v0 = i) = true, (i1 = i) = true ∧ (b1 = 20) = true, (v1 = m) = true, (b ≥ v1) = false, (b = b1) = true, (i2 = i1) = true
∧ (b2 = b1 - m) = true, (v2 = b’) = true, (b’ = b2) = false, (i6 = i2) = true, (v3 = i’) = true, (i’ = i6) = true },

leads to the substitutionθ3:

{ v0 = v3, 20 < v1, v2 ≠ 20 - v1 }.

Values satisfying the constraint systemCS3 are randomly selected using the functio
subuniformityII (<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-in (v3)> T, CS3, θ3).
For instance, the following test case could be selected:

Τ3: 〈<c.create (4321)> <c.withdraw (40)> <c.get-balance (10)> <c.get-pin (4321)>T, false〉.

Since the constraint systemCS3 characterizes the subdomains of the incorrect values leadin
failures, the boolean variableresult has been instantiated tofalse.

➤ Constraint systemCS4

The resolution of the constraint systemCS4:

{ (v0 = i) = false, (i1 = i) = true ∧ (b1 = 20) = true, (v1 = m) = true, (b ≥ v1) = false, (b = b1) = true, (i2 = i1) = true
∧ (b2 = b1 - m) = true, (v2 = b’) = true, (b’ = b2) = false, (i6 = i2) = true, (v3 = i’) = false, (i’ = i6) = true },

leads to the substitutionθ4:

{ v0 ≠ v3, 20 < v1, v2 ≠ 20 - v1 }.

Values satisfying the constraint systemCS4 are randomly selected using the functio
subuniformityII (<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-in (v3)> T, CS4, θ4).
For instance, the following test case could be selected:

Τ4: 〈<c.create (2222)> <c.withdraw (22)> <c.get-balance (2)> <c.get-pin (1111)>T, false〉.

Since the constraint systemCS4 characterizes the subdomains of the incorrect values leadin
failures, the boolean variableresult has been instantiated tofalse.

➤ Constraint systemCS5

Finally, the resolution of the constraint systemCS5:

{ (v0 = i) = false, (i1 = i) = false∧ (b1 = 20) = false, (v1 = m) = false, (b ≥ v1) = false, (b = b1) = false, (i2 = i1) = false
∧ (b2 = b1 - m) = false, (v2 = b’) = false, (b’ = b2) = false, (i6 = i2) = false, (v3 = i’) = false, (i’ = i6) = false },

leads to the substitutionθ5:
134

Practical Test Selection

he
the

g to

se

e such
ss.

ering its

t.

sets

s R1
{ v0 ≠ i, v1 ≠ m, b < v1, v2 ≠ b’, v3 ≠ i’ },

in which v0 ≠ i, v1 ≠ m, b < v1, v2 ≠ b’ andv3 ≠ i’ are not observable results. Consequently, t
variablesv0, v1, v2 and v3 are not constrained and thus are randomly instantiated using
function subuniformityII (<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-in (v3)> T,
CS5, θ5). For instance, the following test case could be selected:

Τ5: 〈<c.create (4312)> <c.withdraw (10)> <c.get-balance (10)> <c.get-pin (3333)>T, false〉.

Since the constraint systemCS5 characterizes the subdomains of the incorrect values leadin
failures, the boolean variableresult can be instantiated tofalse, as long asθ5 is satisfied (θ5

satisfaction can be tested or proved, or can be a test hypothesis). Otherwise, the test caΤ5 is
not taken into account.

5.5 Minimal test set

Because a test case is defined as a couple〈HML formula, Result〉, and because of its
construction mechanism, a test set could contain redundant test cases. To eliminat
redundancies, a test set can be transformed into a minimal test set during the test proce

A redundant test case is a test case that can be suppressed from the test set without alt
pertinence (validity and unbiasedness). For instance, the test cases〈 f, true〉 and〈¬ f, false〉 are
redundant, as well as the test cases〈 f ∧ g, true〉 and〈g ∧ f, true〉.

A test set free of redundant test cases is called aminimal test set.

Definition 67.Minimal test set

Let SP∈ SPEC be a specification, andH a set of hypotheses.
Let TESTSP,H= {T ∈ TEST| ∀ P ∈ PROG, ((P satisfiesH) ⇒ (P |= SP⇔ P |=O T))}, and
Size: TEST→ IN be a function that returns the size (number of test cases) of the test se

The test setT Min ∈ TESTSP,H is minimal if and only if:

∀ T ∈ TESTSP,H, Size(T) ≥ Size(T Min).

◊

Obviously, there is no unique minimal test set, but many equivalent minimal test
(equivalent with respect to fault detection).

An initial test set could be transformed into another test set by applying the following rule
to R7. The deduction symbol|− is defined onTEST× TESTandT |− T’ means that the test setT’
is deduced from the test setT. The concatenationf | path g of a formulaf and a formulag is a
formula obtained by substitutingg for T in f at the position given by the pathpath∈ PATH (f)
(see definition97 of annex E).
135

Practical Test Selection

ent of
s

to
We distinguish between two kinds of rules for removing redundancies. Rules independ
the validation remove redundant test cases whenresult is not determined, whereas rule
dependent on the validation remove them with regard to this value.

Definition 68.Rules independent of the validation:

R1: ∀ path∈ PATH (f), ({〈 f | pathg, result〉} |− { 〈 f | path ¬ g, not result〉})

R2: ∀ path∈ PATH (f), ({〈 f | pathg, result〉} |− { 〈 f | path(g ∧ g), result〉})

R3: ∀ path∈ PATH (f), ({〈 f | path (g ∧ h), result〉} |− { 〈 f | path(h ∧ g), result〉})

R4: {〈 g, resultA〉, 〈 h, resultB〉} |− { 〈 g ∧ h, resultA and resultB〉}

where:

 • result, resultA andresultB are boolean,

 • f is anHMLSP,XS
 formula,

 • g andh areHMLSP,X formulas. ◊

Definition 69.Rules dependent on the validation:

R5: ∀ path∈ PATH (f), ({〈 f | path <e> T, true〉} |− { 〈 f, true〉})

R6: ∀ path∈ PATH (f), ({〈 f, false〉 } |− { 〈 f | path <e> T, false〉})

R7: {〈 g ∧ h, true〉} |− { 〈 g, true〉, 〈 h, true〉}

where:

 • e is an event,

 • f, g andh areHMLSP formulas. ◊

Let ∼>|− be the test set deduction symbol defined onTEST × TEST. T ∼>|− T’ means thatT’
contains all the test cases ofT plus some test cases deduced fromT by the rules R1 to R7. We
have the following property:

Property 70.Pertinence preservation

Let SP∈ SPEC be a specification, andH a set of hypotheses.
Let TESTSP,H = {T ∈ TEST| ∀ P ∈ PROG, ((P satisfiesH) ⇒ (P |= SP⇔ P |=O T))}.

Let T andT’ ∈ TEST be two test sets satisfyingT ∼>|− T’. We have:

T ∈ TESTSP,H⇒ T’ ∈ TESTSP,H.

◊

Thus, the test setT’ obtained fromT (which can be called a generator) byT ∼>|− T’ is equivalent
in quality (or power to reveal errors) toT but larger or equal in size. For the same power
reveal errors, the smaller generatorT is a minimal test set.
136

Practical Test Selection

three

ar
rocess

sibly
test set

ment.

uction

larity

by
in

all its

est set.
free of

of the

iques

ity,
rious
n the
cation
ms,
ization
fferent

not
5.6 Summary

Chapter 4 has presented our theory of formal testing for object oriented software as a
phase process: atest selection phase, a test execution phase, and atest satisfaction phase.
Chapter 5 has focused on thetest selection phaseby emphasizing the problems that appe
when practical test sets have to be produced, while taking care that the test selection p
has to be semi-automated.

The practical test selection process starts with thetest focusandtest environmentdefinitions, in
which a particular unit that we want to test in detail is selected, and the set of all units vi
used by this focus is deduced. Then, the test selection process defines the exhaustive
which allows to test all the specification properties related to the focus and to its environ
This exhaustive test set is made of couples〈Formula, Result〉, where Formula is an HML
formula with variables (of theHMLSP,X language) andResult is a boolean value showing
whether the expected result of the evaluation ofFormula is true or falsewith respect to the
specification. Hence, the test selection process reduces the level of abstraction ofFormulaby
constraining the instantiation of its variables. This is achieved by associating to each red
hypothesis applied to the program, a corresponding constraint (of theCONSTRAINTSP,Xlanguage
defined in annex E) onFormula.

Usually, the reduction process starts with the application of structural uniformity and regu
hypotheses to the program, i.e. with the application of constraints on the structure ofFormula
(nb-events, depth, nb-occurrences, shape, sequence, positive, trace). Then the instantiation of
the remaining variables ofFormula can be constrained using uniformity hypotheses (i.e.
applying the uniformity constraint) or using uniformity hypotheses with subdoma
decomposition (i.e. by applying thesubuniformityconstraint). Also the instantiation of the
remaining variables can be done in the exhaustive manner: each variable is replaced by
possible instances.

The system of constraints thus defined is solved, and the solution leads to a practicable t
Throughout the test process, the test set can be transformed into a minimal test set
redundant test cases, and the test cases can be validated by computation of the value
variableResult.

The practical test selection process is illustrated in figure 33. Constraint resolution techn
will be presented in the next chapter.

The different variable instantiation methods (structural uniformity, regularity, uniform
uniformity with subdomain decomposition, exhaustiveness) lead to test sets of va
qualities. In formal testing, the coverage criteria proposed to provide a judgement o
quality of the selected test cases is mostly based on the coverage of the different specifi
cases. InCO-OPN, various constructs induce case distinction: distinct behavioral axio
algebraic conditions, method parameters, pre- and postconditions as well as synchron
expressions on other objects. Figure 34 presents the specification coverage of the di
variable instantiation methods.

 • Exhaustivenessgives of course the highest quality test set, but most of the time it is
practicable. To overcome this problem, uniformity hypotheses are used.
137

Practical Test Selection

est
.

ticular
by

of
 • Uniformity (generalization 1:n) provides a low number of test cases, but also the weak
coverage: most of the time it does not explore all cases described in the specification

 • Uniformity with subdomain decompositionlies between uniformity (generalization 1:n) and
exhaustiveness. It does not test all possible cases, but only those that matter for par
specification properties. Indeed, uniformity with subdomain decomposition is,
construction, based on the variousCO-OPNconstructs and thus gives a good coverage
the different specification cases.

CO-OPN Specification

Fig. 33.Practical test selection process

Test Focus and Test Environment Selection

Application of Constraints on the Exhautive Test Set

Constraint Resolution

Practical Test Set

nb-events
depth

nb-occurrences

shape
uniformity

subuniformity ...

trace

sequence

positive

strong

weak

Specification coverage

● Uniformity with subdomain

● Uniformity (generalization1:n)

Number of test cases

low high

Fig. 34.Specification coverage versus number of test cases

● Exhaustiveness

decomposition

(could be infinite)

●
Structural uniformity (generalizationm:n)

● Regularity (generalizationm:n)
138

Practical Test Selection

r.
r than
olute

tly
tion.

rmity
rmity
ity
 • Structural uniformityandregularity are bothm:n generalizations of the program behavio
For the same complexity function, test sets produced by regularity are generally large
test sets produced by structural uniformity. However, even though this is not an abs
rule, they are generally equivalent in quality (power to reveal errors).

 • In the general case, it is not possible to state the quality of test sets obtained bystructural
uniformity and regularity (generalizationm:n), because these test sets are not direc
derived from the specification, but from the tester’s understanding of the specifica
Nevertheless, in most cases, test sets selected by uniformity (generalization 1:n) are
included in test sets selected by structural uniformity and regularity (generalizationm:n),
because the generalizationm:n is likely to include the case of the generalization 1:n.
Consequently, even though it is not an absolute rule, we consider that structural unifo
and regularity hypotheses lead to stronger specification coverage than unifo
hypotheses (generalization1:n), and to weaker specification coverage than uniform
hypotheses with subdomain decomposition which are based on specification cases.
139

Practical Test Selection
140

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

solid
being
ation

nt of a
s by
ts are

t set

al

braic
ure
ms
C H A P T E R

6
CHAPTER6OPERATIONAL TECHNIQUES AND

TEST SET GENERATION TOOL:
CO-OPNTEST

Our approach for testing object-oriented software from formal specifications relies on a
theoretical framework presented in the previous chapters. It exhibits the advantage of
formal, and thus allows a semi-automation of the test selection process. This semi-autom
is based on operational techniques for test set selection, and has led to the developme
new tool, calledCO-OPNTEST. This tool assists the tester during the test set selection proces
providing a panel of constraints to apply to exhaustive test sets. Whenever constrain
selected by the tester, the tool automatically generates test cases (based onHML formulas)
from CO-OPN specifications. This chapter presents operational techniques for tes
selection, as well as theCO-OPNTEST tool.

As stated in section 2.3.1, theBGM method [Bernot 91b] for testing data types from form
specifications has led to the development of theLOFT tool (LOgic for Function and Testing,
[Marre 91]) which semi-automatically generates test sets (algebraic formulas) from alge
specifications. TheLOFT kernel is an equational resolution procedure. This proced
simulatesconditional narrowing[Padawitz 88] and includes additional control mechanis
for the purpose of subdomain decomposition.
141

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

ns. A
s the
ese

wing
itional
d
ms.
isms
ntrol
riting

o avoid
ge,
nt
This
each

ing
83],

ed on

for the

ted
g by
onal
main

e

s, we

e
an be
rn

g the
the
the
Conditional narrowing is an equational resolution procedure which computes goal solutio
solution is computed in several steps using a rewriting system. A narrowing step rewrite
goal with the help of a rule (axiom) under some conditions of application of this rule; th
conditions form a substitution on the goal variables. If after a certain number of narro
steps, the goal becomes the empty goal, the substitution set is a goal solution. Cond
narrowing is a procedure that iscorrect (any computed solution is a correct solution) an
complete (the procedure can compute any solution) for convergent rewriting syste
However, studies presented in [Marre 88] and [Marre 89] have identified control mechan
required for the purpose of subdomain decomposition. The introduction of such co
mechanisms in functional languages (functional programming is based on rew
mechanisms), or in procedural languages providing a narrowing procedure (like theRAP
language, see [Hussmann 88]), requires some important changes in their interpreters. T
this difficulty, the LOFT kernel simulates conditional narrowing using a logic langua
PROLOG (PROgramming in LOGic, [Giannesini 86]), which provides a very efficie
resolution procedure and allows the introduction of additional control mechanisms.
simulation consists of the construction of a logic program by associating a Horn clause to
axiom of a positive conditional specification. This simulation, well known for introduc
functions in logic programming, has been studied by many authors [Kowalski
[Deransart 83], [vanEmden 87], [Bosco 91], [Fribourg 88].

Chapter 5 has shown that our testing method requires solving constraint systems defin
exhaustive test sets, and performing subdomain decompositions: theCO-OPNTESTkernel needs
a correct and complete equational resolution procedure, as well as control mechanisms
purpose of subdomain decomposition. Consequently, theCO-OPNTESTkernel is based on the
same technique as theLOFT kernel which has a proven efficiency. This technique, presen
above, is an equational resolution procedure which simulates conditional narrowin
PROLOG resolution, associating a Horn clause to each axiom of a positive conditi
specification. Furthermore, it includes additional control mechanisms for subdo
decomposition.

Knowing the foundation of theCO-OPNTEST kernel, we can present a partial view of th
CO-OPNTEST architecture.CO-OPNTEST generates a test set in the following two steps.

Since the resolution procedure is based on positive conditional specification
provide positive conditional algebraic specifications of theCO-OPNlanguage, the
HML language and theCONSTRAINT language.

Step 1 From formal specifications to computational Horn clauses

Algebraic specifications, as well asCO-OPN specifications under test, ar
translated into a logic program made of Horn clauses. These Horn clauses c
handled by thePROLOGresolution procedure, and are called computational Ho
clauses.

Step 2 From computational Horn clauses to test set

The constraint system defined on the exhaustive test set is solved usin
PROLOGresolution procedure with computational Horn clauses. If needed,
procedure performs subdomain decomposition. This resolution leads to
generation of a practicable test set.
142

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

ional

orn

s

Steps 2 and 3 constitute theCO-OPNTESTkernel written inPROLOG(ECLIPSE, [Ecl 94]). A
partial architecture ofCO-OPNTEST is illustrated in figure 35.

The structure of this chapter is the following. First, section 6.1 presents the operat
techniques for test set selection:

 • Translation of theCO-OPN language, theHML language, and theCONSTRAINTlanguage
into positive conditional algebraic specifications.

 • Translation of formal specifications into a logic program made of computational H
clauses.

 • PROLOGresolution procedure.

 • Control mechanisms for subdomain decomposition.

Second, section 6.2 presents theCO-OPNTEST tool, its architecture, its functionalities, and it
graphical interface.

Translator

Tests

Constraint
solver

PROLOG kernel

Fig. 35.Partial view of theCO-OPNTEST architecture

Horn clauses
Computational

Algebraic specifications
(CO-OPN, HML, CONSTRAINT)

CO-OPN specifications
(under test)
143

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

nd to

in this

tes
ive
ional

ve

s are

f

xiom
t
rm
with

isms.

l

6.1 Operational techniques for test set selection

The CO-OPNTEST tool aims to assist the tester during the test set selection process, a
automatically generate test cases, based onHML formulas, fromCO-OPNspecifications. The
development of such a tool is based on the operational techniques that are presented
section.

6.1.1 Algebraic specifications (CO-OPN, HML , CONSTRAINT)

Recall that theCO-OPNTEST kernel is an equational resolution procedure which simula
conditional narrowing byPROLOG resolution, associating a Horn clause to each posit
conditional axiom of the specification. For that reason, we must provide a positive condit
specification of each formalism involved in our testing method, namely theCO-OPNlanguage,
the HML language, and theCONSTRAINTlanguage. The following sections present positi
conditionalalgebraic specifications of these formalisms.

The concrete syntax of algebraic specifications is given in section 3.3.1.1. The axiom
positive conditional equations:

[Id :] [Condition ⇒] Conclusion

whereId is an optional identifier,Condition = (e1 & ... & en) is an optional condition composed o
a conjunction of equationsei (1 ≤ i ≤ n), andConclusion = (TermL = TermR) is an equation in which
TermL andTermR are terms well constructed from module interfaces.

To ensure the computational equivalence between narrowing and resolution, a
conclusions(TermL = TermR) are implicitly directed from left to right. In this way, axioms mus
constitute aconvergent4 rewriting system in which any ground term has a unique normal fo
(or irreducible form). This condition implies that the operations are completely defined
respect to the generators, and that there is no axiom between generators.

The next sections present positive conditional algebraic specifications of our formal
These specifications constitute convergent rewriting systems.

6.1.1.1 Algebraic specification of theCO-OPN language

The two underlying formalisms ofCO-OPNare algebraic specifications(used to describe
data structures and functional aspects of the system) andPetri nets (used to model behaviora
and concurrency features). This section is concerned with theCO-OPNPetri nets part, and
aims to express it with the help of algebraic specifications.

4. A rewriting systemRS is convergent if and only if:
- RS is noetherian: any ground term has a normal form.
- RS is confluent: for any ground term, the normal form is unique.
144

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

alid

d
xpress

The
ese

find

om
l

om

-

ne is

e is
The CO-OPNlanguage is presented in chapter 3. In section 3.4.4, theCO-OPNsemantics is
expressed as transition systems induced by inference rules (CLASS, CREATE, MONO, SEQ, SIM,
ALT, SYNC, STAB). For a given specification, these transition systems allow to compute all v
transitions〈state1, event, state2〉 that the specified system can perform. In section 5.4 such
transitions are notedValid 〈state1, event, state2〉 = true. However, since we are not only intereste
in the cases of valid behaviors but also in the cases of invalid behaviors, we need to e
Valid 〈state1, event, state2〉 = false. Consequently, we must introduce a new transition system/→
allowing to compute all invalid transitions that the specified system cannot perform.
transition system/→ is induced by the inference rules given in figure 36 [Vachon 98]. Th
rules can be directly deduced from the case analysis performed in section 5.4 to
β-constraints.

 • The rule NEG-EVAL -LEVEL 0 states that, starting from an empty set of behavioral axi
(Bax= ∅), any transition is an invalid transition. This occurs at the synchronization leve0:
no synchronization is involved5.

 • The rule NEG-EVAL -LEVEL n states that, at the synchronization leveln, an invalid transition
〈s, e, s’〉 remains an invalid transition after the addition of the behavioral axi
〈Event With Sync, Cond, Pre, Post〉, such that (for all substitutionsσ of SUBS):

• the eventσ(Event) is different from the evente, or

• the conditionσ(Cond) is false, or

• the stateσ(Pre) is not included in the states: σ(Pre) ⊄ s, or

• without a synchronization expression (Sync = ⊥), the evente does not succeed to con
sume the resourcesσ(Pre) or to produce the resourcesσ(Post) : s’ ≠ s - σ(Pre) + σ(Post), or

• in the presence of a synchronization expressionSync ≠ ⊥,
the transition〈s - σ(Pre), σ(Sync), s’ - σ(Post)〉 is not valid.

Note that this rule is defined for all substitutionsσ of SUBS. In practice, during the test
selection process, an application of this rule instantiates the variableσ with the first
substitution found. This instantiation eliminates the variableσ. Consequently, at the rule
level, the quantifier “for all” (∀) is treated like the quantifier “there exists” (∃). The “for all”
will be taken into account at the level of the behavioral axiom, thanks to thePROLOG
unification mechanism. In this way, the tests are computed one by one.

 • The rule NEG-EVAL states that an invalid transition at the synchronization leveln remains an
invalid transition whatever its synchronization level.

 • The rule NEG-SEQ states that the sequence of two transitions, provided that at least o
invalid, is an invalid transition.

 • The rule NEG-SIM states that the simultaneity of two transitions, provided that at least on
invalid, is an invalid transition.

5. Synchronization level. Given the three following behavioral axioms:
Bax0 With Bax1 :: → ;
Bax1 With Bax2 :: → ;
Bax2 :: → ;
the synchronization level of theBax2 call in Bax0 is 0,
the synchronization level of theBax1 call in Bax0 is 1,
the synchronization level of theBax0 call in Bax0 is 2.
145

Operational Techniques and Test Set Generation Tool: CO-OPNTEST
NEG-EVAL -LEVEL 0
Bax = ∅

Bax, Ax=0 s
e
/ s'

NEG-EVAL -LEVEL n

Bax, Ax=n s
e
/ s' σ∀ SUBS∈, ,

Ax= e σ Event()≠() ∨
Ax= σ Cond() false=() ∨

Ax= σ Pre() s⊄() ∨
Sync ⊥= Ax= s' s σ Pre() σ Post()+–≠∧() ∨

Sync ⊥ Bax, Ax=n 1– s σ Pre()–
σ Sync()

/ s' σ Post()–∧≠

BAx EventWith Sync Cond Pre Post, , ,〈 〉{ }∪ Ax, =n s
e
/ s'

--

NEG-EVAL

Bax, Ax=n s
e
/ s'

Bax, Ax= s
e
/ s'

--

NEG-SEQ

Bax, Ax= s1
e1
/ s Bax, Ax= s

e2
/ s2∨

Bax, Ax= s1
e1 .. e2

/ s2

--

NEG-SIM

Bax, Ax= s1
e1
/ s1' Bax, Ax= s2

e2
/ s2'∨

Bax, Ax= s1 s2+
e1 // e2

/ s1' s2'+

--

NEG-ALT-1

Bax, Ax= s
e1
/ s1 Bax, Ax= s

e2
/ s2∧

Bax, Ax= s
e1 e2⊕

/ s1

--

NEG-ALT-2

Bax, Ax= s
e1
/ s1 Bax, Ax= s

e2
/ s2∧

Bax, Ax= s
e1 e2⊕

/ s2

--

∀ s, s', s1, s1', s2, s2' ∈ StateSpec, A ande, e1, e2 ∈ EA, M (Spec), Aoid, SC.

Fig. 36.Inference rules for invalid behaviors
146

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

id
the

d

s

ir

:

ebraic
l case,

is

is
 • The rules NEG-ALT-1 and NEG-ALT-2 state that the alternative between two inval
transitions is an invalid transition (two rules are necessary for the commutativity of
alternative operator⊕).

The algebraic specification of theCO-OPN language is presented in figure 37. It is derive
from the CO-OPN inference rules allowing to deduce valid behaviors (positive CO-OPN
semantics) as well as invalid behaviors (negative CO-OPN semantics).

TheCO-OPNalgebraic specification imports the following ADTs:

 • The ADTBooleans which defines the sortboolean. Booleans is a standard ADT axiomatized
as usual (see annex A.2).

 • The ADTStates which defines the sortstate (see annex A.4).States generates system state
and defines operations on states likeaddition(+), subtraction(-), inclusion(⊆) andequality
(=).

 • The ADT Events which defines the sortevent. Events defines system events without the
synchronization.

 • The ADT Synchros which defines the sortsynchro. Synchros generates synchronization
expressions of the shapee1 .. e2 (sequence),e1 // e2 (simultaneity),e1 ⊕ e2 (alternative), and
SYNCHRO e wheree is an event (single synchronization).

The distinction betweenEvents andSynchros allows to define two kinds of behavioral axioms

 • Behavioral axiom without synchronization expression:

behavioralAxiom _ # _ ~> _ : event state state → boolean.
 • Behavioral axiom with synchronization expression:

behavioralAxiom _ With _ # _ ~> _ : event synchro state state → boolean.

These operations return a boolean which corresponds to the value of the axiom’s alg
condition. Computation of algebraic conditions which cannot be expressed in the genera
will be introduced when building Horn clauses corresponding to behavioral axioms.

The specification is based on the operationvalid defined as follows:

 • Operation : valid_ _ _ : state synchro state → boolean;

 • valid (state1, sync, state2) = true when the transition〈state1, sync, state2〉 is valid;

 • valid (state1, event, state2) = false when the transition〈state1, sync, state2〉 is not valid.

The first axiom (“Basic behavior without synchronization”) computes the validity of the
transition〈s, SYNCHRO e, s’〉 in which e is an event without a synchronization expression. Th
computation is performed using the behavioral axiom ofe. This axiom is based on the
inference rules CLASS and NEG-EVAL -LEVEL n.

The second axiom (“Basic behavior with synchronization”) computes the validity of the
transition〈s, SYNCHRO e, s’〉 in which e is an event with a synchronization expression. Th
computation is performed using the behavioral axiom ofe. This axiom is based on the
inference rules CLASS, SIM and NEG-EVAL -LEVEL n.
147

Operational Techniques and Test Set Generation Tool: CO-OPNTEST
ADT CO-OPN;
Interface

Use
Booleans, States, Events, Synchros;

Operations
behavioralAxiom _ # _ ~> _ : event state state → boolean;
behavioralAxiom _ withsync _# _ ~> _ : event synchro state state → boolean;
valid _ _ _ : state synchro state → boolean;

Body
Axioms

;; Basic behavior (without synchronization)
(behavioralAxiom e # pre ~> post) = cond &
(pre ⊆ s) = bool1 & (s’ = s - pre + post) = bool2 ⇒
valid (s, SYNCHRO e, s’) = cond and (bool1 and bool2);

;; Basic behavior with synchronization
(behavioralAxiom e With sync # pre ~> post) = cond &
valid (s - pre, sync, s’’’) = bool1 & (pre ⊆ s) = bool2 & (s’ = s’’’ + post) = bool3 ⇒
valid (s, SYNCHRO e, s’) = (cond and bool1) and (bool2 and bool3);

;; Sequential synchronization
valid (s11, sync1, s12) = bool1 &
valid (s12, sync2, s22) = bool2 ⇒
valid (s11, sync1 .. sync2, s22) = bool1 and bool2;

;; Simultaneous synchronization
valid (s11, sync1, s12) = bool1 &
valid (s21, sync2, s22) = bool2 ⇒
valid (s11 + s21, sync1 // sync2, s12 + s22) = bool1 and bool2;

;; Alternative synchronization
valid (s11, sync1, s12) = bool1 ⇒
valid (s11, sync1 ⊕ sync2, s12) = bool1;

valid (s21, sync2, s22) = bool2 ⇒
valid (s21, sync1 ⊕ sync2, s22) = bool2;

Where
e : event;
sync, sync1, sync2 : synchro;
s, s’, s’’, s’’’, s11, s12, s21, s22 : state;
cond, bool1, bool2, bool3: boolean;

End CO-OPN;

Fig. 37.CO-OPN algebraic specification
148

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

on

rs
of the
The third axiom (“Sequential synchronization”) computes the validity of the transition
〈s11, sync1 .. sync2, s22〉. This computation is based on the inference rules SEQ and NEG-SEQ.

The fourth axiom (“Simultaneous synchronization”) computes the validity of the transition
〈s11 + s21, sync1 // sync2, s12 + s22〉. This computation is based on the inference rules SIM and
NEG-SIM.

Finally, the last axioms (“Alternative synchronization”) compute the validity of the transition
〈s11, sync1 ⊕ sync2, s22〉. This computation is based on the inference rules ALT and NEG-ALT.

6.1.1.2 Algebraic specification of theHML language

The algebraic specification of theHML language is presented in figure 38. This specificati
mimics the HML definitions given in section 4.2.2.1.HML formulas are built using the
operatorsNext (<_>), And (and), Not (not) and T (always true constant). These operato
constitute the generators of the specification. Specification axioms define the semantics
HML satisfaction relationship|= . The relations |= f means that the system states satisfies the
HML formulaf.

ADT HML;
Interface

Use CO-OPN;
Sort hml;
Generators

T : → hml; ;; Constant T
< _ > _ : event hml → hml; ;; Next operator
_ and _ : hml hml → hml; ;; And operator
not _ : hml → hml; ;; Not operator

Operation
;; HML satisfaction relationship
_ |= _ : state hml → boolean;

Body
Axioms

s |= T = true;

valid (s, SYNCHRO e, s’) = true ⇒ s |= <e> f = s’ |= f ;

valid (s, SYNCHRO e, s’) = false ⇒ s |= <e> f = false;

(s |= (f and g)) = ((s |= f) and (s |= g));

(s |= not f) = not (s |= f);

Where
f, g : hml;
e : event;
s, s’: state;
bool, bool1, bool2 : boolean;

End HML;

Fig. 38.HML algebraic specification
149

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

n
aints.
6.1.1.3 Algebraic specification of theCONSTRAINT language

The algebraic specification of theCONSTRAINTlanguage mimics the language definition give
in annex E. Specification axioms define the semantics of the different test constr
Moreover, the predicatevalidation returns a boolean value corresponding to the resultr of the
test set〈 f, r 〉: r = true if f is valid in the transition system expressing the positiveCO-OPN
semantics, andr = false if f is valid in the transition system expressing the negativeCO-OPN
semantics.f is evaluated from the initial system stateinitstate. The algebraic specification of the
CONSTRAINT language is partially presented in figure 39.

ADT CONSTRAINT;
Interface

Use
Naturals, HML;

Operations
nb-events _ : hml → natural;
shape _ _ : hml hml → boolean;
trace _ : hml → boolean;
...
validation _ : hml → boolean;

Body
Axioms

;; Number of events of the HML formula
nb-events T = 0;
nb-events (<e> f) = succ (nb-events f);
nb-events (f and g) = (nb-events f) + (nb-events g);
nb-events (not f) = nb-events f ;

;; Shape of the HML formula: shape (f, s) : f must have the shape s
shape T T = true;
shape (<e> f) (<e> s) = shape f s;
shape (f and g) (s and t) = (shape f s) and (shape g t);
shape (not f) (not s) = shape f s;

;; HML formula without ‘not’ and ‘and’ operator
trace T = true;
trace (<e> f) = trace f;
trace (f and g) = false;
trace (not f) = false;

...

;; validation from the initial state initstate
validation f = (initstate |= f);

Where
f, g, s, t: hml;
e : event;

End CONSTRAINT;

Fig. 39.Excerpt of theCONSTRAINT algebraic specification
150

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

ional
re
slated

f

al
6.1.2 From formal specifications to computational Horn clauses

A PROLOG program is made up of Horn clauses.

Definition 71.Horn clause

A Horn clause is a clause of the form:A :- B1, ..., Bn
whereA andBi are atoms of the shaper (t1, ...,tm), in whichr is a relation andtj a term.

A is called thehead andB1, ..., Bn thebody of the clause.

If n = 0, a Horn clauseA is unconditional, and it is also called afact.
If n > 0, a Horn clauseA :- B1, ..., Bn is conditional, and it is also called arule.
A clause of the shape :- B1, ..., Bn is called agoal. ◊

The informal semantics of a conditional Horn clauseA :- B1, ..., Bn is:
“For any assignment of each variable, if B1, ..., Bn are all true, then A is true”.
The informal semantics of an unconditional Horn clauseA is:
“For any assignment of each variable, A is true”.

To obtain aPROLOGprogram, algebraic specifications ofCO-OPN, HML andCONSTRAINT, as
well asCO-OPNspecifications under test, must be translated into Horn clauses (uncondit
and conditional) that can be handled by thePROLOGresolution procedure. These clauses a
called computational Horn clauses. For this purpose, these specifications are first tran
into PROLOG facts using a tool of theCO-OPNTOOLS environment: CO-OPN2PROLOG

[Biberstein 95b] [Buchs 95].

6.1.2.1 From formal specifications toPROLOG facts

TheCO-OPN2PROLOGtool generatesPROLOGfacts having a syntax which is close to that o
the initial specifications.

For the ADTADT-Name, CO-OPN2PROLOG translates an algebraic axiom of the shape

Id : Condition ⇒ TermL = TermR

into the fact

body_axiom (ADT-Name, Id, Condition, (TermL, TermR)).

For the classClass-Name, CO-OPN2PROLOG translates a behavioral axiom of the shape

Id : Event With SynchroExpression :: Condition ⇒ Precondition → Postcondition

into the fact

body_axiom (Class-Name, Id, Event, Condition, SynchroExpression, Precondition, Postcondition).

CO-OPN2PROLOGperforms a purely syntactic transformation. It allows to translate our form
specifications into facts that can be interpreted byPROLOG programs.
151

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

o

ape

ut
ations

nents
new

not

form
ut a

Horn
sions
6.1.2.2 FromPROLOG facts to computational Horn clauses

PROLOG facts generated by theCO-OPN2PROLOG program are then translated int
computational Horn clauses that can be handled by thePROLOG resolution procedure.

Each fact (corresponding to an algebraic axiom) of the shape

body_axiom (ADT-Name, Id, Condition, (TermL, TermR))

is translated into a conditional Horn clause (rule) of the shape

TermL :- Condition, TermR

whereTermL is an atom, andCondition andTermR are sets of atoms. These atoms have the sh
r (t1, ..., tn, t) in whicht is the output result.

Indeed, we must provide thePROLOGresolution procedure with a means to transmit outp
throughout computation. Partial outputs accumulate and determine successive approxim
to the final output. The final output can be regarded as the collection of all output compo
of matching substitutions performed in the computation [Kowalski 79]. To store outputs,
parameters are added to operations. In each axiom, any equation of the shaper (t1, ..., tn) = t, in
which r is an operation of arityn, is replaced by an atomr (t1, ..., tn, t) in which r is a relation
of arity n+1. The last operandt corresponds to the output result. Since generators are
rewritten, their arity remains unchanged.

For instance, for the ADTNaturals generated by zero (0) and successor (succ), the axioms
defining the division operation (div : natural natural → natural):

x div 0 = 0;
x < y = true ⇒ x div y = 0;
x ≥ y = true ⇒ x div y = succ ((x - y) div y);

written inCO-OPN2PROLOG (prefixed notation):

body_axiom (Naturals, div#1, [], (div (x, 0), 0)).
body_axiom (Naturals, div#2, [(< (x, y), true)], (div (x, y), 0)).
body_axiom (Naturals, div#3, [(≥ (x, y), true)], (div (x, y), succ (div (- (x, y), y)))).

are translated into computational Horn clauses:

div (x, 0, 0). (1)
div (x, y, 0) :- < (x, y, true). (2)
div (x, y, succ (z)) :- ≥ (x, y, true), - (x, y, m), div (m, y, z). (3)

In clause (1), no computation is performed; the result is already a ground term in normal
(irreducible form). In clause (2), the result is already a ground term in normal form, b
computation is performed to state whether the conditionx < y = true is satisfied. In clause (3), a
computation is performed to state whether the conditionx ≥ y = true is satisfied, and to compute
the normal form ofz.

PROLOGfacts corresponding to behavioral axioms are translated into computational
clauses corresponding to algebraic axioms without synchronization expres
(behavioralAxiom e # pre ~> post) or with synchronization expressions (behavioralAxiom e With
sync # pre ~> post).
152

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

rm in

by the

ed
in

for
87].
For instance, in the case of theCO-OPNspecification of the classPhoneCard presented in
figure 8, the axioms:

create (p) :: → id p;
get-pin (p) :: id p → id p;
get-balance (b) :: balance b → balance b;
withdraw (m) :: (b ≥ m) = true ⇒ balance b → balance b - m;

written inCO-OPN2PROLOG (prefixed notation):

body_axiom (PhoneCard, create#1, create (p), [], empty, [], [(id, p)]).
body_axiom (PhoneCard, get-pin#1, get-pin (p), [], empty, [(id, p)], [(id, p)]).
body_axiom (PhoneCard, get-balance#1, get-balance (b), [], empty, [(balance, b)], [(balance, b)]).
body_axiom (PhoneCard, withdraw#1, withdraw (m), [(≥ (b, m), true)], empty,

[(balance, b)], [(balance, - (b, m))]).

are translated into the computational Horn clauses:

behavioralAxiom # ~> (create (p), [], (id, p), true). (1)
behavioralAxiom # ~> (get-pin (p), (id, p), (id, p), true). (2)
behavioralAxiom # ~> (get-balance (b), (balance, b), (balance, b), true). (3)
behavioralAxiom # ~> (withdraw (m), (balance, b), (balance, x), res) :-

≥ (b, m, y), = (true, y, res), - (b, m, x). (4)

In clauses (1), (2) and (3), no computation is performed; the result is already a ground te
normal form. In clause (4), a computation is performed to determine the normal forms ofx and
res. x is the balance of the card after the withdrawal, andres is the result of the operation:true if
the condition(b ≥ m) = true is satisfied,false otherwise.

The preceding transformation generates computational Horn clauses that can be handled
PROLOG resolution procedure presented in the next section.

6.1.3PROLOG resolution procedure

Most logic programs, likePROLOG, compute by means of a resolution strategy call
SLD-resolution. SLD-resolution was originally described (without being named)
[Kowalski 74]. It was called SLD-resolution (Linear resolution with Selection function
Definite clauses) in [Apt 82]. Readers interested in SLD-resolution should refer to [Lloyd

Some notations and definitions of this section come from [Lloyd 87].

6.1.3.1 SLD-resolution rule

First, recall that two atomsA andB areunifiedif there exists a substitutionθ of SUBSsuch that
θ(A) = θ(B). The unifying substitutionθ is themost general unifier[Robinson 65] forA andB
if, for each unifierσ of SUBSsuch thatσ(A) = σ(B), there exists a substitutionµ of SUBSsuch
thatσ = θµ.

SLD-resolution computes goal solutions using the SLD-resolution rule.
153

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

d in
Definition 72.SLD-resolution rule

The SLD-resolution ruleR is the following:

in whichA1 ,..., Am andB, B1 ,... Bn are atoms, andθ is the most general unifier ofAi andB.◊

R derives the initial goal :- A1 ,..., Ai ,..., Am
into a new goal :- (A1 ,..., Ai-1, B1 ,..., Bn, Ai+1 ,..., Am) θ
replacing the selected atomAi by the bodyB1 ,..., Bn of the clauseB :- B1 ,..., Bn whose headB
unifies withAi (θ(Ai) = θ(B)), and applying the substitutionθ.

6.1.3.2 SLD-resolution procedure

SLD-resolution is a procedure which computes goal solutions. A solution is compute
several steps, called SLD-derivation, using the SLD-resolution ruleR.

Definition 73.SLD-derivation

Let P be a program (computational Horn clauses) andGoalbe a goal.
An SLD-derivation ofP ∪ { Goal} consists of:

 • a sequenceGoal = Goal0, Goal1, ..., Goaln of goals,

 • a sequenceClause1, Clause2, ..., Clausen of clauses ofP,

 • a sequenceθ1, θ2, ...,θn
in whichθi+1 is the most general unifier ofGoali andClausei+1,

such that eachGoali+1 is derived fromGoali andClausei+1 usingθi+1. ◊

This definition is illustrated in figure 40.

:- (A1 ,..., Ai-1, B1 ,..., Bn, Ai+1 ,..., Am) θ
R :

:- A1 ,...,Ai ,..., Am B :- B1 ,..., Bn

Goal Clause1

Goal1 Clause2

Goal2

Goaln-1 Clausen

Goaln

with θ1

with θ2

with θn

R:

R:

R:

Fig. 40.SLD-derivation

Step 1

Step 2

Step n
154

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

n

),

le.

ach

e
are

41

the
A successfulSLD-derivation ends withGoaln = ❏ (empty goal); a solution is the substitutio
θ1.θ2...θn restricted to the variables ofGoal. A failed SLD-derivation ends withGoaln ≠ ❏
(non-empty goal); no solution is computed.

Definition 74.SLD-resolution

Let P be a program (computational Horn clauses) andGoalbe a goal.
The SLD-resolution ofP ∪ { Goal} is the set of all SLD-derivations ofP ∪ { Goal}. ◊

SLD-resolution is a procedure which iscorrect (any computed solution is a correct solution
and complete(the procedure can compute any solution) when thesearch ruleis fair (see
section 6.1.3.3). These results are due to Clark [Clark 79].

Theorem 75.Correctness of SLD-resolution

Let P be a program (computational Horn clauses) andGoal be a goal. Then every
computed answer forP ∪ { Goal} is a correct answer forP ∪ { Goal}. ◊

Theorem 76.Completeness of SLD-resolution

Let P be a program (computational Horn clauses) andGoal be a goal. For every correct
answerθ for P ∪ { Goal}, there exists a computed answerσ for P ∪ { Goal} and a
substitutionµ of SUBSsuch thatθ = σµ. ◊

An SLD-resolution procedure is specified by asearch rule and a computation rule.
Alternative strategies can be obtained by varying the search rule and the computation ru

6.1.3.3 SLD-resolution search rule

The SLD-resolution ofP ∪ { Goal} can be represented by a tree called an SLD-tree. E
branch of the SLD-tree is an SLD-derivation ofP ∪ { Goal}. Branches corresponding to
successful derivations are calledsuccess branches, branches corresponding to infinit
derivations are calledinfinite branchesand branches corresponding to failed derivations
calledfailed branches.

Definition 77.Search rule

Thesearch rule is a strategy for searching SLD-trees to find success branches. ◊

In this section, we assume that the atoms of a goal (e.g. :-A1, A2, A3) are selected from left to
right (see section 6.1.3.4 for a presentation of the computation rule).

In PROLOG, the standard search rule isdepth-firstsearch. The example presented in figure
shows the search of the SLD-tree performed by the SLD-resolution ofP ∪ {:- A1, A2, A3} to
find the solutionθ2,A1

.θ2,A2
.θ2,A3

.

The depth-firstsearch rule is veryefficient. However, it is notfair and may result in an
incompleteresolution strategy. Indeed, in case of an infinite branch in the SLD-tree,
success branches situated in its right-hand side are never reached.
155

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

ly be
is
copies

f
und,
hus the

s, the

ion rule.
Naturally, we would prefer a fair search rule in which each success branch will eventual
found. This is the case with thebreadth-firstsearch illustrated in figure 42. However, th
search is less compatible with an efficient implementation because it requires numerous
of resolution states.

As stated in [Bernot 91b], a good compromise between thedepth-first search and the
breadth-firstsearch is theiterative depth-firstsearch illustrated in figure 43. It consists o
defining a boundk for the depth in the SLD-tree. When a resolution branch reaches this bo
the resolution state is stored and the search backtracks to try another choice of clause. T
resolution is complete for the solutions reachable by a depth less thank in the SLD-tree. If no
solution is reached for this bound, and if there exist some memorized resolution state
process is repeated from these states with a new boundk + k’. If k = k’ = 1, this search is
equivalent to thebreadth-firstsearch, and ifk = ∞ it is equivalent to thedepth-first search.

The search strategies described above can be improved by using an adequate computat

I P ∪ {:- A 1, A2, A3}

A1 unifies with a clause head
θ1,A1

θ1,A2

θ2,A1

θ2,A2

θ1,A3

θ3,A1

θ3,A2
θ4,A2

θ2,A3

Fig. 41.Depth-first search

of P via the substituionθ1,A1

θ1,A.A2 unifies with a clause head

of P via the substituionθ1,A2

I

θ1,A1

θ1,A2

θ2,A1

θ2,A2

θ1,A3

θ3,A1

θ3,A2
θ4,A2

θ2,A3

Fig. 42.Breadth-first search

P ∪ {:- A 1, A2, A3}

A1 unifies with a clause head

of P via the substituionθ1,A1

θ1,A.A2 unifies with a clause head

of P via the substituionθ1,A2
156

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

e the
ent a
l

m of
ver the
anches

his
l

e
ld atom
6.1.3.4 SLD-resolution computation rule

Definition 78.Computation rule

Given a goal :-A1 , A2 , ... , Am,
thecomputation rule determines the order in which the atomsAi are selected. ◊

In PROLOG, the standard computation rule selects theleft-mostatom. Atoms of the goal
:- A1, A2 , ... , Amare selected from left to right. Variations have been suggested to increas
resolution efficiency and completeness. For instance, [Marre 91] proposes to implem
computation rule which selects theunifiable-leastatom. The selected atom of the goa
:- A1, A2, ... , Amunifies with a minimum of clause heads.

Theunifiable-leastcomputation rule increases the resolution termination. Indeed, if an ato
the goal unifies with no clause head, this atom is false and the goal is unsatisfiable whate
other atoms of the goal. Thus, an early selection of this atom avoids searching useless br
and possibly getting stuck in an infinite branch. Theunifiable-least computation rule
implements a dissatisfaction detection mechanism.

The unifiable-leastcomputation rule minimizes the number of nodes in SLD-trees. T
property is illustrated by the following example. The programP contains the computationa
Horn clauses corresponding to the definitions of the boolean operationsnot: boolean → boolean
andand: boolean boolean → boolean:

not 1 : not (true, false).
not 2 : not (false, true).
and 1 : and (true, b, b).
and 2 : and (false, b, false).

With theleft-most computation rule, the SLD-resolution of
P ∪ { :- and (a, b, false), not (a, false)} results in the SLD-tree of figure 44. Each tree nod
contains a goal and a substitution. Edges are labeled by the clause used to solve the bo
in the previous node.❏ is the empty goal, and {} is the empty substitution.

I P ∪ {:- A 1, A2, A3}

A1 unifies with a clause head
θ1,A1

θ1,A2

θ2,A1

θ2,A2

θ1,A3

θ3,A1

θ3,A2
θ4,A2

θ2,A3

Fig. 43.Iterative depth-first search withk = k’ = 2

of P via the substituionθ1,A1

θ1,A.A2 unifies with a clause head

of P via the substituionθ1,A2

0

1

2

3

Depth
157

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

This
d by
of a

sed

ain
With theunifiable-leastcomputation rule, the SLD-resolution of
P ∪ { :- and (a, b, false), not (a, false)} results in the SLD-tree of figure 45.

Moreover, when two atomsAi andAj of the goal :-A1 ,..., Ai ,..., Aj ,..., Am unify with the same
minimum number of clause heads, one of these clauses is randomly selected.
non-determinism is required for the purpose of uniformity hypotheses: a value selecte
uniformity hypothesis must be an arbitrary value, and not always the same first solution
deterministic resolution.

The CO-OPNTEST tool implements the SLD-resolution procedure with thedepth-firstsearch
rule and theunifiable-leastcomputation rule. This strategy iscorrect and efficient but
incompletedue to theunfair depth-firstsearch rule. Nevertheless, the termination is increa
by the dissatisfaction detection mechanism implemented by theunifiable-leastcomputation
rule. Furthermore,CO-OPNTEST implements additional control mechanisms for subdom
decomposition that are presented in the next section.

:- and (a, b, false), not (a, false) with {}

❏ with {a = true, b = false}

:- not (true, false) with {a = true, b = false} :- not (false, false) with {a = false}

and 1 and 2

not 1 Failed branch

Success branch

Fig. 44.SLD-resolution ofP ∪ {:- and (a, b, false), not (a, false)} with the left-most computation rule

:- and (a, b, false), not (a, false) with {}

:- and (true, b, false) with {a = true}

❏ with {a = true, b = false}

not 1

and 1

Success branch

Fig. 45.SLD-resolution ofP ∪ {:- and (a, b, false), not (a, false)} with the unifiable-least computation rule
158

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

of the
lready
ions.
in an
trol
ing a

of the
6.1.4 Control mechanisms for subdomain decomposition

As stated in section 5.4, subdomain decomposition requires performing an analysis
different cases described by the axioms of the specification. This case analysis is a
performed by the SLD-resolution when trying to apply all the axioms of the goal operat
However, the resolution is not bounded by the presence of a subdomain definition
SLD-tree node. To force the SLD-resolution to exhibit subdomains, additional con
mechanisms must be added to stop the resolution from any SLD-tree node contain
subdomain definition.

This technique is introduced with the following example. The programP contains the
computational Horn clauses corresponding to the definitions of the operationsmax and <
(max : natural natural → natural and< : natural natural → boolean):

max 1 : max (x, x, x).
max 2 : max (x, y, x) :- < (x, y, true).
max 3 : max (x, y, y) :- < (y, x, true).

< 1 : < (x, 0, false).
< 2 : < (0, succ(y), true).
< 3 : < (succ(x), succ(y), z) :- < (x, y, z).

The definition of the operationmax exhibits the subdomains ofmax(x, y):

x = y, x < y, y < x.

The SLD-resolution ofP ∪ {:- max(a, b, m)} results in the SLD-tree of figure 46.

The nodes of depth 1 contain the subdomain definitions (a = b, < (a, b, true), < (b, a, true)).
After the computation of the subdomains, the resolution continues. At the end, the leaves
SLD-tree contain the possible values fora, b and m. This example shows that if the
SLD-resolution is stopped whenever an atom of the shape < (X, Y, true) is encountered, the
leaves of the SLD-tree exhibit the subdomains.

......

...
❏ with

{ m = a = 0, b= succ(y)}

:- max(a, b, m) with {}

❏ with {m= a = b} :- < (a, b, true) with {m = b}

max 1 max 2 max 3

Success branch

Fig. 46.SLD-resolution ofP ∪ {:- max(a, b, m)}

:- < (b, a, true) with {m = a}

 :- < (x, y, true) with
{ m= a = succ(x), b= succ(y)}

< 2 < 3

Success branch

...
159

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

wers

via a

:

f

sible
on are
To stop the SLD-resolution, the following meta-clause is introduced:

wait (< (X, Y, true)) :- var (X) and var(Y).

The meta-predicatewait delays the resolution of its argument < (X, Y, true) if X and Y are
variables. Thus, the answers of the resolution are couples (substitution, constraint) in which
constraintis a goal waiting for subsequent resolution. In the preceding example, the ans
are:

 • ({m = a = b}, ❏),

 • ({m = b}, < (a, b, true)),

 • ({m = a}, < (b, a, true)).

This mechanism is implemented by theCO-OPNTEST tool. CO-OPNTEST stops the
SLD-resolution whenever it encounters an atom which satisfies a meta-clause defined
meta-predicatewait.

In CO-OPN, the validity of a transition〈s, SYNCHRO e, s’〉 is defined as follows (see figure 37)

(behavioralAxiom e # pre ~> post) = cond &
(pre ⊆ s) = bool1 & (s’ = s − pre + post) = bool2 ⇒
valid (s, SYNCHRO e, s’) = cond and (bool1 and bool2);

(behavioralAxiom e With sync # pre ~> post) = cond &
valid (s − pre, sync, s’’’) = bool1 & (pre ⊆ s) = bool2 & (s’ = s’’’ + post) = bool3 ⇒
valid (s, SYNCHRO e, s’) = (cond and bool1) and (bool2 and bool3);

To compute the subdomains of the transition〈s, SYNCHRO e, s’〉, CO-OPNTEST stops the
resolution of the operations ‘⊆’ (inclusion), ‘−’ (subtraction), and ‘+’ (addition) of the ADT
States (see annex A.4) with the following meta-clauses.

wait (− (X, Y, Z)) :- var (Y).

wait (+ (X, Y, Z)) :- var (X) or var (Y).

wait (⊆ (X, Y, Z)) :- var (X) or var (Y).

Additionally, the resolution of anydivergentoperation appearing in the behavioral axioms oe
andsync must be stopped (an operation is said to bedivergentwhen its resolution can lead to
an infinite branch, or to an infinite number of successful branches). In this way, all pos
cases described in the axioms are covered. Hence, subdomains of validity of the transiti
computed, as well as its subdomains of invalidity.

For instance, in the case of theCO-OPNspecification of the classPhoneCard presented in
figure 8, the computational Horn clauses are the following:

behavioralAxiom # ~> (create (p), [], (id, p), true).
behavioralAxiom # ~> (get-pin (p), (id, p), (id, p), true).
behavioralAxiom # ~> (get-balance (b), (balance, b), (balance, b), true).
behavioralAxiom # ~> (withdraw (m), (balance, b), (balance, x), res) :-

≥ (b, m, y), = (true, y, res), − (b, m, x).
160

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

s

the
In addition to the stop of the operations ‘⊆’, ‘ −’, and ‘+’ on states, the divergent operation
contained in the behavioral axiom ofwithdraw must be stopped, namely ‘lt’ on naturals (‘≥’ is
defined with respect to ‘>’ which is in turn defined with respect to ‘lt’) and ‘−’ on naturals.
Since the operation ‘=’ on booleans is not divergent, its resolution is not cut. Thus,
following meta-clauses are introduced.

wait (lt (X, Y, Z)) :- var (X) and var(Y).

wait (− (X, Y, Z)) :- var (X) or var (Y).

With this technique, in the case of a phonecard having an initial balance of5,
subdomain decomposition applied to the variablem in the test case
〈 <c.create 1234> <c.withdraw m> T, result 〉
generates the following test set:

T0: 〈<c.create 1234> <c.withdraw 0> T, true〉

T1: 〈<c.create 1234> <c.withdraw 1> T, true〉

T2: 〈<c.create 1234> <c.withdraw 2> T, true〉

T3: 〈<c.create 1234> <c.withdraw 3> T, true〉

T4: 〈<c.create 1234> <c.withdraw 4> T, true〉

T5: 〈<c.create 1234> <c.withdraw 5> T, true〉

T6: 〈<c.create 1234> <c.withdraw succ(succ(succ(succ(succ(succ(v))))))> T, false〉

where the variablev is of typeMoney.

This test set insures that, starting from an initial balance of5, it is allowed to withdraw0, 1, 2,
3, 4, or 5 (T0, T1, T2, T3, T4, T5), but it is not allowed to withdraw6 or more than6 (T6).

Similarly, subdomain decomposition applied to the variableb in the test case
〈 <c.create 1234> <c.withdraw 2> <c.get-balance b> T, result 〉
generates the following test set:

T0: 〈<c.create 1234> <c.withdraw 2> <c.get-balance 3> T, true〉

T1: 〈<c.create 1234> <c.withdraw 2> <c.get-balance 0> T, false〉

T2: 〈<c.create 1234> <c.withdraw 2> <c.get-balance 1> T, false〉

T3: 〈<c.create 1234> <c.withdraw 2> <c.get-balance 2> T, false〉

T4: 〈<c.create 1234> <c.withdraw 2> <c.get-balance succ(succ(succ(succ(v))))> T, false〉

where the variablev is of typeMoney.

This test set insures that, starting from an initial balance of5 and after a withdrawal of2, the
balance is equal to3 (T0), is different from0, 1, 2 (T1, T2, T3) and from4 or more than4 (T4).
161

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

st set,

,
t part of

plete
hical

a

orn
d, the
this

l
an

ion of

o

st

t to our
6.2 TheCO-OPNTEST tool

TheCO-OPNTEST tool has two main goals:

 1. to assist the tester during the construction of constraints to apply to the exhaustive te

 2. to automatically generate test sets satisfying these constraints, fromCO-OPNspecifications.

These goals are reached by using aPROLOGkernel and aJavagraphical interface. The kernel
based on operational techniques for test selection, has already been presented in the firs
this chapter. The graphical interface is described in this section. First, we present the com
CO-OPNTEST architecture, which shows the interaction between the kernel and the grap
interface.

6.2.1 TheCO-OPNTEST architecture

The complete architecture ofCO-OPNTEST is illustrated in figure 47. It is composed of
PROLOG kernel and aJava graphical interface.

Recall that theCO-OPNTEST kernel contains atranslator and aconstraint solver:

 • The translator transforms the formalisms involved in our test method (CO-OPN, HML,
CONSTRAINT) into a logic program made of computational Horn clauses.

 • Theconstraint solveris an SLD-resolution procedure which uses the computational H
clauses to solve the constraint system defined on the exhaustive test set. If require
constraint solverperforms subdomain decompositions using control mechanisms. In
way, theCO-OPNTEST kernel generates practicable test sets.

TheCO-OPNTEST graphical interface contains the following four elements:

 • A specification viewer. The viewer is a tool of the CO-OPNTOOLS environment:
CO-OPNGRAPHICS [Biberstein 95b] [Buchs 95].CO-OPNGRAPHICS generates graphica
representations of textualCO-OPNspecifications. These graphical representations allow
intuitive comprehension of the specifications under test, and thus guide the construct
reduction hypotheses.

 • A test focus and test environment selector. Theselectorprovides the tester with a means t
define the test focus, i.e. a subset of the specification units that must be tested. Theselector
deduces the test environment from the focus.

 • A constraint builder. The builder provides the tester with a number of elementary te
constraints that can be easily combined to form more complex constraints. Thebuilder
guarantees that the test constraints built by the tester are well constructed with respec
language of constraints (see annex E).

 • A test viewer. Theviewer displays the tests.
162

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

l

of the
Figure 47 illustrates the interaction between thePROLOG kernel and theJava graphical
interface. Theconstraint builderfeeds theconstraint solverwith test constraints (additiona
computational Horn clauses) to apply to the exhaustive test set. This forces theconstraint
solverto launch the SLD-resolution. The resulting test set is sent to thetest viewerin charge of
the display.

6.2.2 TheCO-OPNTEST functionalities and graphical interface

This section lists theCO-OPNTEST functionalities from the user’s point of view. The
functionalities are presented through the graphical interface, and we use the example
telephone system (see section 3.2).

TheCO-OPNTESTfunctionalities are the following.

Constraint
solver

PROLOG kernel

Fig. 47.TheCO-OPNTEST architecture

Java Graphical Interface

Translator

Horn clauses
Computational

Test
viewer

Constraint
builder

CO-OPNGRAPHICS

Test environment
selector

Tests

Constraints

Formal
Specifications

CO-OPN specifications
(under test)

Algebraic specifications
(CO-OPN, HML, CONSTRAINT)
163

Operational Techniques and Test Set Generation Tool: CO-OPNTEST
 • Display of the specification graphs (viaCO-OPNGRAPHICS).

 • Definition of the test focus and test environment.

A panel allows to select a test focus (Focus) and to list the test
constraints (Constraints) related to the deduced test
environment. A test constraint can be defined in a modular way
using subconstraints (e.g.Constraint 2 is defined using two
subconstraintsConstraint 2.1 and Constraint 2.2).

 • Definition of constraints on the exhaustive test set.

A panel allows the user-friendly construction of a test
constraint, providing mouse-related facilities (as well
as facilities like ‘copy’, ‘paste’, ‘delete’). A constraint
is composed of the following elementary constraints:

• Structural uniformity on the formulas:

 (1) nb_events (total number of events in theHML formula),

 (2) nb_occurrences(number of occurrences of a given method),

 (3) shape (HML formula with a given shape),

 (4) positive (HML formula without ‘not’ operators),

 (5) sequence (HML formula without ‘and’ operators),

 (6) trace (HML formula without ‘not’ or ‘and’ operators).

• Exhaustiveness on the variables:exhaustiveness.

• Uniformity on the variables:uniformityII .

Display of the relationships between
the different units of the system
(here the telephone system).

Display of the Petri nets describing
the behavior of the system objects
(here the PhoneCard object).
164

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

a

n

ted are

.

• Subdomain decomposition: subuniformityII .

• Validation of the tests〈Result, HML Formula〉6:

Validation (computation of the value of the variableResult).

 • Resolution of the system of constraints.

 • Display of the test set.

Throughout the test selection process, events ofHML formulas can be expressed using
complete signature ‘ObjectName.MethodName.ParameterTypes(ParameterValues)’, or using
partial signatures (like ‘MethodName(ParameterValues)’ for instance). Constraints and tests ca
be saved or printed in textual or graphical formats. Moreover,CO-OPNTESTallows to save and
load a completeFramework, i.e. constraints related to a given test environment.

Figure 48 displays a snapshot of the test of a phonecard. The 36 test cases genera
constrained by the constraintsoccur (nb-occurrencesin the text) andshape, and by a size
(nb-events) of 6. They were generated in a few seconds.

6. In the test theory, a test is defined as a couple〈HML Formula, Result〉. In CO-OPNTEST, a test is a
couple〈Result, HML Formula〉. We will adopt theCO-OPNTEST definition in the rest of this document.

Display of the whole test set in
textual format.

Display of a selected test case in
both textual and graphical formats
165

Operational Techniques and Test Set Generation Tool: CO-OPNTEST
Fig. 48.Snapshot of the test selection for the classPhoneCard with CO-OPNTEST
166

Operational Techniques and Test Set Generation Tool: CO-OPNTEST

of

tes
is

s

l

sitive

n of
te
t case

d

It
ge of
raphs.
uides
vides

d and
m of
ter.
6.3 Summary

This chapter has presented operational techniques for test selection, as well as theCO-OPNTEST

tool based on these techniques.CO-OPNTEST assists the tester during the construction
constraints to apply to the exhaustive test set. Whenever constraints are selected,CO-OPNTEST

automatically generates test sets (satisfying these constraints) fromCO-OPNspecifications. Its
architecture is composed of a kernel and a graphical interface.

 • The CO-OPNTEST kernel

The kernel, written inPROLOG, is an equational resolution procedure which simula
conditional narrowing byPROLOG SLD-resolution. The SLD-resolution procedure
defined with thedepth-firstsearch rule and theunifiable-leastcomputation rule. Thus, the
resolution procedure iscorrectandefficientbut incomplete. Nevertheless, the termination i
increased by the dissatisfaction detection mechanism implemented by theunifiable-least
computation rule. Moreover, theCO-OPNTEST kernel implements additional contro
mechanisms for subdomain decomposition via “wait” meta-predicates.

SLD-resolution associates a computational Horn clause to each axiom of a po
conditional specification. For this purpose, theCO-OPN, HML andCONSTRAINTlanguages
are translated into positive conditional algebraic specifications. The specificatio
CO-OPNis derived from theCO-OPNpositive and negative semantics, in order to compu
expected and unexpected behaviors of the tested program. Thus, for a given tes
〈Result, HML Formula〉, the specification ofCO-OPNallows to compute the value of the
variableResult(Result= true if Formula is valid in the transition system modeling expecte
behaviors, andResult = false if Formula is valid in the transition system modeling
unexpected behaviors), and to compute the subdomains of validity ofFormula,as well as its
subdomains of invalidity.

 • The CO-OPNTEST graphical interface

The interface, written inJava, allows a user-friendly definition of the test constraints.
guarantees that the constraints are well constructed with respect to the langua
constraints. Moreover, it generates a graphical representation of the specification g
This representation permits an intuitive comprehension of the specification and thus g
the tester during the test selection process. Similarly, the graphical interface pro
facilities to display the computed tests.

The CO-OPNTEST tool has generated test sets for several case studies in a simple, rapi
efficient way. In particular, it has generated test sets for an industry-oriented proble
realistic size: theProduction Cellcase study. This case study is presented in the next chap
167

Operational Techniques and Test Set Generation Tool: CO-OPNTEST
168

Case Study: Production Cell

ethod
f an
cycle:
s and
the
our

inally

other
C H A P T E R

7
CHAPTER7CASE STUDY: PRODUCTION CELL

The purpose of this chapter is to evaluate, by means of a case study, our formal testing m
for object-oriented software. For this purpose we propose the development o
object-oriented application of realistic size, addressing all the phases of the software life-
requirements, analysis, design, formal description, implementation and testing. Analysi
design are performed with the Fusion method [Coleman 94], formal description with
CO-OPNlanguage [Biberstein 97b], implementation with Ada 95 and test selection with
testing method. The case study chosen for this experiment is the production cell, orig
defined in [Lewerentz 95].

We have chosen Ada 95 as the implementation language, but it could be any
object-oriented language. However this choice will influence the analysis phase.

Informal Analysis and Design Formal Description Implementation
Requirements Fusion CO-OPN Ada 95

Formal test inputs

Fig. 49.Case study development life-cycle
169

Case Study: Production Cell

case
erpts of
ow a
test

g
n into

ction
was

ject,
strial
e than
ments
es or
react
se the
ection

posit
t, an
arms

on of
d belt

tize it,
The structure of this chapter is the following. Section 7.1 describes the production cell
study. Section 7.2 presents the Fusion development method. Section 7.3 gives some exc
the Fusion analysis and design of the production cell controller. Section 7.4 shows h
CO-OPN specification is derived from the Fusion models. Section 7.5 presents the
generation process using the toolCO-OPNTEST. Finally, the results and problems met durin
this experiment are analyzed and some hints are given on how testability could be take
account in object-oriented analysis and design.

7.1 Presentation of the case study

The aim of this case study is to develop a control program for an existing industrial produ
cell, taken from a metal-processing plant in Karlsruhe (Germany). This case study
launched by FZI (Forschungszentrum Informatik) in 1993, within the German Korso Pro
to evaluate and compare different formal methods and to show their benefits for indu
applications. At the moment, the production cell case study has been investigated by mor
35 different research groups. This is an industry-oriented problem where safety require
play a significant role, as the violation of a requirement might result in damage of machin
injury to people. Also, this is a reactive system, as the control program has to
permanently to changes in its environment. Moreover, this application was chosen becau
control program can be modeled as a collection of cooperative concurrent agents. This s
is a summary of the presentation of the case study given in [Lewerentz 95].

7.1.1 Description of the production cell

The production cell is composed of six machines: two conveyor belts (feed belt and de
belt), a travelling crane having an extendable arm equipped with an electromagne
elevating rotary table, a press and a rotary robot having two orthogonal extendable
equipped with electromagnets (see figure 50). The aim of the cell is the transformati
metal blanks into forged plates (by means of a press) and their transportation from the fee
into a container.

The production cycle of each blank is the following (see figure 51):

 • the feed belt conveys the blank to the table,

 • the table rotates and rises to put the blank in the position where the robot can magne

 • the first robot arm magnetizes the blank and places it into the press,

 • the press forges the blank,

 • the second robot arm places the resulting plate on the deposit belt,

 • the crane magnetizes the plate and brings it from the deposit belt into a container.
170

Case Study: Production Cell

brings
tion

e cell

f the

o
th
ee

n
rs
m.
of
rs.
ch
nd
Note that in the original case study proposed by FZI, the crane magnetizes the plate and
it from the deposit belt back to the feed belt; this is in order to perform the demonstra
without an operator. In the real cell, the crane is not between the two belts, but links th
with another manufacturing unit (modeled in our case by a container).

In this document we will focus on the robot because it is the most complex device o
production cell. See [Barbey 98] for a complete description of the cell.

 • Description of the robot

The rotary robot (see figure 52) consists of tw
orthogonal extendable arms equipped wi
electromagnets. The robot is powered by thr
bidirectional electric motors which allow the
rotation of the robot and the horizontal translatio
of the arms (extension or retraction). The moto
can be started and stopped by the control progra
The rotation angle of the robot and the amount
extension of each arm are given by potentiomete
In order to meet various safety requirements, ea
arm has to be retracted while the robot rotates a
while the other arm loads or unloads a blank.

travelling

deposit belt

robot

elevating

press

crane

rotary table

lower
arm

upper arm (arm 1)

feed belt (belt 1)

up / down

electromagnets

Fig. 50.Top view of the production cell

 (arm 2)
container

(belt 2)

electric
motor

electromagnet

electric
motor

Fig. 52.Robot (side view)

Potentiometer

Potentiometer

 (0..1)

 (-100..70)
171

Case Study: Production Cell
robottablefeed belt

➁ Upper arm picks up the blank➀ Blank moves from the feed belt

table

onto the table from the table

robot press robot press robot press

➄ Lower arm picks up➂ Upper arm places ➃ Press forges the blank

the forged plate from the pressthe blank in the press

travelling crane

container

travelling crane

deposit beltdeposit belt

robot

➅ Lower arm places the plate ➆ Crane picks up the plate ➇ Crane places the plate

into a containerfrom the deposit belton the deposit belt

Fig. 51.Production cycle of a blank (side view)
172

Case Study: Production Cell

sors:
chine

FZI
s of
and
nks,
of the
eing
orks

afety
This

ble,

e if

.

7.1.2 Control program and simulator

The control program receives information from the cell by means of three kinds of sen
switches, photoelectric cells, and potentiometers. The control program controls each ma
of the cell by means of actuators.

To allow the evaluation of the control programs from the different research groups,
(Forschungszentrum Informatik) provides a simulator which imitates the important abilitie
the real production cell. The FZI simulator is managed by transmitting commands to it
receiving sensor information from it. It performs the movements of the devices and bla
detects collisions and reports them by means of an error list. We use a modified version
FZI simulator (see figure 53) in which each metal plate ends its cycle in the cell by b
placed into a container. In our study we make the assumption that the simulator w
properly.

7.1.3 Safety requirements

Safety requirements play a significant role in the context of reactive systems: if a s
requirement is violated, this might result in damage of machines or injury to people.
section presents examples extracted from the production cell’s 21 safety requirements.

Requirement 1. The robot must not be rotated clockwise if arm 1 points towards the ta
and it must not be rotated counterclockwise if arm 1 points towards the press.

Requirement 9. The robot having an arm in the proximity of the press may only rotat
this arm is retracted.

Requirement 12. The magnet of arm 1 may only be deactivated if it is inside the press

Fig. 53.Modified FZI simulator
173

Case Study: Production Cell

osit

elt
posit

le if

pment
tegies
minent
ethod
ects

k the
tional
es.

object

their
the

h as

stem
ith the

odel.
can

gether
. This
ever,

e not
Requirement 13. The magnet of arm 2 may only be deactivated if it is above the dep
belt.

Requirement 18. A plate may only be put on the deposit belt if the deposit b
photoelectric cell confirms that the preceding plate has arrived at the end of the de
belt.

Requirement 20. A blank may not be put into the press if it is already loaded.

Requirement 21. If the table is loaded, the robot arm 1 may not be moved above the tab
it is also loaded (otherwise the two blanks collide).

7.2 Summary of Fusion

Fusion [Coleman 94] is presented as a second-generation object-oriented develo
method, which covers all aspects of the software construction life-cycle and includes stra
for consistency checks. It is called Fusion because it synthesizes the best features of pro
object-oriented development methods: OMT/Rumbaugh [Rumbaugh 91], the Booch m
[Booch 94], Objectory [Jacobson 94], and CRC [WirfsBrock 90]. It also includes some asp
coming from formal specification methods such as the Z method [Spivey 92].

Throughout the whole development, a data dictionary is maintained to collect and chec
consistency of the items introduced in the various models, together with some addi
information, such as assertions on parts of the models or the initial values of the attribut

7.2.1 Analysis

Fusion development starts with an analysis phase, in which the developer elaborates the
model, the system interface and the interface model.

The object model describes the different classes of the system, their attributes and
associations in a fashion similar to entity-relationship diagrams [Chen 76]. Among
relationships, one can find the traditional relationships found in other methods suc
inheritance (subtyping), aggregation, and association.

The system interface consists of a full description of the set of operations to which the sy
can respond, of the events that it can output, and of the list of agents that can interact w
system.

The interface model consists of the description of a life-cycle model and an operation m
The life-cycle model defines the possible sequences of interaction in which a system
participate. It lists the various events they can send to and receive from the system, to
with their arguments. The operation model defines the effect of each system operation
description includes some formal semantics in the form of pre- and post-conditions. How
the semantics of these conditions are not very rigorous, since their definitions ar
completely formalized.
174

Case Study: Production Cell

is into
raphs,
ction
scribe a
f the
bject
nships
the

the
is the
ss is
ns,

ptions
ions of

troller.
ling is

f

em, it
4]— in
sion.
7.2.2 Design

During design, the developer transforms the abstract models produced during analys
software structures. In this phase, the developer must provide object interaction g
visibility graphs, inheritance graphs, and finally class descriptions. The object intera
graphs assign each system operation described in the operation model to a class and de
decomposition of their behavior by distributing their functionality across various objects o
system. The visibility graphs show how the system is structured to enable inter-o
communication. The inheritance graphs complete the domain-related subclassing relatio
already found during analysis by including some information on inheritance in
implementation.

Finally, the developer has to gather information coming from all these models and from
data dictionary to write a description of each class in the system. This class description
first step in coding the application. All information regarding the specification of each cla
given: its various attributes, including their type and visibility information, and its operatio
including their various parameters and their result type.

During the implementation phase, the programmer’s job is to implement the class descri
in the target language, and code the behavior of each method according to the descript
the interface model, the operation model, and the interaction graphs.

7.3 Analysis and design with the Fusion method

This section presents pieces of the Fusion analysis and design of the production cell con
In particular, the parts related to the robot are presented in detail. The complete mode
available in [Barbey 98].

7.3.1 Analysis

The Fusion analysis produces a declarative specification ofwhat the system does, by means o
a system context diagram, an object model, a system life-cycle and operation models.

7.3.1.1 System context diagram

Figure 54 shows an inside view of the controller. Since the controller is a concurrent syst
has been separated —as proposed in section 3.5 of the Fusion handbook [Coleman 9
order to view it as a set of cooperating agents, each of which will be developed using Fu
175

Case Study: Production Cell

cell
es and
ll
r.

nous
pt the
ble to
ent, it
our

every

their
agent.
shows
g its

arm is
nd an

to the
.

The inside view of the controller mimics its environment: to each device of the production
corresponds an agent of the controller. The incoming and outgoing events between devic
agents are not shown in figure 54. The eventsTurnOn andTurnOff are sent by the operator to a
agents of the controller (for creating and initializing them), and are not represented eithe

The significance of the arrows is the following: to each arrow corresponds an asynchro
event, i.e. the event will be sent even though the receiving agent is not ready to acce
event. Events are blocking, i.e. the sending agent is blocked until the receiving agent is a
accept the event. Furthermore, if at any point an agent of the controller accepts an ev
queues it and will treat it when possible. This mechanism is directly supported in
implementation by the Ada 95 rendezvous. The principle behind event generation is that
agent is autonomous: it will do as many actions as it can independently.

7.3.1.2 Object model

The object model describes the different classes of the system, their attributes and
associations. Thus the controller object model is composed of one object model per
These different object models are interconnected by means of associations. Figure 55
the robot object model (disconnected from its environment) as an aggregate includin
sensor (a potentiometer) and its actuators (a motor and two arms). Similarly, each robot
an aggregate including a sensor (a potentiometer) and two actuators (a motor a
electromagnet).

7.3.1.3 System life-cycle

The life-cycle model defines the allowable sequences ofevent treatmentsin which an agent
may participate. If at any point the agent accepts an event that is not allowed according
life-cycle, then the systemqueues it and the state of the sending agent remains unchanged

Fig. 54.System context diagram (inside)

Operator

Robot

Table

Press

DepositBelt

FeedBelt

Controller

Crane

add_blank

go_unload_position
pick_from_table

feed_table

go_load_position

go_load_position
forge

load_press

pick_from_belt

deposit_on_belt

pick_from_press

bring_past_end
176

Case Study: Production Cell

onsist
ore
nd
are

tem.

f

no
rm.
The life-cycle model is defined in terms of regular expressions. The regular expressions c
of events and the operators of concatenation “.”, alternation “|”, repetition “*” for zero or m
occurrences, “+” for one or more occurrences, interleaving “||”, optionality “[]”, a
grouping “()”. In decreasing order, the precedence is [], *, +, . , | , ||. Expressions
grouped to override default precedence.

The controller life-cycle is composed of the life-cycles of the different agents of the sys
Below are the life-cycle schemata for the robot and controller:

lifecycle Robot : initialize .EmptyRobot

lifecycle EmptyRobot : (pick_from_table . #go_load_position .Arm1
| pick_from_press . #go_load_position .Arm2)*

lifecycle Arm1 : (load_press . #forge .EmptyRobot
| pick_from_press . #go_load_position .Arm12)*

lifecycle Arm2 : (pick_from_table . #go_load_position .Arm12
| deposit_on_belt .EmptyRobot)*

lifecycle Arm12 : (load_press . #forge .Arm2 | deposit_on_belt .Arm1)*

lifecycle Controller: TurnOn . (FeedBelt || Table || Robot || Press || DepositBelt || Crane) . TurnOf

EmptyRobot, Arm1, Arm2 andArm12 correspond respectively to the states of a robot carrying
plate, one plate with the first arm, one plate with the second arm and one plate in each a

Fig. 55. Object model of the robot

Robot

arm1_pick_extension, arm1_pick_retraction

Arm2

Electro_Magnet

status

Potentiometer

name

Potentiometer

name

Bidirectional_Electric_Motor

status
progression, retrogression

Bidirectional_Electric_Motor

status
progression, retrogression

stop

stop

value

value

action, inaction

arm1_drop_extension, arm1_drop_retraction
arm2_pick_extension, arm2_pick_retraction
arm2_drop_extension, arm2_drop_retraction
177

Case Study: Production Cell

ration

ects

in the

class
7.3.1.4 Operation models

The operation model defines the behavior of the system by specifying how each ope
affects the system state. Each specification includes informal pre-conditions (Assumes) and
post-conditions (Result) that describe the effect of the operation on the object model. Obj
that theResult clause indicates as either created or modified are listed in theChangesfield.
Any message that may be sent to agents as a result of invoking the operation are listed
Sends field.

Below are presented two robot operations:pick_from_table anddeposit_on_belt.

7.3.2 Design

The Fusion design produces an abstract object-oriented model ofhow the system realizes the
behavior required by the analysis, mainly by means of interaction graphs and
descriptions.

Operation: pick_from_table

Description: Pick up a plate from the table.

Changes: The first robot arm carries a plate (the magnet is on).
The first robot arm is retracted and points toward the table.

Sends: Table: {go_load_position}

Assumes: The table is in unload position.
The table is loaded.
The first robot arm is free (the magnet is off).

Result: The first robot arm carries a plate (the magnet is on).
The first robot arm is retracted and points toward the table.
An eventgo_load_position has been sent to the table.

Operation: deposit_on_belt

Description: Deposit a plate on the deposit belt

Changes: The second robot arm holds no plate (the magnet is off).
The second robot arm is retracted and points towards the deposit belt.

Sends: —

Assumes: The second robot arm holds a plate (the magnet is on).
There is no plate at the beginning of the deposit belt.

Result: The second robot arm holds no plate (the magnet is off).
The second robot arm is retracted and points towards the deposit belt.
178

Case Study: Production Cell

show
the

ions:

elt.

end

vents
ethod

the
be

thod
n
se (see
7.3.2.1 Interaction graphs

An object interaction graph is constructed for each operation of the operation models to
which objects are involved in the computation and how they cooperate to realize
functionality required by the analysis.

Below are presented the textual descriptions of the interaction graph of two robot operat

 • Robot operation pick_from_table

Operation Robot:pick_from_table ()
- move the robot so that the first arm is in front of the table,
- extend the first arm over the table, by an amount given in the attribute arm1_pick_extension,
- pick up the plate,
- retract the first arm from the table, by an amount given in the attribute arm1_pick_retraction,
- sendgo_load_position to the table.

Note thatgo_load_position corresponds to an output message sent to the table.

 • Robot operation deposit_on_belt

Operation Robot: deposit_on_belt ()
- increment by 1deposit_on_belt_counter i.e. the number of blanks the robot can drop on the deposit b

Deposit_on_belt is the only event for which the state of the sender can change before the
of the treatment: the design makes it non-blocking.

The real dropping is done by an internal methoddeposit_on_belt_int which is automatically
called when the robot is ready to drop a plate on the deposit belt. This mechanism pre
deadlock situations between the robot and the deposit belt. Indeed, the m
deposit_on_belt_int ensures that the deposit belt is never blocked waiting for the robot, and
counterdeposit_on_belt_counter ensures that the robot always knows how many blanks can
dropped on the deposit belt.

 • Robot method deposit_on_belt_int

Method Robot:deposit_on_belt ()
if deposit_on_belt_counter > 0 then

- move the robot so that the second arm is in front of the deposit belt,
- extend the second arm over the deposit belt, by an amount given byarm2_drop_extension,
- drop the plate on the deposit belt,
- retract the arm from the deposit belt, by an amount given in the attributearm2_drop_retraction,
- decrement by 1 the number of blanks the robot can drop on the deposit belt.

It is interesting to note that the preceding mechanism (induced by the me
deposit_on_belt_int and the counterdeposit_on_belt_counter) was not present in the first versio
of our Fusion modeling. The need for this mechanism has been revealed by the test pha
section 7.5).
179

Case Study: Production Cell

hs. A
tion of
7.3.2.2 Class description

A class description is produced for each class mentioned in the object interaction grap
class description is a textual summary of the design decisions that affect the implementa
a class.

Below is presented the description of the classRobot:

Robot

class Robot
// data attributes
attribute constant arm1_pick_extension: Extension := 0.5208
attribute constant arm1_pick_retraction: Extension := 0
attribute constant arm1_drop_extension: Extension := 0.6458
attribute constant arm1_drop_retraction: Extension := 0.3708
attribute constant arm2_pick_extension: Extension := 0.7971
attribute constant arm2_pick_retraction: Extension := 0
attribute constant arm2_drop_extension: Extension := 0.5707
attribute constant arm2_drop_retraction: Extension := 0
attribute constant deposit_on_belt_counter: Number_Blanks := 0

// references
// exclusive bound:
// object attribute usedexclusively by robot and having a lifetimebound to the lifetime of a robot.
// shared unbound:
// object attributeshared by different classes and having anunbound lifetime.
attribute constant arm1:exclusive bound Arm
attribute constant arm2:exclusive bound Arm
attribute constant rotation_motor:exclusive bound Bidirectional_Electric_Motor
attribute constant rotation:exclusive bound Potentiometer
attribute constant table:shared unbound Table
attribute constant press:shared unbound Press
attribute constant depositbelt:shared unbound DepositBelt

// creation methods
method create ()

// public methods
method deposit_on_belt ()
method initialize ()
method load_press ()
method pick_from_press ()
method pick_from_table ()

// private methods
method move (p: Robot_Position)
method deposit_on_belt_int ()
method deposit_on_belt_init ()
method deposit_on_belt_increment ()
method deposit_on_belt_decrement ()

endclass
180

Case Study: Production Cell

els.

rmore,
.

y a

gent

els to
been
ation)

s
ented
7.4 From Fusion toCO-OPN

TheCO-OPNspecification of the production cell controller is derived from the Fusion mod
The translation process, illustrated in figure 56, can be summarized as follows:

To each Fusion type corresponds one (or more) ADTs in theCO-OPNspecification. However,
new ADTs may be added for the purpose of theCO-OPNspecification: in the case of the
production cell, the real and integer types are discretized in less valued sorts. Furthe
some sorts may be refined (e.g. using subsorts) for the purpose of having total functions

To each Fusion class for which a class description exists corresponds aCO-OPNclass module.
The Fusion public methods are atomic; thus they are translated into atomicCO-OPNpublic
methods. TheCO-OPN axioms are defined using the interaction graphs, which specif
combination of method calls (event treatments).

This process is described by an algorithm in annex B. It leads to theCO-OPNspecification of
the robot agent partially given in figure 57. See annex C for the complete robot a
specification. The whole specification of the controller can be found in [Péraire 98b].

In the case of the production cell controller, the translation process from the Fusion mod
the CO-OPNspecifications is realized straightforwardly. Furthermore, this process has
described by an algorithm (see annex B). This shows that an automation (or semi-autom
of this process is conceivable.

Similarly, the translation from theCO-OPNspecification to the Ada 95 implementation ha
been performed straightforwardly. The Ada 95 implementation of the agent robot is pres
in annex D.

Object Model

Life-Cycle ModelOperation ModelObject Interaction

Class Descriptions Data Dictionary

CO-OPN
Specification

Types → ADTs
Functions → Operations
Predicates → Axioms

Classes → Classes
Isa → Inheritance

Subtyping → Subtyping

Methods → Methods
Attributes → Places

Interaction →

Life-Cycles →Axioms:
Assumes and Results Clauses → Places and

Axioms (Petri nets)Axioms: Conditions and
Synchronization expressions

Fig. 56.Building CO-OPN specifications from Fusion models

Synchronization expressions

Graphs
181

Case Study: Production Cell
Class Robot;
Interface

Type robot-type;
Object robot: robot-type;
Creation create;
Methods

initialize;
pick-from-table;
pick-from-press;
deposit-on-belt;
load-press;

Body
Use Table, Press;
Method move _ : robot-position;
Transition deposit-on-belt-int;
Places

place-arm1: arm-type;
place-arm2: arm-type;
place-rotation-motor: bidirectional-electric-motor-type;
place-rotation: angular-potentiometer-type;
place-idle: unique; (: Contains a token which allows the initialization :)
place-arm1-unloaded: unique; (: Contains a token when the arm1 is unloaded :)
place-arm2-unloaded: unique; (: Contains a token when the arm2 is unloaded :)
place-press-unloaded: unique; (: Contains a token when the press is unloaded :)
place-deposit: unique; (: Contains a token when deposit-on-belt is permited :)
place-arm1-loaded: unique; (: Contains a token when the arm1 is loaded with a blank :)
place-arm2-loaded: unique; (: Contains a token when the arm2 is loaded with a blank :)
place-press-loaded: unique; (: Contains a token when the press is loaded with a blank :)
place-counter: unique; (: Contains a number of tokens corresponding to the :)

(: number of blanks the robot can drop on the deposit belt:)
Initial place-idle @;
Axioms

(: The specification of the methodscreate, initialize, pick-from-press, load-press andmove are not given. :)
(: See section 7.3.2.1 for similarities to the textual description of the interaction graphs. :)

pick-from-table with
move (robot-angle-2) .. (: the robot moves above the table :)
arm1.extend (arm1-pick-extension) ..
arm1.pick ..
arm1.retract (arm1-pick-retraction) ..
table.go-load-position ::
place-arm1 arm1, place-arm1-unloaded @ → place-arm1 arm1, place-arm1-loaded @;

deposit-on-belt :: place-deposit @ → place-deposit @, place-counter @;

deposit-on-belt-int with
move (robot-angle-4) .. (: the robot moves above the deposit belt :)
arm2.extend (arm2-drop-extension, drop) ..
arm2.drop ..
arm2.retract (arm2-drop-retraction, drop) ::
place-arm2 arm2, place-arm2-loaded @, place-counter @ →
place-arm2 arm2, place-arm2-unloaded @;

where arm1, arm2: arm-type; goal-angle: discrete-angle;
End Robot;

Fig. 57.CO-OPN specification of theRobot agent
182

Case Study: Production Cell

uring

uires
m

cell

oller,
e, this
of the

ts the
tion.

gram
sted

es and
ke the

ystem
rve the
tance,
s arms
s are
gent,
ed as

ed test
ups of

onment.
3) are
t and
7.5 Test selection for the production cell

Our formal testing method generates test sets fromCO-OPN specifications foractive
concurrent object-oriented programs, which do not produce output messages d
computation. With the production cell controller, we have areactiveconcurrent object-oriented
system, which continuously interacts with its environment during computation. This req
adapting our method in order to take into account theoutput messages produced by the syste.
Indeed, in the case of the robot, the execution of the methodpick-from-table leads to the output
messageTable.go-load-position, the execution of the methodload-press leads to the output
messagePress.forge, and the execution of the methodpick-from-press leads to the output
messagePress.go-load-position (the execution of the methodsinitialize anddeposit-on-belt does
not lead to output messages). The required adaptation is done by means oftest drivers
(programs applying test sets to the tested agents) andstubs (programs simulating the
environment of the tested agents). Moreover, from the test point of view, the production
case study raises three main issues:

 • the interdependency of devices,
 • the dependency on the simulator,
 • the low observability of the system.

The first issue is typical of object-oriented design. In the case of the production cell contr
each agent may communicate with one, two or three other agents. For the test phas
implies that each agent will be tested separately using stubs that simulate the behavior
units with which it communicates. Obviously, this increases the testing effort and preven
tester from focusing the test process on successive enrichments of the system specifica

The second issue arises from the fact that the production cell controller is a reactive pro
which continuously interacts with its environment. Therefore, the controller must be te
using the simulator (see section 7.1.2). The simulator simulates the behavior of the devic
returns a vector containing the value of the sensors and an error list. As we said, we ma
assumption that the simulator works properly.

The third issue is due to the testing strategy. Indeed, in the currentCO-OPNspecifications, the
only observable elements are the output commands sent by the program. The s
observation can be increased by adding new observers, i.e. methods that allow to obse
state of an object, but not to modify its state or that of any other connected object. For ins
observers would be added to verify that the robot agent sends correct commands to it
and motor. In this case, and if its arms and motor work properly (i.e. correct command
sent to the simulator), we could deduce a correct behavior of the system {robot a
simulator}. For the purpose of testing, the need for additional observers must be identifi
soon as possible in the development process.

The test process is the following. First, each agent is tested as a unit, using a dedicat
driver and stubs simulating the agent environment. Second, subsystems integrating gro
agents are tested using dedicated test drivers and stubs simulating the subsystem envir
Finally, tests are generated to verify that the safety requirements (see section 7.1.
satisfied. In the context of this document, this test process is applied to the robo
{robot, deposit belt} subsystem.
183

Case Study: Production Cell

driver
, i.e. it
bot) in
of the

es this

in the
which

their

hod

the

te

of
ver

d to a

ble 6
7.5.1 Unit testing of the robot

7.5.1.1 Definition of the robot test driver and stubs

In the context of reactive concurrent object-oriented systems, the couple (robot test
including an oracle, stubs) must be able to capture the behavior of the robot environment
must know how the robot reacts to input messages (messages sent by the driver to the ro
terms of output messages (messages sent by the robot to the stubs). In the case
production cell controller, this problem is solved due to adeterminismbetween the input and
output messages of the tested agent. Indeed, the specification of each agent satisfi
property.

The robot test driver and the stubs for the table and press are represented in figure 58
presence of a robot implementation under test. The test driver contains a single task
sequentially treats the commands forming a test: the driver sends each command (initialize,
pick-from-table, load-press, pick-from-press and deposit-on-belt) to the robot andwaits until the
reception of the corresponding output message by the stubsTable andPress:

 • synchronization➀ of figure 58 (send (pick-from-table) with pick-from-table .. go-load-position-out)
ensures that the driver is blocked until the reception ofgo-load-position-out,

 • synchronization➁ of figure 58 (send (load-press) with load-press .. forge-out) ensures that the
driver is blocked until the reception offorge-out,

 • synchronization➂ of figure 58 (send (pick-from-press) with pick-from-press .. go-load-position-out)
ensures that the driver is blocked until the reception ofgo-load-position-out.

In this way the order of the commands inside the tests corresponds to the order of
treatment.

The Petri net describing the behavior of the stubTable verifies that exactly one
Table.go-load-position has been triggered to the stub after the execution of the met
pick-from-table. The Petri net describing the behavior of the stubPress verifies that exactly one
Press.forge has been triggered to the stub after the execution of the methodload-press and that
exactly onePress.go-load-position has been triggered to the stub after the execution of
methodpick-from-press.

Given an elementary test <TestResult, Formula>, the driver makes the tested program execu
the sequenceFormula, and stores the program answer inProgramResult, where:

 • ProgramResult∈ { end, wait}: endcorresponds to a correct termination of the execution
the tested program, whilewait corresponds to a blocking of the program. Since the dri
tests the program with respect to theevents treatmentand not theevents reception, this
blocking can be induced by the presence of the driver and does not always correspon
blocking of the program in the real environment.

Then the driver plays the role of the oracle. The truth table of the oracle is given in ta
where:

 • nomeans no error detected in the tested program in terms ofevents treatment.

 • yes means one error detected in the tested program in terms ofevents treatment.
184

Case Study: Production Cell

pare
a

extend
it a
mption
of the

at the
this
 • inconclusivemeans no possible conclusion. For instance, it is not meaningful to com
TestResult =false andProgramResult =wait, because the oracle is not able to differentiate
blocking due to an error from the blocking required by the specification.

Thus, by means of adequate test drivers (including an oracle) and stubs, we are able to
our formal testing method from active programs to reactive programs which exhib
determinism between the input and output messages of the tested agents. Another assu
which must be verified is that the program preserves the atomic treatment of the methods
specification. The driver has been designed accordingly. Our first tests revealed th
communication protocol between the control program and the simulator did not satisfy
assumption. Later on this was fixed by modification of the communication protocol.

TestResult ProgramResult Error

true end no

true wait yes

false end yes

false wait inconclusive

Table 6: Truth table of the driver oracle

Table

Robot implementation (under test)

pick-from-table

Fig. 58.Robot test driver and stubs (inCO-OPN)

Press
n n+1

1

go-load-position

go-load-position

Driver task

..

..

0 0

0

00

0

11

n

n+1

n+1

n

(stub)

(stub)

initialize deposit-on-belt
load-press

forge

forge-out

pick-from-press

go-load-position-out

go-load-position-out

..

send (load-press)

send (initialize) send (deposit-on-belt)

send (pick-from-press)

send (pick-from-table)

➀

➁ ➂
185

Case Study: Production Cell

of the
scribes

of
state.
osit
ot

s the
7.5.1.2 Test set selection

The robot agent is tested using the robot test driver and stubs that simulate the behavior
table and press. Figure 59 shows the graphical representation of the Petri net which de
the robot event treatment. Note that the white rectangledeposit-on-belt-in corresponds to an
internal transition. TheCO-OPN stabilization mechanism ensures that, in the presence
internal transitions, the object is not able to provide any service until it reaches a stable
Therefore, firing an internal transition has priority over firing a method. Thus, if the dep
belt has asked for a plate (the placeplace-counter holds a token), as soon as the second rob
arm is loaded with a plate (the placeplace-arm2-loaded holds a token), it is dropped on the
deposit belt (the placeplace-arm2-unloaded holds a token).

 • Test of the initialization mechanism

First, the initialization mechanism can be tested by using the constraints:

 • nb-events (f) = 1 -- f is anHML formula with one method call

 • trace (f) -- f is anHML formula withoutAnd or Not operators

and by replacing the variables (of type event) in an exhaustive way. This produce
following tests:

1: <FALSE,<pick-from-table> T >
2: <FALSE,<pick-from-press> T>
3: <FALSE,<load-press> T >
4: <TRUE,<initialize> T >
5: <FALSE,<deposit-on-belt> T >

These tests ensure that the only first command treated by the robot isinitialize.

Fig. 59.Petri net of the robot event treatment
186

Case Study: Production Cell

d by

s the

ot are

onds to
raph
each

robot
ther

that
 • Test of the mechanism to transfer the blank from the table to the press

Similarly, the mechanism of moving a blank from the table into the press can be teste
applying the hypotheses:

 • nb-events (f) = 3 -- f is anHML formula with 3 method calls

 • trace (f) = true -- f is anHML formula withoutAnd or Not operators

 • nb-occurrences (f, ‘initialize’) = 1 -- f is anHML formula with 1 occurrence ofinitialize

 • shape (f, next (‘initialize’, [])) = true -- f is anHML formula beginning withinitialize
where [] means anyHML formula

and by replacing the variables (of type event) in an exhaustive way. This produce
following tests:

01: <FALSE,<initialize><pick-from-table><pick-from-table>T>
02: <FALSE,<initialize><pick-from-table><pick-from-press>T>
03: <TRUE,<initialize><pick-from-table><load-press>T>
04: <TRUE,<initialize><pick-from-table><deposit-on-belt> T>
05: <FALSE,<initialize><pick-from-press><pick-from-table>T>
06: <FALSE,<initialize><pick-from-press><pick-from-press>T>
07: <FALSE,<initialize><pick-from-press><load-press>T>
08: <FALSE,<initialize><pick-from-press><deposit-on-belt>T>
09: <FALSE,<initialize><load-press><pick-from-table>T>
10: <FALSE,<initialize><load-press><pick-from-press>T>
11: <FALSE,<initialize><load-press><load-press>T>
12: <FALSE,<initialize><load-press><deposit-on-belt>T>
13: <TRUE,<initialize><deposit-on-belt><pick-from-table>T>
14: <FALSE,<initialize><deposit-on-belt><pick-from-press>T>
15: <FALSE,<initialize><deposit-on-belt><load-press>T>
16: <TRUE,<initialize><deposit-on-belt><deposit-on-belt>T>

These tests ensure that, after the initialization, the commands treated by the rob
pick-from-table followed by load-press, and that the commanddeposit-on-belt is always non
blocking. The preceding test selection process is illustrated in figure 60.

 • Test of one robot cycle

The test set selection process aims to cover several robot cycles (a robot cycle corresp
the complete treatment of a blank by the robot). The robot Petri net reachability g
[Brams 83a] is constructed using the specification. It is presented in figure 61, where
vector is the marking of the places (place-id place-arm1-unloaded place-press-unloaded
place-arm2-unloaded place-arm1-loaded place-press-loaded place-arm2-loaded place-deposit
place-counter), and whereω ∉ IN represents an arbitrary value.

A robot cycle is composed of robot elementary cycles in sequence or interlacing. A
elementary cycle is a set of transitions from an initial marking to itself (including no o
robot elementary cycle from the same initial marking). The robot reachability graph shows
the elementary cycles are of length 1 or 4 (ending with the commanddepositonbelt) and that,
starting from stateB, the graph covering all the elementary cycles is of depth 7.

Therefore, a test set coveringn cycles is composed of all possibleHML formulas of depth 7n.
In case of traces (HML formulae withoutAND or NOToperators), a test set coveringn cycles
is composed of all possible sequences of length 7n.
187

Case Study: Production Cell

anism

ssful
f one

ke the
nted in
bove
Assuming that the initialization mechanism and the blank table-to-press transfer mech
are already tested, to testn=1 cycle of the robot use, we apply the hypotheses:

 • trace (f) = true -- f is anHML formula withoutAnd or Not operators

 • nb-occurrences (f, ‘initialize’) = 1 -- f is anHML formula with 1 occurrence ofinitialize

 • shape (f, next (‘initialize’, next (‘pick-from-table’, next (‘load-press’, [])))) = true
-- f is anHML formula beginning with
-- <initialize> <pick-from-table> <load-press>

 • nb-events (f) = 8 -- f is anHML formula with 1+7n =8 method calls
-- (including the commandinitialize)

The variables (of type event) are replaced in an exhaustive way.

This produces 1024 tests that we are not going to list in this document. A succe
application of these tests to the production cell controller ensures the correct behavior o
robot use cycle, modulo the hypotheses applied to the program. In particular, behaviors li
blank table-to-depositbelt transfer mechanism are tested. Note that the test sets prese
this section arevalid (under the reduction hypotheses corresponding to the constraints a
they reject any program that is incorrect in terms of event treatment) andunbiased(they accept
any program that is correct in terms of event treatment).

Fig. 60.Test of the blank table-to-press transfer mechanism withCO-OPNTEST
188

Case Study: Production Cell

agent.
l robot
ing
 • Test of several robot cycles

The test of one robot cycle is not sufficient to guarantee the correctness of the robot
Since an error could occur for instance at the second or third robot cycle, a test of severa
cycles is required. For instance, in order to partially test the third robot cycle, the follow
constraints can be used:

 • trace (f) = true -- f is anHML formula withoutAnd or Not operators

 • nb-occurrences (f, ‘initialize’) = 1 -- f is anHML formula with 1 occurrence ofinitialize

 • nb-occurrences (f, ‘deposit-on-belt’) = 2
-- f is anHML formula with 2 occurrences of
-- deposit-on-belt

 • shape(f, next(’initialize’, next(’deposit-on-belt’, next(’deposit-on-belt’,
next(’pick-from-table’, next(’load-press’, next(’pick-from-press’,
next(’pick-from-table’, next(’load-press’, next(’pick-from-press’,[])))))))))) = true

-- f is anHML formula beginning with
-- <initialize><deposit-on-belt><deposit-on-belt>
-- <pick-from-table><load-press><pick-from-press>
-- <pick-from-table><load-press><pick-from-press>

 • nb-events (f) = 12 -- f is anHML formula with 12 method calls

A: (1 0 0 0 0 0 0 0 0)

B: (0 1 1 1 0 0 0 1 ω)

D: (0 1 0 1 0 1 0 1 ω)

E: (0 0 0 1 1 1 0 1 ω)

G: (0 0 1 0 1 0 1 1 ω)

H: (0 1 0 0 0 1 1 1 ω)

I: (0 0 0 0 1 1 1 1 ω)

F : (0 1 1 0 0 0 1 1 ω)

initialize

pick-from-table

load-press

deposit-on-belt

pick-from-press

C: (0 0 1 1 1 0 0 1 ω)

pick-from-table

pick-from-table

pick-from-table

load-press

pick-from-press
deposit-on-belt

deposit-on-belt

deposit-on-belt

B

C

D

E

deposit-on-belt

deposit-on-belt

deposit-on-belt

deposit-on-belt

Fig. 61.Robot reachability graph
189

Case Study: Production Cell

to test

t of

t of

g
it is
s

test
The variables (of type event) are replaced in an exhaustive way.

This produces 27 tests. Among these 27 tests, we call attention to the following one (TEST) that
will help to find a fault:

TEST: <TRUE,<initialize><deposit-on-belt><deposit-on-belt>
<pick-from-table><load-press><pick-from-press>
<pick-from-table><load-press><pick-from-press>
<pick-from-table><load-press><pick-from-press> T>

7.5.1.3 Test set execution and error detection

The robot test driver and stubs presented in figure 58 have been implemented and used
several versions (correct and incorrect) of the robot implementation.

A correct implementation of the robot agent induces the following behavior: the treatmenn
commandsdeposit-on-belt allows the treatment of1+n commandspick-from-press (the first
treatment ofpick-from-press is independent ofdeposit-on-belt).

Consider an incorrect implementation which induces the following behavior: the treatmenn
commandsdeposit-on-belt allows the treatment of1+1 commandspick-from-press. This
corresponds to an implementation without the counterdeposit_on_belt_counter (see
section 7.3.2.1) in which some commandsdeposit-on-belt are lost. This error is detected usin
the preceding testTEST. Indeed, the program is blocked during the execution of this test:
not able to treat the third commandpick-from-press (its second arm already holds a blank). Thu
the commandgo-load-position is not sent from the robot to the press. The execution of the
TEST leads to the following results.

Executing test:
<TRUE,<INITIALIZE_ROBOT><DEPOSIT_ON_BELT><DEPOSIT_ON_BELT>
<PICK_FROM_TABLE><LOAD_PRESS><PICK_FROM_PRESS>
<PICK_FROM_TABLE><LOAD_PRESS><PICK_FROM_PRESS>
<PICK_FROM_TABLE><LOAD_PRESS><PICK_FROM_PRESS>>

Executing INITIALIZE_ROBOT ... acknowledged
Executing DEPOSIT_ON_BELT ... acknowledged
Executing DEPOSIT_ON_BELT ... acknowledged
Executing PICK_FROM_TABLE ... acknowledged
Executing LOAD_PRESS ... acknowledged
Executing PICK_FROM_PRESS ... acknowledged
Executing PICK_FROM_TABLE ... acknowledged
Executing LOAD_PRESS ... acknowledged
Executing PICK_FROM_PRESS ... acknowledged
Executing PICK_FROM_TABLE ... acknowledged
Executing LOAD_PRESS ... acknowledged
Executing PICK_FROM_PRESS ... timeout

Press.Go_Load_Position has been called 0 times instead of once

Test failed

190

Case Study: Production Cell

ch the
and
en

afety
rmal
y.

uming
implies
are the
n the
rder to

g the

ction
uence

t

th the
ays
y the

for the
if
nd of
unit

o be
We have generated test sets for several incorrect programs (e.g. a program in whi
commandload-press loads the table instead of the press, a program in which the comm
load-press sends two commandsforge to the press instead of only once). All errors have be
detected during test execution.

7.5.1.4 Testing safety requirements

Safety requirements are taken into account in the specification. Thus, testing s
requirements, related to a given agent, implies testing that the agent fulfills its fo
specification in the context of an environment (stubs and simulator) which works properl

Among the 21 safety requirements, 15 concern the behavior of a given agent. Thus ass
that each agent has been successfully tested as a unit, with respect to its specification,
that these requirements are already tested. However, since the only observable elements
output commands sent by the program, only necessary conditions can be verified o
requirements. This implies that a correct design must take into account these aspects in o
be able to perform more than a partial verification of the program requirements.

Let us take for instance the first part of requirement 1:the robot must not be rotated
clockwise if arm 1 points towards the table.
The real robot is positioned such that the first arm points towards the table usin
commandinitialize followed by the commandpick-from-table. Then, one must verify that no
operation makes the robot rotate clockwise. The behavior of the robot (tested in se
section 7.5.1.2 and illustrated by the Petri net of figure 59) ensures that after the seq
initialize . pick-from-table the unique commandstreated by the robot areload-press and
deposit-on-belt. These commands make the robot rotate counterclockwise. ❏

Let us take another example, requirement 21:if the table is loaded, the robot arm 1 may no
be moved above the table if it is also loaded (otherwise the two blanks collide).
The robot arm 1 picks up a plate from the table with the commandpick-from-table (this is the
only command that moves the arm 1 above the table) and drops it into the press wi
commandload-press. Then, one must verify that between two picks, one drop is alw
performed. The behavior of the robot (tested in section section 7.5.1.2 and illustrated b
Petri net of figure 59) ensures that after the sequenceinitialize . pick-from-table the unique
commands treated by the robot are load-press and deposit-on-belt. The command
pick-from-table is forbidden. ❏

In other words, unit test sets cover these safety requirements. This is also the case
requirements 9, 12, 13 and 20. Requirement 18 (a plate may only be put on the deposit belt
the deposit belt photoelectric cell confirms that the preceding plate has arrived at the e
the deposit belt) can be verified using both the deposit belt unit testing and the robot
testing. The deposit belt unit testing verifies that the commandsdeposit-on-belt are correctly
sent by the deposit belt. The robot unit testing verifies that the commandsdeposit-on-belt are
correctly treated by the robot. Thus, if so, requirement 18 is verified. However, it may als
verified by integration of the robot and the deposit belt.
191

Case Study: Production Cell

of the
s been
perly,
d with

l

l

t

sit belt

ing:

sented
river

it belt

deposit
7.5.2 Integration testing of the robot and deposit belt

Assuming that the robot agent has been tested using stubs that simulate the behavior
table and press, and that it works properly, and assuming that the deposit belt agent ha
tested using stubs that simulate the behavior of the robot and crane, and that it works pro
this section presents tests for the {robot, deposit belt} subsystem. The subsystem is teste
stubs for the table, the press and the crane.

7.5.2.1 Presentation of the deposit belt

The deposit belt is powered
by a unidirectional electric
motor which can be started
and stopped by the contro
program. A photoelectric cell
is installed at the end of the
belt; it indicates whether a
plate has entered the fina
part of the belt. For safety
considerations (requiremen
18), the deposit belt can hold
only two plates at the same
time.

Figure 62 shows the graphical representation of the Petri net which describes the depo
event treatment.

Textual descriptions of the interaction graphs of the deposit belt operations are the follow

Operation DepositBelt:initialize ()
- senddeposit-on-belt to the robot.

Operation DepositBelt:bring-past-end ()
- turn on the motor,
- wait until the photoelectric cell indicates a plate in the photoelectric barrier of the belt,
- wait until the photoelectric cell indicates no plate in the photoelectric barrier of the belt,
- turn off the motor,
- senddeposit-on-belt to the robot,
- sendpick-from-belt to the crane.

These descriptions show that the deposit belt interacts with the robot and the crane.

7.5.2.2 Definition of the {robot, deposit belt} test driver and stubs

The {robot, deposit belt} test driver and the stubs for the table, press and crane are repre
in figure 63 in the presence of a {robot, deposit belt} implementation under test. The test d
is similar to that proposed for the robot unit testing (see figure 58). However, the depos
operationsinitialize andbring-past-end have been added, and the robot operationdeposit-on-belt
has been suppressed, since it becomes an internal operation of the subsystem {robot,
belt}.

Fig. 62.Petri net of the deposit belt event treatment
192

Case Study: Production Cell

le

. The

elt
posit

able

, it can
is

ds
The synchronization➃ (send (bring-past-end) with bring-past-end .. pick-from-belt-out) ensures
that the driver is blocked until the reception ofpick-from-belt-out. The Petri net describing the
behavior of the stubCrane verifies that exactly oneCrane.pick-from-belt has been triggered to the
stub after the execution of the methodbring-past-end. The oracle is based on the same princip
as the one given for the robot (see table 6).

7.5.2.3 Test set selection for safety requirement

This section presents an example of test selection for the {robot, deposit belt} subsystem
selection is performed with the intent to partially verify safety requirement 18.

Requirement 18. A plate may only be put on the deposit belt if the deposit b
photoelectric cell confirms that the preceding plate has arrived at the end of the de
belt.

A plate travels from the robot to the deposit belt following the sequence of observ
commandspick-from-press . bring-past-end, in which the commandbring-past-end causes the
arrival of a plate at the end of the deposit belt. When the second robot arm becomes free
perform anotherpick-from-press. Thus, requirement 18 is satisfied if the following condition
satisfied.

The (n+2)th commandpick-from-press may only be treated by the robot if n comman
bring-past-end have already been treated by the deposit belt.

Table

Robot-DepositBelt implementation

pick-from-table

Fig. 63.{Robot, Deposit belt} test driver and stubs (inCO-OPN)

Press
n n+1

1

go-load-position

go-load-position

Driver task

..

..

0 0

0

00

0

11

n

n+1

n+1

n

(stub)

(stub)

robot.
bring-past-end

load-press

forge

forge-out

pick-from-press

go-load-position-out

go-load-position-out

..

send (load-press)

send (robot.initialize)

send (bring-past-end)

send (pick-from-press)

send (pick-from-table)

➀

➁

➂

Crane10

0

n+1
n (stub)

depositbelt.

(under test)

send (depositbelt.initialize)

..
➃

pick-from-belt

pick-from-belt-out

initialize initialize
193

Case Study: Production Cell

set:

ensure
d

t sets
Thus, to partially test requirement 18 withn=1, we can apply the following hypotheses:

 • trace (f) = true -- f is anHML formula withoutAnd, Notoperators

 • nb-occurrences (f, ‘deposit-on-belt’) = 0-- f is anHML formula without any occurrence of
-- deposit-on-belt (subsystem internal operation)

 • nb-occurrences (f, ‘robot.initialize’) = 1-- f is anHML formula with 1 occurrence of
-- robot.initialize

 • nb-occurrences (f, ‘depositbelt.initialize’) = 1
-- f is anHML formula with 1 occurrence of
-- depositbelt.initialize

 • shape (f, next(’robot.initialize’,next(’depositbelt.initialize’,
next(’pick-from-table’,next(’load-press’,next(’pick-from-press’,next([],
next(’pick-from-table’,next(’load-press’,next(’pick-from-press’,
next(’pick-from-table’,next(’load-press’,next(’pick-from-press’,T))))))))))))) = true

-- f is anHML formula of the shape
-- <initialize><initialize>
--<pick-from-table><load-press><pick-from-press> []
-- <pick-from-table><load-press><pick-from-press>
-- <pick-from-table><load-press><pick-from-press>T
-- where[] means any method.

 • nb-events (f) = 12 -- f is anHML formula with 12 method calls

The variables (of type event) are replaced in an exhaustive way. This produces the test

1: <TRUE,<robot.initialize><depositbelt.initialize>
<pick-from-table><load-press><pick-from-press><bring-past-end>
<pick-from-table><load-press><pick-from-press>
<pick-from-table><load-press><pick-from-press> T>

2: <FALSE,<robot.initialize><depositbelt.initialize>
<pick-from-table><load-press><pick-from-press><pick-from-table>
<pick-from-table><load-press><pick-from-press>
<pick-from-table><load-press><pick-from-press> T>

3: <FALSE,<robot.initialize><depositbelt.initialize>
<pick-from-table><load-press><pick-from-press><pick-from-press>
<pick-from-table><load-press><pick-from-press>
<pick-from-table><load-press><pick-from-press> T>

4: <FALSE,<robot.initialize><depositbelt.initialize>
<pick-from-table><load-press><pick-from-press><load-press>
<pick-from-table><load-press><pick-from-press>
<pick-from-table><load-press><pick-from-press> T>

Modulo the reduction hypotheses corresponding to the preceding constraints, these tests
that the third commandspick-from-press may only be treated by the robot if one comman
bring-past-end has already been treated by the deposit belt. To verify requirement 18, tes
should be generated for higher values ofn, and with weaker reduction hypotheses.
194

Case Study: Production Cell

size, a
from
erived
5

nced,
sen is

nit and
er and
n error

belt}
(table,

plex
ks to

bility
bility
inally,

can be
d that
since

aised.

rams.
tive
e real
tput
sis is a
thesis is
. This

ent
7.6 Summary

This chapter has presented the object-oriented development of an application of realistic
production cell controller. All phases of the software life-cycle were addressed. Starting
informal requirements, Fusion models were produced. Then, these models were d
straightforwardly to a CO-OPN specification, and in turn derived to an Ada 9
implementation. Finally, test sets were selected from theCO-OPN specification using our
formal testing method. The choice of Ada 95 as the implementation language has influe
during the Fusion analysis phase, our definition of event management. The definition cho
directly supported by the Ada 95 rendezvous mechanism:if at any point an agent of the
controller accepts an event, it queues it and will treat it when possible.

The production cell controller case study has allowed us to generate test sets at both u
integration level. First, the robot agent was tested as a unit, using a dedicated test driv
stubs simulating its environment (table and press). The design of these tests revealed a
in a Fusion model (a counter lacking in the robot operationdeposit-on-belt). Their execution
revealed errors in incorrect implementations of the robot. Second, the {robot, deposit
subsystem was tested using a dedicated test driver and stubs simulating its environment
press and crane). Finally, several safety requirements have been partially verified.

This experiment has demonstrated the power of theCO-OPNTESTtool on several points. First, it
provides a set of elementary constraints rich enough to permit the construction of com
constraints specific to our application. Second, these constraints are easily built than
user-friendly capabilities. Futhermore, this construction is greatly facilitated by the possi
to define a constraint in a modular way, using subconstraints. In addition, it has the capa
to save and load complete workspaces (constraints related to a given test environment). F
CO-OPNTEST generates test sets in an efficient way.

The production cell controller case study has been chosen because the control program
modeled as a collection of cooperative concurrent agents. A posteriori, we have realize
this choice was not so judicious: this example lacks data and algorithms! Nevertheless,
the production cell controller is a reactive program, many interesting issues have been r

Our formal testing method has been designed for active concurrent object-oriented prog
To deal with the production cell controller, we extended our testing method from ac
programs to reactive programs. First, a simulator was used to simulate the behavior of th
production cell. Second, to permit the definition of test drivers in the presence of ou
messages produced by the system, two hypotheses were proposed. The first hypothe
determinism between input and output messages of the tested agents. The second hypo
that the program preserves the atomic treatment of the methods of the specification
hypothesis is similar to the‘reasonable environment hypothesis’ required by theTGV test
method (see section 2.3.4, [Fernandez 96a]):no new message can be sent by the environm
until it receives all specified outputs of the program.
195

Case Study: Production Cell

been
suming
tment.
which
is not
ystem.
not be
d by

ent by
test

dance
and

bility
for the
nment
Test drivers for both the robot agent and the {robot, deposit belt} subsystem have
designed according to the former hypotheses. In particular, they have been designed as
that the order of acceptance of the input messages coincides with the order of their trea
Thus, if an agent or subsystem, successfully tested by the driver, is used by a program
does not satisfy this hypothesis (i.e. the order of acceptance of the input messages
necessarily the order of their treatment), we cannot presume the correctness of the s
Indeed, the event reordering performed by the program is not specified and thus can
formally tested. This is typically an unexpected addition of code that cannot be detecte
specification-based testing (see figure 4).

Finally, this experiment has raised an observability problem: in theCO-OPN specification
derived from Fusion models, the only observable elements are the output commands s
the program. To avoid such a low observability problem, the requirements of the
environments should be identified early in the application development process, in accor
with the pursued test objectives. Especially, one must identify what is to be controlled
what is to be observed. Then, how to handle the resulting controllability and observa
issues is necessarily constrained by the design and implementation choices made
software to be tested. This led us to recommend that the development of the test enviro
accompany the corresponding development phases of the target application.
196

Conclusion

ated to
es our

n the

ed using
stem
iption
e
ave

e test

state
C H A P T E R

8
CHAPTER8CONCLUSION

8.1 Contribution

In this document, we have presented a method and a tool for test set selection, dedic
object-oriented applications and based on formal specifications. This section summariz
work and its main contributions.

We have proposed a theory of formal testing for object-oriented applications. It is based o
BGM theory [Bernot 91b] for testing data types from algebraic specifications. TheBGM theory
has been adapted to systems in which the specifications and test sets can be express
different formalisms: a specification language well adapted to the expression of sy
properties from the specifier’s point of view, and a test language well adapted to the descr
of test sets from the tester’s point of view. TheCO-OPN language was chosen as th
specification formalism.HML temporal logic was chosen as the test formalism. We h
shown that there exists a full agreement between theCO-OPN and HML satisfaction
relationships: the program satisfies its specification if and only if it satisfies the exhaustiv
set derived from this specification.

We have defined a test format <Formula, Result>, in which Formula is an HML formula
composed of observable events of the specification, andResultis a boolean value showing
whether the expected result of the evaluation ofFormula is true or falsewith respect to the
specification. Thanks to the full agreement and to theCO-OPN ‘positive’ and ‘negative’
semantics, our test format provides an observational description (independent of the
notion) of valid and invalid implementations.
197

Conclusion

to be
austive
l of
et of
e tests

fferent
ined to
ystem
e size.

t
ply to
traints.

n. A
. It
traints.
This
s the

ies to

using
asily
el (on
vealed
this
g the
g the

an be
chapter

ssess
haviors,
We have proposed a practical test selection process. It starts with the definition of a unit
tested (object, class, or subsystem), and with the expression of the corresponding exh
test set by means of anHML formula with variables. Next, the test process reduces the leve
abstraction of this formula by constraining variable instantiation. For this purpose, a s
elementary constraints have been proposed: syntactic constraints on the structure of th
and semantic constraints which allow to instantiate the test variables so as to cover the di
classes of behaviors induced by the specification. Elementary constraints can be comb
form complex constraints. The test process ends with the resolution of the constraint s
defined on the exhaustive test set; the solution leads to a pertinent test set of reasonabl

We have developed a new tool, calledCO-OPNTEST, which allows semi-automation of the tes
selection process. This tool assists the tester during the construction of constraints to ap
the exhaustive test set; next it automatically generates a test set satisfying these cons
The CO-OPNTEST kernel is an equational resolution procedure based onPROLOG
SLD-resolution; it includes additional control mechanisms for subdomain decompositio
front-end, written inJava, provides a user-friendly way to define the test constraints
guarantees that the constraints are well constructed with respect to the language of cons
Moreover, it generates a graphical representation of the specification graphs.
representation permits an intuitive comprehension of the specification and thus guide
tester during the test selection process. Similarly, the graphical interface provides facilit
display the computed tests.

We have demonstrated the soundness of our approach and the power of our tool by
CO-OPNTESTon a case study of realistic size: a production cell controller. Test sets were e
designed and rapidly generated at both unit level (on the robot agent) and integration lev
the subsystem {robot, deposit belt}). The design and execution of these tests have re
errors in the design and implementation of the controller. Finally, problems met during
experiment, mainly related to a low system observability, led us to recommend designin
test environment (drivers, oracle, stubs, simulator, etc.) as soon as possible durin
development process of the target application.

In summary, the main contributions of this work are the following:

 • A theory of formal testing dedicated to object-oriented software.

 • A test format adapted to systems with states.

 • A practical test set selection procedure.

 • A new tool based on operational techniques for test set selection.

 • A demonstration of the soundness of the approach via a case study of realistic size.

The main characteristics of our method and tool are summarized in table 7. This table c
compared to table 2 on page 38 which summarizes the methods and tools presented in
2. The main advantages of our approach are (i) our test format, based onHML formulas and
their discriminating power, which permits to test, on the one hand that a program does po
correct behaviors, and on the other hand that a program does not possess incorrect be
(ii) our sampling and operational techniques derived from theBGM method and theLOFT
tool, and (iii) theCO-OPNTESTuser assistance capabilities.
198

Conclusion

uld be
earch.

easy
is set
traint
her

ware,
hism.
m into
of the
f just
s, and

et
8.2 Limitations, enhancements and perspectives

This section presents the limitations of our method and tool, the enhancements that sho
performed to overcome these limitations, and some directions in which to pursue this res

 • Extensible set of constraints

We have proposed a set of elementary constraints, important enough to permit the
construction of complex constraints to apply to the exhaustive test set. However, th
should be extended to increase the efficiency of our method and tool in terms of cons
construction. An interesting solution would be to provide the user with a means to build
own constraints. An extensible set of constraints would permit to specializeCO-OPNTESTfor
each application.

 • Additional test constraints based on inheritance and polymorphism

Although our theory solves the most common problems of testing object-oriented soft
it does not deal with some aspects of this paradigm, namely inheritance and polymorp
These issues have been studied in [Barbey 97]. To take inheritance and polymorphis
account, an incrementallity hypothesis has been proposed, as well as an adaptation
reduction hypotheses that considers uniformity applied to types and values instead o
values. An objective would be to define constraints corresponding to these hypothese
then to integrate these constraints intoCO-OPNTEST.

Our test method and theCO-OPNTEST tool
M

et
ho

d

Model
Object-oriented specificationsCO-OPN

(based on synchronized algebraic Petri nets)

Test unit Object, class, or subsystem (combination of method calls)

Test coverage Axioms

Test format Couple〈HML formula, result〉

Sampling
techniques

Reduction hypotheses applied to the program behavior
⇒

Syntactic and semantic constraints on the exhaustive test s

Oracle External observation of the program behavior

To
ol

Operational
techniques

PROLOG SLD-resolution
with control mechanisms for subdomain decomposition

User assistance Java user-friendly interface for test constraint definition

Table 7: Main characteristics of our test method and tool
199

Conclusion

ndles

s
build

and

nually
}. An
would
r and

are
ssible
tware
ts and
odels

ering

ay to

that
his
 • Oracle construction

In the production cell controller case study, we presented a simple oracle which ha
only the paths of formulas (a path is anHML subformula withoutAnd operators). The
power of such an oracle is limited, since it does not deal withAndoperators, and thus doe
not take into account branching in non-deterministic systems. A solution would be to
oracles able to solve the branching problem by techniques like state recording
backtracking. This would be a semi-intrusive way of implementing an oracle.

 • Test drivers and stubs generation

In the production cell controller case study, we presented test drivers and stubs ma
designed and implemented for the robot agent and subsystem {robot, deposit belt
interesting enhancement would be to develop a driver and stub generator. This tool
take as input the specification under test, and would automatically output a test drive
stubs in the implementation language.

 • Integration into the software development process

As mentioned above, it is important to plan testing from the beginning of the softw
life-cycle. The testing phase should not be started at the end of development. A po
research direction would be the integration of our testing approach into a complete sof
development process. Rules would be proposed to facilitate the design of both test se
test environments. In particular, reduction hypotheses would be determined from the m
produced during the development of the target application.

We should also refer to research currently being conducted at the Software Engine
Laboratory of EPFL, which aims to refineCO-OPN specifications with contracts into
distributedJavaprograms. Contracts are properties of the specification expressed withHML
temporal logic. In this way, theCO-OPNTEST tool would be used to verify that each
specification of the refinement process satisfies its contract: a given contractContract is
verified by the specification ifResult = truein the test〈Contract, Result〉 modulo hypotheses
possibly performed during the test selection. At the program level, theCO-OPNTESTtool would
be used to verify either the contract and the implementation. This would be an elegant w
combine testing and refinement.

TheCO-OPNTESTtool has been integrated into theCO-OPNenvironment. Thanks to its strong
theoretical grounds, its efficiency and its user-friendly capabilities, we can hope
CO-OPNTEST will help to increase the quality of future applications developed in t
environment.
200

Annexes
201

202

CO-OPN specifications
Annex A
CO-OPNspecifications

This annex contains severalCO-OPNspecifications.

A.1 UNIQUE

Adt Unique;
Interface

Sort unique;
Generator

@ : → unique;
Body
End Unique;
203

CO-OPN specifications
A.2 BOOLEANS

Adt Booleans;
Interface

Sort boolean;
Generators

true : → boolean;
false : → boolean;

Operations
not _ : boolean → boolean;
_ and _ : boolean boolean → boolean;
_ or _ : boolean boolean → boolean;
_ xor _ : boolean boolean → boolean;
_ = _ : boolean boolean → boolean;

Body
Axioms

not true = false;
not false = true;

true and b = b;
false and b = false;

true or b = true;
false or b = b;

false xor b = b;
true xor b = not b;

(true = true) = true;
(true = false) = false;
(false = true) = false;
(false = false) = true;

Where
b : boolean;

End Booleans;
204

CO-OPN specifications
A.3 NATURALS

Adt Naturals;
Interface

Use Booleans;
Sort natural;
Generators

0 : → natural;
succ _ : natural → natural;

Operations
_ + _ ,
_ - _ ,
_ * _ ,
_ / _ ,
_ % _ : natural natural → natural;
_ = _ ,
lt _ _ ,
_ < _ ,
_ ≤ _ ,
_ > _ ,
_ ≥ _ : natural natural -> boolean;
max _ _ : natural natural -> natural;
even _ : natural -> boolean;
2** _ ,
_ ** 2 : natural -> natural;
;; constants
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 : → natural;

Body
Axioms

0+x = x;
(succ x)+y = succ (x+y);

;; substraction, if y > x then x-y = 0
0-x = 0;
(succ y)-0 = succ y;
(succ y)-(succ x) = y-x;

0*x = 0;
(succ x)*y = (x*y)+y;

;; division, if y = 0 then div x y = 0
x/0 = 0;
x<y = true ⇒ x/y = 0;
x≥y = true ⇒ x/y = succ ((x-y)/y);

;; modulo, if y = 0 then mod x y = 0
x%y = x-(y*(x/y));

x = x = true;
lt(x, y) = true ⇒ x = y = false;
lt(y, x) = true ⇒ x = y = false;

lt(x, 0) = false;
lt(0, succ y) = true;
lt(succ x, succ y) = lt(x, y);

x < x = false;
lt(x, y) = true ⇒ x < y = true;
lt(y, x) = true ⇒ x < y = false;
205

CO-OPN specifications
x≤y = not y<x;

x>y = not x≤y;

x≥y = not x<y;

even 0 = true;
even succ x = not even x;

2**0 = succ 0;
2**succ x = (succ succ 0)*(2**x) ;

(x≥y)=true ⇒ max x y = x ;
(x≥y)=false ⇒ max x y = y ;

x**2 = x*x;

1 = succ 0; 2 = succ 1; 3 = succ 2; 4 = succ 3;
5 = succ 4; 6 = succ 5; 7 = succ 6; 8 = succ 7;
9 = succ 8; 10 = succ 9; 11 = succ 10; 12 = succ 11;
13 = succ 12; 14 = succ 13; 15 = succ 14; 16 = succ 15;
17 = succ 16; 18 = succ 17; 19 = succ 18; 20 = succ 19;

Theorems
(x+y)+d = x+(y+d);
x+0=x;
0+x=x;
0/x=0;
(x%y)/y=0;
0%x=0;
(x%y)%y=x%y;

Where
x, y, d : natural;

End Naturals;
206

CO-OPN specifications
A.4 STATES

Adt States;
Interface

Use InitPlaces, Booleans;
Sort states;
Generator

[] : → states;
_ | _ : states initplace → states;

Operations
initstate : → states;
_ + _ : states states → states;
_ - _ : states states → states;
_ - _ : states initplace → states;
_ = _ : states states → boolean;
_ ⊆ _ : states states → boolean;
_ inside? _ : initplace states → boolean;

Body
Axioms

[] - s = [];
(s|p) - [] = (s|p);
(s1|p1) - (s2|p2) = ((s1|p1) - p2) - s2;

[] - p = [];
p1 = p2 = true ⇒ ((s|p) - p) = s;
p1 = p2 = false ⇒ ((s|p1) - p2) = (s - p2)|p1;

[] + s = s;
(s1|p) + s2 = (s1 + s2)|p;

[] = [] = true;
(s|p) = [] = false;
[] = (s|p) = false;
(p1 = p2) = true ⇒ ((s1|p1) = (s2|p2)) = s1 = s2;
(p1=p2)= false⇒ ((s1|p1)=(s2|p2))=(((p2 inside?s1)and(p1 inside?s2))and((s1-p2)=(s2-p1)));

[] ⊆ s = true;
(s|p) ⊆ [] = false;
(p1 = p2) = true ⇒ (s1|p1) ⊆ (s2|p2) = s1 ⊆ s2;
(p1 = p2) = false ⇒ ((s1|p1) ⊆ (s2|p2)) = (s1 ⊆ ((s2|p2)-p1) and (p1 inside? s2));

p inside? [] = false;
(p1 = p2) = true ⇒ (p1 inside? (s|p2)) = true ;
(p1 = p2) = false ⇒ (p1 inside? (s|p2)) = (p1 inside? s) ;

Where
p, p1, p2 : initplace;
s, s1, s2 : states;
b: boolean;

End States;
207

CO-OPN specifications
208

Developing CO-OPN specifications from Fusion models

dels
ards.
Annex B
Developing

CO-OPN specifications
from Fusion models

A CO-OPNspecification can be derived from Fusion models. However, since Fusion mo
do not contain enough semantical information, this specification must be refined afterw
The following translation process, illustrated in figure 64, can be applied:

Object Model

Life-Cycle ModelOperation ModelObject Interaction

Class Descriptions Data Dictionary

CO-OPN
Specification

Types → ADTs
Functions → Operations
Predicates → Axioms

Classes → Classes
Isa → Inheritance

Subtyping → Subtyping

Methods → Methods
Attributes → Places

Interaction →

Life-Cycles →Axioms:
Assumes and Results Clauses → Places and

Axioms (Petri nets)Axioms: Conditions and
Synchronization expressions

Fig. 64.Building CO-OPN specifications from Fusion models

Synchronization expressions

Graphs
209

Developing CO-OPN specifications from Fusion models

es.
the

ists

the
the
plus
tary
the

d the
using

sion
and

type
g

), the
mes

the
f the
Step 1: IdentifyCO-OPN Modules

There are two kinds ofCO-OPNmodules: abstract data types (ADTs) and class
To each type in the Fusion data dictionary correspond one or more ADTs in
CO-OPN specification. To each class for which a class description ex
corresponds a class module.

Step 2: Develop the ADTs

The ADTs are built according to the Fusion data dictionary. To each type in
data dictionary corresponds an ADT. The values of the types are given in
associated rubric description. The operations are derived from the functions,
the implicit functions such as equality, comparison operators, or any elemen
function not present in the data dictionary. New ADTs may be added for
purpose of the specification. (In the case of the production cell, we discretize
real and integer types in less valued sorts.) Some sorts may be refined (e.g.
subsorts) for the purpose of having total functions. TheCO-OPNaxioms are built
according to the Fusion predicates.

Step 3: Develop theCO-OPN classes

The CO-OPN classes are built using the Fusion class descriptions, the Fu
operation models, the Fusion interaction graphs, the Fusion system life-cycle
the Fusion object model.

Step 3.1: Develop the Header part

 • Each Fusion class (class) is a class (Class) in theCO-OPN specification.

 • Each Fusion inheritance relationship (is) is an inheritance relationship (Inherit)
in theCO-OPN specification.

 • Static objects and classes with a single instance can becomeCO-OPNstatic
objects and be placed in theObject clause.

Step 3.2: Develop the Interface part

The interface (Interface) of theCO-OPN specification is built as follows:

 • The subtype relationships in the Fusion object model can become sub
relationship (Subtype) in CO-OPN. This step has to be refined after developin
the body of the specification to verify that this relationship holds.

 • The Fusioncreation methodsbecomeCO-OPNcreation methods (Creation)
and the Fusionpublic methodsbecomeCO-OPN(public) methods (Methods).
When the Fusion methods are procedures (i.e. they have no result type
correspondingCO-OPNmethods have the same signature (except for the na
and possible refinements performed when developing the ADTs). When
Fusion methods are functions, a parameter is added to store the result o
function.

 • The modules needed to build the signatures of thecreationandpublic methods
are imported into the use clauses.

Step 3.3: Develop the Body part.

The body (Body) of theCO-OPN specification is built as follows:
210

Developing CO-OPN specifications from Fusion models

ce
ith
ant

in a

ll, all

ead of

e
to the

ation
s not

f the
s) to
not

y a
ted
 • The Fusionprivate methods becomeCO-OPN methods (Methods).

 • Each attribute (attribute) in the Fusion class descriptions becomes a pla
(Place) in the CO-OPNspecification, except for constant data attributes w
initial values which are not initialized in a creation method (i.e. the const
attributes shared among the instances of a class), and which are placed
separate ADT and replaced by constants or functions.

 • If the Fusiondata attributes(attribute) have initial values, theCO-OPNplaces
are initialized with the same values (Initial).

 • For each attribute (attribute) with the qualifiershared, a method is created to
allow other objects to access this reference. (Note that in the production ce
the Fusion sharedreferences designate static objects.)

 • Objects shared among the instances of a class can become objects inst
being translated as places.

 • The types of the Fusionattributes(attribute) and the types needed to build th
signatures of the private methods are imported into the use clause specific
body, if they were not already used in the interface.

 • When an object corresponds to a subsystem with a Fusion life-cycle, aCO-OPN
Petri net must be built to exhibit this life-cycle.

 • For methods for which an operation model is given, theAssumesandResult
clauses are used to build the axioms of the operation. To allow the observ
of the system state during the test phase, this may require adding method
present in the Fusion class descriptions, and completing the axioms o
CO-OPNmethods (by means of conditions and synchronization expression
forbid the execution of the method when the final state of the object does
conform toResult.

 • The axioms are refined using the interaction graphs, which specif
combination of method calls. This combination of method calls is transla
into axioms (Axiom) of the correspondingCO-OPNmethod as follows: (i) the
Fusion sequence a (...) (1), b (...) (2) becomeswith a..b in CO-OPN, (ii) the
Fusion simultaneitysimultaneouslya and b becomeswith a//b. Note that this
is only possible with simple interaction graphs without loops.
211

Developing CO-OPN specifications from Fusion models
212

CO-OPN specification of the agent Robot

are
Annex C
CO-OPN specification of the

agent Robot

This annex contains theCO-OPN specification of the agentRobot of the production cell
controller presented in chapter 7. Each method (initialize, pick-from-table, pick-from-press,
deposit-on-belt, load-press) moves the robot to an angular position. These positions
illustrated in figure 65.

The complete specification of the controller can be found in [Péraire 98b].

Class Robot;
Interface

Type robot-type;
Object robot: robot-type;
Creation

create;
Methods

initialize;
pick-from-table;
pick-from-press;
deposit-on-belt;
load-press;

Body
Use

Discrete-Extension, Arm, Bidirectional-Electric-Motor, Angular-Potentiometer, Table,
Press, Command, Sensor-Name, Discrete-Angle, Unique, Direction, Grasp;

Method
move _ : robot-position;

Transition
deposit-on-belt-int;

Places
place-arm1: arm-type;
place-arm2: arm-type
place-rotation-motor: bidirectional-electric-motor-type;
place-rotation: angular-potentiometer-type;
213

CO-OPN specification of the agent Robot
place-idle: unique; (: Contains a token which allows the initialization :)
place-arm1-unloaded: unique; (: Contains a token when the arm1 is unloaded :)
place-arm2-unloaded: unique; (: Contains a token when the arm2 is unloaded :)
place-press-unloaded: unique; (: Contains a token when the press is unloaded :)
place-deposit: unique; (: Contains a token when deposit-on-belt is permited :)
place-arm1-loaded: unique; (: Contains a token when the arm1 is loaded with a blank :)
place-arm2-loaded: unique; (: Contains a token when the arm2 is loaded with a blank :)
place-press-loaded: unique; (: Contains a token when the press is loaded with a blank :)
place-counter: unique; (: Contains a number of tokens corresponding to :)

(: the number of blanks the robot can drop on the deposit belt:)
Initial

place-idle @;
Axioms

create with
arm1.create
(arm1-forward, arm1-backward, arm1-stop, arm1-mag-on, arm1-mag-off, arm1-extension) //
arm2.create
(arm2-forward, arm2-backward, arm2-stop, arm2-mag-on, arm2-mag-off, arm2-extension) //
rotation-motor.create (robot-left, robot-right, robot-stop) // rotation.create (robot-angle) ::
⇒
place-arm1 arm1,
place-arm2 arm2,
place-rotation-motor rotation-motor,
place-rotation rotation;

(: robot-angle-1 = 0 :)
initialize with
(arm1.retract (arm1-pick-retraction, pick) // arm2.retract (arm2-pick-retraction, pick)) ..
move (robot-angle-1) ::
⇒
place-arm1 arm1, place-arm2 arm2, place-idle @ →
place-arm1 arm1, place-arm2 arm2,
place-arm1-unloaded @, place-arm2-unloaded @, place-press-unloaded @, place-deposit @;

(: robot-angle-2 = 50 :)
pick-from-table with
move (robot-angle-2) ..
arm1.extend (arm1-pick-extension, pick) .. arm1.pick .. arm1.retract (arm1-pick-retraction, pick)
.. table.go-load-position ::
⇒
place-arm1 arm1, place-arm1-unloaded @ → place-arm1 arm1, place-arm1-loaded @;

(: robot-angle-3 = 35 :)
pick-from-press with
move (robot-angle-3) ..
arm2.extend (arm2-pick-extension, pick) .. arm2.pick .. arm2.retract (arm2-pick-retraction, pick)
.. press.go-load-position ::
⇒
place-arm2 arm2, place-arm2-unloaded @, place-press-loaded @ →
place-arm2 arm2, place-arm2-loaded @, place-press-unloaded @;

deposit-on-belt :: place-deposit @ → place-deposit @, place-counter @;
(: the multi-set place-counter plays the role of the counter deposit_on_belt_counter :)

(: -90 < robot-angle-4 ≤ -45 :)
deposit-on-belt-int with
move (robot-angle-4) ..
arm2.extend (arm2-drop-extension, drop) .. arm2.drop ..
arm2.retract (arm2-drop-retraction, drop) ::
⇒
place-arm2 arm2, place-arm2-loaded @, place-counter @ →
place-arm2 arm2, place-arm2-unloaded @;
214

CO-OPN specification of the agent Robot
(: robot-angle-5 = -90 :)
load-press with
move (robot-angle-5) ..
arm1.extend (arm1-drop-extension, drop) .. arm1.drop ..
arm1.retract (arm1-drop-retraction, drop) .. press.forge ::
⇒
place-arm1 arm1, place-arm1-loaded @, place-press-unloaded @ →
place-arm1 arm1, place-arm1-unloaded @, place-press-loaded @;

move (goal-angle) with
rotation.status (current-angle)..
rotation-motor.turn-on (regressive) .. rotation.wait (goal-angle) .. rotation-motor.turn-off ::
goal-angle < current-angle ⇒
place-rotation-motor rotation-motor, place-rotation rotation →
place-rotation-motor rotation-motor, place-rotation rotation;

move (goal-angle) with
rotation.status (current-angle) ..
rotation-motor.turn-on (progressive) .. rotation.wait (goal-angle) .. rotation-motor.turn-off ::
current-angle < goal-angle ⇒
place-rotation-motor rotation-motor, place-rotation rotation →
place-rotation-motor rotation-motor, place-rotation rotation;

move (goal-angle) with
rotation.status (current-angle) ::
current-angle = goal-angle ⇒
place-rotation rotation → place-rotation rotation;

where
arm1, arm2: arm-type
rotation-motor: bidirectional-electric-motor-type;
rotation: angular-potentiometer-type;
goal-angle, current-angle: discrete-angle;

End Robot;
215

CO-OPN specification of the agent Robot
Fig. 65.Robot rotation constants (top view)

0°50°

‘pick-from-table’ picks up a plate from the table

0°35°

‘pick-from-press’ picks up the forged plate from the press

‘deposit-on-belt’ places the forged plate on the deposit belt

0°

-90°

-45° 0°

-90°

‘load-press’ places a plate in the press

robot-angle-2 = 50° robot-angle-3 = 35°

robot-angle-5 = -90° -90° < robot-angle-4 ≤ -45°

‘initialize’ moves the robot to its initial position

0°

robot-angle-1 = 0°
216

Ada 95 implementation of the agent Robot
Annex D
Ada 95 implementation of

the agent Robot

This annex contains the Ada 95 implementation of the agentRobot of the production cell
controller presented in chapter 7.

packageRobotsis

type Robot_Typeis limited private ;
type Robot_Refis access allRobot_Type;

procedure Initialize
(Robot : Robot_Type);

procedureLoad_Press
(Robot : Robot_Type);

procedurePick_From_Press
(Robot : Robot_Type);

procedurePick_From_Table
(Robot : Robot_Type);

procedureDeposit_On_Belt
(Robot : Robot_Type);

private

task typeRobot_Typeis
entry Initialize;
entry Pick_From_Table;
entry Load_Press;
entry Pick_From_Press;
entry Deposit_On_Belt;

endRobot_Type;

endRobots;
217

Ada 95 implementation of the agent Robot

l := 0;
with
Arms, Actuators.Electric_Motors.Bidirectional_Electric_Motors,
Sensors.Angular_Potentiometers, Tables.Instances, Presses.Instances,
Depositbelts.Instances, Sensor_Names, Commands, Angles, Extensions,
Sensor_Servers.Instances, Directions;

use
Arms, Actuators.Electric_Motors.Bidirectional_Electric_Motors,
Sensors.Angular_Potentiometers, Tables, Tables.Instances,
Presses, Presses.Instances, Depositbelts, Depositbelts.Instances,
Sensor_Names, Commands, Angles, Extensions, Sensor_Servers,
Sensor_Servers.Instances, Directions;

with Text_IO;useText_IO;

package bodyRobotsis
task bodyRobot_Typeis

Arm1: Arm_Type; -- initialized in entry Initialize
Arm2: Arm_Type; -- initialized in entry Initialize
Rotation_Motor: Bidirectional_Electric_Motor_Type :=

Bidirectional_Electric_Motor_Type
(Create (Robot_Left, Robot_Right, Robot_Stop));

Rotation: Angular_Potentiometer_Type :=
Angular_Potentiometer_Type (Create (Robot_Angle));

Table: Table_Ref;
Press: Press_Ref;
Depositbelt: Depositbelt_Ref;

-- attributes for life-cycle management
Arm1_Loaded, Arm2_Loaded, Press_Loaded : Boolean := False; Depositbelt_Count: Natura

procedureMove (Goal_Angle: Robot_Discrete_Angle_Type)is
Current_Angle: Robot_Discrete_Angle_Type :=

Status (Sensor_Server, Robot_Angle);
begin

if Current_Angle < Goal_Anglethen
Turn_On (Rotation_Motor, Regressive);
Wait_GE (Rotation, Goal_Angle);
Turn_Off (Rotation_Motor);

elsif Current_Angle > Goal_Anglethen
Turn_On (Rotation_Motor, Progressive);
Wait_LE (Rotation, Goal_Angle);
Turn_Off (Rotation_Motor);

end if;
endMove;

begin
acceptInitialize do

Create (Arm1, Arm1_Forward, Arm1_Backward, Arm1_Stop, Arm1_Mag_On,
Arm1_Mag_Off, Arm1_Extension);

Create (Arm2, Arm2_Forward, Arm2_Backward, Arm2_Stop, Arm2_Mag_On,
Arm2_Mag_Off, Arm2_Extension);

Table := Tables.Instances.Table;
Press := Presses.Instances.Press;
Depositbelt := Depositbelts.Instances.Depositbelt;
Retract (Arm1, Arm1_Pick_Retraction, Pick);
Retract (Arm2, Arm2_Pick_Retraction, Pick);
Move (Robot_Angle_E);

end Initialize;
218

Ada 95 implementation of the agent Robot
loop
select

when (not Arm1_Loaded)⇒
acceptPick_From_Tabledo

Move (Robot_Angle_I);
Extend (Arm1, Arm1_Pick_Extension, Pick);
Pick (Arm1);
Retract (Arm1, Arm1_Pick_Retraction, Pick);
Arm1_Loaded := True;

endPick_From_Table;
Go_Load_Position (Table.all);

or
when (Arm1_Loadedand not Press_Loaded)⇒

acceptLoad_Pressdo
Move (Robot_Angle_B);
Extend (Arm1, Arm1_Drop_Extension, Drop);
Drop (Arm1);
Retract (Arm1, Arm1_Drop_Retraction, Drop);
Arm1_Loaded := False;
Press_Loaded := True;

endLoad_Press;
Forge (Press.all);

or
when (not Arm2_Loadedand Press_Loaded)⇒

acceptPick_From_Pressdo
Move (Robot_Angle_G);
Extend (Arm2, Arm2_Pick_Extension, Pick);
Pick (Arm2);
Retract (Arm2, Arm2_Pick_Retraction, Pick);
Arm2_Loaded := True;
Press_Loaded := False;

endPick_From_Press;
Go_Load_Position (Press.all);

or
acceptDeposit_On_Belt;

Depositbelt_Count := Depositbelt_Count+1;
else

if (Arm2_Loadedand Depositbelt_Count > 0)then
Move (Robot_Angle_C);
Extend (Arm2, Arm2_Drop_Extension, Drop);
Drop (Arm2);
Arm2_Loaded := False;
Depositbelt_Count := Depositbelt_Count-1;
Retract (Arm2, Arm2_Drop_Retraction, Drop);

end if;
end select;

end loop;
endRobot_Type;
219

Ada 95 implementation of the agent Robot
procedure Initialize
(Robot : Robot_Type)

is
begin

Text_IO.Put_Line (Standard_Error,"Robot.Initialize");
Robot.Initialize;

end Initialize;

procedureLoad_Press
(Robot : Robot_Type)

is
begin

Text_IO.Put_Line (Standard_Error,"Robot.Load_Press");
Robot.Load_Press;

endLoad_Press;

procedurePick_From_Press
(Robot : Robot_Type)

is begin
Text_IO.Put_Line (Standard_Error,"Robot.Pick_From_Press");
Robot.Pick_From_Press;

endPick_From_Press;

procedurePick_From_Table
(Robot : Robot_Type)

is
begin

Text_IO.Put_Line (Standard_Error,"Robot.Pick_From_Table");
Robot.Pick_From_Table;

endPick_From_Table;

procedureDeposit_On_Belt
(Robot : Robot_Type)

is
begin

Text_IO.Put_Line (Standard_Error,"Robot.Deposit_On_Belt");
Robot.Deposit_On_Belt;

endDeposit_On_Belt;

endRobots;

with Robots;
packageRobots.Instancesis

Robot: Robot_Ref;

endRobots.Instances;
220

Language of constraints
Annex E
Language of constraints

This annex defines the syntax and semantics of theCONSTRAINTSP,X language, the set of all
constraints applicable toHMLSP,X formulas.

Throughout this annex we use the following notations:

 • X = XHML ∪ XEvent∪ XS: set of variable names.

 • XHML : set of variable names of typeHMLSP,X formula.

 • XEvent : set of variable names of type event.

 • XS = XADT∪ XC : set of variable names of type ADT and class.

 • XIN : set of variable names of type naturalIN.

 • XIB : set of variable names of type booleanIB.

 • METHOD: class of all methods in the test environment.

 • INTER: class of all interpretations.

 • SUBS: class of all substitutions.

Definition 79.Abstract syntax ofCONSTRAINTSP,X

A constraint ofCONSTRAINTSP,X is defined as follows:

 • C1 , C2 ∈CONSTRAINTSP,X ⇒ C1 ∧ C2 ∈ CONSTRAINTSP,X

 • t1, t2 ∈ term- IN, p ∈ predicate- IN ⇒ t1 p t2 ∈ CONSTRAINTSP,X

 • t1, t2 ∈ term- IB, p ∈ predicate- IB ⇒ t1 p t2 ∈ CONSTRAINTSP,X

 • t1, t2 ∈ term-HML, p ∈ predicate-HML ⇒ t1 p t2 ∈ CONSTRAINTSP,X

 • predicate- IN = {“=”, “ <“ , “≤”, ...}
221

Language of constraints
 • predicate- IB = {“=“, ...}

 • predicate-HML = {“=“, ...} ◊

Definition 80.Natural terms term- IN in CONSTRAINTSP,X

 • k ∈ IN ⇒ k ∈ term- IN

 • x ∈ XIN ⇒ x ∈ term- IN

 • t1, t2 ∈ term- IN, o ∈ binary-operator- IN ⇒ t1 o t2 ∈ term- IN

 • t ∈ term- IN, o ∈ unary-operator- IN ⇒ o t ∈ term- IN

 • f ∈ HMLSP,X⇒ nb-events(f) ∈ term- IN

 • f ∈ HMLSP,X⇒ depth(f) ∈ term- IN

 • f ∈ HMLSP,X, m ∈ METHOD⇒ nb-occurrences (f, m) ∈ term- IN

 • binary-operator = {“ +“, “ ∗“, ...}

 • unary-operator = {“-”, ...} ◊

Definition 81.Boolean terms term- IB in CONSTRAINTSP,X

 • b ∈ IB ⇒ b ∈ term- IB

 • x ∈ XIB ⇒ x ∈ term- IB

 • f ∈HMLSP,X⇒ onlyconstructor(f) ∈ term- IB

 • f ∈HMLSP,X⇒ onlymutator(f) ∈ term- IB

 • f ∈HMLSP,X⇒ onlyobserver(f) ∈ term- IB

 • f, s∈HMLSP,X⇒ shape(f , s) ∈ term- IB

 • f ∈HMLSP,X⇒ sequence(f) ∈ term- IB

 • f ∈HMLSP,X⇒ positive(f) ∈ term- IB

 • f ∈HMLSP,X⇒ trace(f) ∈ term- IB ◊

Definition 82.HML terms term-HML in CONSTRAINTSP,X

 • f ∈ HMLSP,X ⇒ f ∈ term-HML

 • x ∈ XHML ⇒ x ∈ term-HML

 • f, g ∈HMLSP,X⇒ f “ |” g ∈ function-HML

 • f, g ∈ HMLSP,X, path∈ PATH ⇒ f “ |”pathg ∈ function-HML

 • f ∈HMLSP,X, x ∈ X ⇒ uniformityII (f, x) ∈ function-HML

 • f ∈HMLSP,XS, C ∈ CONSTRAINTSP,X⇒ subuniformityII (f, C) ∈ function-HML ◊
222

Language of constraints
Definition 83.Semantics ofCONSTRAINTSP, X

The satisfaction relationship|=C
II ⊆ CONSTRAINTSP, Xis defined as follows:

 • |=C
II (C1 ∧ C2) ⇔ (|=C

II C1 ∧ |=C
II C2)

 • |=C
II (t1,1 p1 t1,2) ⇔ ΙΙp1, IN ([[t1,1]] IN, [[t1,2]] IN)

 • |=C
II (t2,1 p2 t2,,2) ⇔ ΙΙp2, IB ([[t2,1]] IB, [[t2,2]] IB)

 • |=C
II (t3,1 p3 t3,2) ⇔ ΙΙp3,HML ([[t3,1]] HML, [[t3,2]] HML)

 • |=C
II (t1,1 p1) ⇔ ΙΙp1, IN ([[t1,1]] IN)

 • |=C
II (t2,1 p2) ⇔ ΙΙp2, IB ([[t2,1]] IB)

 • |=C
II (t3,1 p3) ⇔ ΙΙp3,HML ([[t3,1]] HML)

where:

 • C1, C2 ∈ CONSTRAINTSP, X

 • t1,1 , t1,2 ∈ term- IN

 • t2,1 , t2,2 ∈ term- IB

 • t3,1 , t3,2 ∈ term-HML

 • p1 ∈ predicate- IN

 • p2 ∈ predicate- IB

 • p3 ∈ predicate-HML

 • [[]] ID : term-ID → ID, evaluation in the domainID ∈{ IN, IB,HML}

 • ΙΙ = ΙΙ IN ∪ ΙΙ IB ∪ ΙΙHML ∈ INTER

 • ΙΙP,ID: ID× ID, evaluation of binary predicateP in the domainID ∈{ IN, IB,HML}

 • ΙΙP,ID : ID evaluation of unary predicateP in the domainID ∈ { IN, IB,HML} ◊

Definition 84.Semantics of term-IN

 • |=C
II (nb-events (f) = k) ⇔ ([[nb-events (f)]] IN = [[k]] IN)

 • |=C
II (nb-events (f) = xk) ⇔ ([[nb-events (f)]] IN = ΙΙ IN (xk))

 • |=C
II (depth (f) = k) ⇔ ([[depth (f)]] IN = [[k]] IN)

 • |=C
II (depth (f) = xk) ⇔ ([[depth (f)]] IN = ΙΙ IN (xk))

 • |=C
II (nb-occurrences (f, m) = k) ⇔ ([[nb-occurrences (f, m)]] IN = [[k]] IN)

 • |=C
II (nb-occurrences (f, m) = xk) ⇔ ([[nb-occurrences (f, m)]] IN = ΙΙ IN (xk))

where:

 • f ∈ HMLSP,XS

 • m ∈ METHOD

 • k ∈ IN
223

Language of constraints
 • xk ∈ XIN

 • [[]] IN : term-IN → IN, evaluation in the domainIN

 • ΙΙ IN ∈ INTER ◊

Definition 85.Semantics of term- IB

 • |=C
II (onlyconstructor(f) = b) ⇔ ([[onlyconstructor(f)v]] IB = [[b]] IB)

 • |=C
II (onlyconstructor(f) = xb) ⇔ ([[onlyconstructor(f)]] IB = ΙΙ IB (xb))

 • |=C
II (onlymutator(f) = b) ⇔ ([[onlymutator(f)]] IB = [[b]] IB)

 • |=C
II (onlymutator(f) = xb) ⇔ ([[onlymutator(f)]] IB = ΙΙ IB (xb))

 • |=C
II (onlyobserver(f) = b) ⇔ ([[onlyobserver(f)]] IB = [[b]] IB)

 • |=C
II (onlyobserver(f) = xb) ⇔ ([[onlyobserver(f)]] IB = ΙΙ IB (xb))

 • |=C
II (shape (f, s) = b) ⇔ ([[shape (f, s)]] IB = [[b]] IB)

 • |=C
II (shape (f, s) = xb) ⇔ ([[shape (f, s)]] IB = ΙΙ IB (xb))

 • |=C
II (sequence (f) = b) ⇔ ([[sequence (f)]] IB = [[b]] IB)

 • |=C
II (sequence (f) = xb) ⇔ ([[sequence (f)]] IB = = ΙΙ IB (xb))

 • |=C
II (positive (f) = b) ⇔ ([[positive (f)]] IB = [[b]] IB)

 • |=C
II (positive(f) = xb) ⇔ ([[positive(f)]] IB = = ΙΙ IB (xb))

 • |=C
II (trace (f) = b) ⇔ ([[trace (f)]] IB = [[b]] IB)

 • |=C
II (trace (f) = xb) ⇔ ([[trace (f)]] IB = = ΙΙ IB (xb))

where:

 • f ∈ HMLSP,XS

 • b ∈ IB

 • xb ∈ XIB

 • [[]] IB : term-IB → IB, evaluation in the domainIB

 • ΙΙ IB ∈ INTER ◊

Definition 86.Semantics of term-HML

 • |=C
II (f | g = h) ⇔ ([[f | g]] HML = [[h]] HML)

 • |=C
II (f | g = xg) ⇔ ([[f | g]] HML = ΙΙHML (xg))

 • |=C
II (f | pathg = h) ⇔ ([[f | pathg]] HML = [[h]] HML)

 • |=C
II (f | pathg = xg) ⇔ ([[f | pathg]] HML = ΙΙHML (xg))

 • |=C
II (uniformityII (g, x) = h) ⇔ ([[uniformityII (g, x)]] HML = [[h]] HML)

 • |=C
II (uniformityII (g, x) = xg) ⇔ ([[uniformityII (g, x)]] HML = ΙΙHML (xg))

 • |=C
II (subuniformityII (f, C) = h) ⇔ ([[subuniformityII (f, C)]] HML = [[h]] HML)
224

Language of constraints
 • |=C
II (subuniformityII (f, C) = xg) ⇔ ([[subuniformityII (f, C)]] HML = ΙΙHML (xg))

where:

 • f ∈ HMLSP,XS

 • g, h, s∈ HMLSP,X

 • path∈ PATH

 • xg ∈ XHML

 • C ∈ CONSTRAINTSP,X

 • [[]] HML : term-HML → HML, evaluation in the domainHML

 • ΙΙHML ∈ INTER ◊

Definition 87.Interpretation ΙΙ ID : XID → ID ∈ INTER

Given a variablex ∈ XID, the interpretationΙΙ ID replacesx by a valued ∈ ID as follows:
ΙΙ ID (x) = d.

ΙΙ ID is deterministic: variables with the same name will have the same value. ◊

Definition 88.Semantics of the function nb-events : HMLSP,X→ IN

 • nb-events (T) = 0

 • nb-events(¬ f) = nb-events(f)

 • nb-events(f ∧ g) = nb-events(f) + nb-events(g)

 • nb-events(<e> f) = nb-events(f) + 1 wheree ∈ XEvent

 • nb-events(<e> f) = nb-events(f) + 1 wheree ∈ EVENT(SP, XS)

◊

Definition 89.Semantics of the function depth : HMLSP,X→ IN

 • depth (T) = 0

 • depth(¬ f) = depth(f)

 • depth(f ∧ g) = maximum (depth(f), depth(g))

 • depth(<e> f) = depth(f) + 1 wheree ∈ XEvent

 • depth(<e> f) = depth(f) + 1 wheree ∈ EVENT(SP, XS)

with maximum: IN × IN → IN, maximum (x, y) = x if x > y andy otherwise. ◊

Definition 90.Semantics of nb-occurrences: HMLSP,XS
× METHOD→ IN

 • nb-occurrences(T, m) = 0

 • nb-occurrences(¬ f, m) = nb-occurrences(f, m)
225

Language of constraints
 • nb-occurrences(f ∧ g, m) = nb-occurrences(f, m) + nb-occurrences(g, m)

 • nb-occurrences(<e> f, m) = nb-occurrences(f, m) + 1 if e is based onm

 • nb-occurrences(<e> f, m) = nb-occurrences(f, m) if e is not based onm

where e∈ EVENT(SP, XS). ◊

Definition 91.Semantics of the function onlyi: HMLSP,XS
→ { true, false}

 • onlyi (T) = true

 • onlyi (¬ f) = onlyi (f)

 • onlyi (f ∧ g) = onlyi (f) ∧ onlyi (g)

 • onlyi (<e> f) = onlyi (f) if e ∈ EVENT(SP, XS) is ani

 • onlyi (<e> f) = false if e ∈ EVENT(SP, XS) is not ani

◊

Definition 92.Semantics of shape: HMLSP,X× HMLSP,X→ { true, false}

 • shape (T, T) = true

 • x ∈ XHML ⇒ shape(f, x) = true

 • shape(¬ f, ¬ s) = shape(f, s)

 • shape(f ∧ g, s∧ t) =
(shape(f, s) and shape(g, t)) or (shape(f, t) and shape(g, s))

 • shape(<ef > f, <es> s) = shape(f, s)
whereef andes∈ XEvent

 • shape(<ef > f, <es> s) = shape(f, s)
whereef ∈ EVENT(SP, XS) andes ∈ XEvent

 • shape(<ef > f, <es> s) = (ef = es) and shape(f, s)
whereef andes ∈ EVENT(SP, XS).

In all other cases the result isfalse. ◊

Definition 93.Semantics of sequence: HMLSP,X→ { true, false}

 • sequence (T) = true

 • sequence(¬ f) = sequence(f)

 • sequence(f ∧ g) = false

 • sequence(<e> f) = sequence(f) wheree ∈ XEvent

 • sequence(<e> f) = sequence(f) wheree ∈ EVENT(SP, XS)

◊

226

Language of constraints
Definition 94.Semantics of positive: HMLSP,X→ { true, false}

 • positive (T) = true

 • positive(¬ f) = false

 • positive(f ∧ g) = positive(f) ∧ positive(g)

 • positive(<e> f) = positive(f) wheree ∈ XEvent

 • positive(<e> f) = positive(f) where e∈ EVENT(SP, XS)

◊

Definition 95.Semantics of trace : HMLSP,X→ { true, false}

 • trace(f) = sequence (f) ∧ positive(f) ◊

Definition 96.Semantics of the function| : HMLSP,XS
× HMLSP,X→ HMLSP,X

The concatenationf | g of an HMLSP,XS
formula f and anHMLSP,X formula g is an

HMLSP,Xformula obtained by replacing allT in f by g.

 • T | g = g

 • (¬ f) | g = ¬ (f | g)

 • (f ∧ g) | h = (f | h) ∧ (g | h)

 • (<e> f) | g = <e> (f | g) wheree ∈ EVENT(SP, XS)

◊

Definition 97.Semantics of the function| : HMLSP,XS
× PATH × HMLSP,X→ HMLSP,X

The concatenationf | path g of an HMLSP,XS
formula f and anHMLSP,Xformula g is an

HMLSP,Xformula obtained by substitutingg for T in f at the position given by the path
path ∈ PATH (f) = { p ∈ PATH | Path (f, p) = true}. A path is a formula withoutAnd
operators.

 • T | [] g = g

 • (Path(f, p) = true) ⇒ ((¬ f) | p g = ¬ (f | p g))

 • (Path(f, p) = true) ⇒ ((f ∧ g) | Left . ph = (f | p h) ∧ g)

 • (Path(g, p) = true) ⇒ ((f ∧ g) | Right. ph = f ∧ (g | p h))

 • (Path(f, p) = true) ⇒ (<e> f | Straight. pg = <e> (f | p g))

wheree ∈ EVENT(SP, XS).

In all other cases, the result is undetermined. ◊

Definition 98.SetPATH

 • [] ∈ PATH -- [] corresponds toT.
227

Language of constraints
 • p ∈ PATH ⇒ Straight . p∈ PATH -- Straightcorresponds to an event.

 • p ∈ PATH ⇒ Left . p∈ PATH -- Leftstarts the left member of anand.

 • p ∈ PATH ⇒ Right . p∈ PATH -- Rightstarts the right member of anand.

◊

Definition 99.Semantics of the function Path : HMLSP,XS
× PATH → {true, false}

 • Path(T, []) = true

 • (p ≠ []) ⇒ (Path(T, p) = false)

 • Path(¬ f, p) = Path(f, p)

 • Path(f ∧ g, Left . p) = Path(f, p)

 • Path(f ∧ g, Right . p) = Path(g, p)

 • Path(f ∧ g, Straight . p) = false

 • Path(<e> f, Left. p) = false

 • Path(<e> f, Right. p) = false

 • Path(<e> f, Straight. p) = Path(f, p)

wheree ∈ EVENT(SP, XS). ◊

Definition 100.Semantics of uniformityII : HMLSP,X× X → HMLSP,X

 • uniformityII (T, x) = T

 • uniformityII (¬ f, x) = ¬ uniformityII (f, x)

 • uniformityII (f ∧ g, x) = uniformityII (f, x) ∧ uniformityII (g, x)

 • f, x ∈ XHML, x ≠ f ⇒ uniformityII (f, x) = f

 • f, x ∈ XHML, x = f ⇒ uniformityII (f, x) =

 • e, x∈ XEvent, x ≠ e ⇒ uniformityII (<e> f, x) = <e> uniformityII (f, x)

 • e, x∈ XEvent, x = e⇒ uniformityII (<e> f, x) = < > uniformityII (f, x)

 • o, x∈ XC ⇒ uniformityII (< o . m (t1, ..., tn)> f, x) = < uniformityII
C (o, x) .

m (uniformityII
C (t1, x), ...,uniformityII

C (tn, x))> uniformityII (f, x)

 • o ∈ XC , x ∈ XADT ⇒ uniformityII (< o . m (t1 , ..., tn)> f, x) =
(<o . m (uniformityII

ADT (t1, x), ...,uniformityII
ADT (tn, x))> uniformityII (f, x)

wherem ∈ METHOD, m : s1, ...,sn → s andti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

Definition 101.Semantics of uniformityII
C : TΣ, XS

× XC → TΣ, XS

 • v ∈ XC , x ≠ v ⇒ uniformityIIC (v, x) = v

 • v ∈ XC , x = v ⇒ uniformityIIC (v, x) =

II HMLSP X,
x()

II EVENTSP XS,
x()

II T
ΣC

x()
228

Language of constraints
 • v ∈ XADT ⇒ uniformityIIC (v, x) = v

 • uniformityII
C (f (t1, ...,tn), x) = f (uniformityII

C (t1, x), ...,uniformityII
C (tn, x))

whereti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

Definition 102.Semantics ofuniformityII
ADT : TΣ, XS

× XADT→ TΣ, XS

 • v ∈ XADT , x ≠ v ⇒ uniformityIIADT (v, x) = v

 • v ∈ XADT , x = v ⇒ uniformityIIADT (v, x) =

 • v ∈ XC ⇒ uniformityIIADT (v, x) = v

 • uniformityII
ADT (f (t1, ...,tn), x) =

f (uniformityII
ADT (t1 , x), ...,uniformityII

ADT (tn, x))

whereti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

Definition 103.Semantics of subuniformityII

subuniformityII : HMLSP,XS× CONSTRAINTSP,X × SUBS→ HMLSP,XS

 • subuniformityII (T, CS,θ) = T

 • subuniformityII (¬ f, CS,θ) = ¬ subuniformityII (f, CS,θ)

 • subuniformityII (f ∧ g, CS,θ) =
subuniformityII (f, CS,θ) ∧ subuniformityII (g, CS,θ)

 • subuniformityII (< o . m (t1, ..., tn)> f, CS,θ) = <subuniformityIIS (o, CS,θ) .
m (subuniformityIIS (t1, CS,θ), ...,subuniformityIIS (tn, CS,θ)) >
subuniformityII (f, CS,θ)

whereo ∈ XC, m ∈ METHOD, m : s1, ...,sn → s andti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

Definition 104.Semantics of subuniformityII
S : TΣ, XS

× CONSTRAINTSP,X × SUBS→ TΣ, XS

 • v ∈ XC , v Var (CS) ⇒ subuniformityIIS (v, CS,θ) = v

 • v ∈ XC , v ∈ Var (CS) ⇒
subuniformityIIS (v, CS,θ) = such that|=C

II θ (CS)

 • v ∈ XADT , v Var (CS) ⇒ subuniformityIIS (v, CS,θ) = v

 • v ∈ XADT , v ∈ Var (CS) ⇒
subuniformityIIS (v, CS,θ) = such that|=C

II θ (CS)

 • subuniformityIIS (f (t1, ...,tn), CS,θ) =

f (subuniformityIIS (t1, CS,θ), ...,subuniformityIIS (tn, CS,θ))

whereti ∈ (TΣ, XS)Si (i = 1, ..., n). ◊

To define the replacement of the variables (X =XHML ∪ XEvent∪ XS) by terms belonging to
HMLSP,X∪ EVENT (SP, XS) ∪ TS, XS, we introduce the substitutionθ ∈ SUBS [Lalement 90] as
the union of the three substitutionsθHML, θEvent, andθS∈ SUBS, defined as follows:

II T
ΣA

x()

∉

II T
ΣC

θ x()()

∉

II T
ΣA

θ x()()
229

Language of constraints

s

Definition 105.SubstitutionθHML : XHML → HMLSP,X

The applicationθHML ∈ SUBS is the identity except on the finite part ofXHML ,
called the domain ofθHML, Dom (θHML) = {x ∈ XHML | θHML (x) ≠ x}. ◊

Definition 106.Substitutionθevent: XEvent→ EVENT(SP, XS)

The applicationθevent∈ SUBS is the identity except on the finite part ofXEvent ,
called the domain ofθevent, Dom (θevent) = {x ∈ XEvent | θevent(x) ≠ x}. ◊

Definition 107.SubstitutionθS : XS→ TΣ, XS

The applicationθS∈ SUBS is the identity except on the finite part ofXS ,
called the domain ofθS, Dom (θS) = {x ∈ XS | θS(x) ≠ x}. ◊

Definition 108.Substitutionθ = θHML ∪ θevent∪ θS

θ : X → HMLSP,X∪ EVENT(SP, XS) ∪ TΣ, XS

The applicationθ ∈ SUBS is the identity except on the finite part of
X = XHML ∪ XEvent∪ XS, calledDom (θ) = {x ∈ X)| θ (x) ≠ x}. ◊

If Dom(θ) = {x1 ,... ,xn} where all thexi are distinct, thenθ is represented by the set of couple
variable-term {(x1, θ (x1)) ... (xn, θ (xn))}. We can extendθ to work onHMLSP,Xformulas.

Definition 109.Substitutionθ : HMLSP,X→ HMLSP,X

The applicationθ ∈ SUBS is an extension of the applicationθ from HMLSP,X in itself.
θ acts onHMLSP,X, EVENT(SP, XS), andTΣ, XS

 as follows:

 • θ (T) = T

 • θ (¬ f) = ¬ θ (f)

 • θ (f ∧ g) = θ (f) ∧ θ (g)

 • x ∈ XHML ⇒ θ (x) = θ (x)

 • e ∈ XEvent⇒ θ (<e> f) = <θ (e)> θ (f)

 • xc . m(t1 , ..., tn) ∈ EVENT(SP, XS) ⇒
θ(< xc . m(t1, ..., tn) > f) = <θ (xc). m(θ (t1), ...,θ (tn))> θ (f)

 • x ∈ XS⇒ θ (x) = θ (x)

 • g (t1, ..., tn) ∈ TΣ, XS
⇒ θ (g (t1, ..., tn)) = g (θ (t1), ...,θ (tn)) ◊

Definition 110.Substitution /

/ : HMLSP,X× (HMLSP,X∪ EVENT(SP, XS) ∪ TΣ, XS
) × X → HMLSP,X

The substitution / of a variablex ∈ X by a termv ∈ HMLSP,X∪ EVENT(SP, XS) ∪ TΣ, XS
in a formulaf ∈ HMLSP,X is defined as:
230

Language of constraints

the
set of

s.
f [v / x]= θ (f) such thatθ (y) = v for x = y and y otherwise. ◊

The former definitions present the kernel of the language of constraints, allowing
construction of the most important constraints. These definitions are not exhaustive. This
constraints can be updated to add new constraints that reflect new reduction hypothese
231

Language of constraints
232

References

ic

ne
à la
ue

nets
pe,
6

.

y of

of

taly,
ort

of

ber

the
t 98,
References

[Apt 82] K.R. Apt and M.H. vanEmden. Contributions to the theory of log
programming. InJournal of ACM 29, pages 841–862, 1982.

[Arnould 97] Agnès Arnould.Test à partir de spécifications de structures bornées: u
théorie du test, une méthode de sélection, un outil d’assistance
sélection. PhD thesis, Université de Paris-Sud, U.F.R. scientifiq
d’Orsay, January 1997.

[Autant 91] C. Autant, Z. Belmesk, and Ph. Schnoebelen. Strong bisimilarity on
revisited. InConference on Parallel Architectures and Languages Euro
PARLE’91, volume 2 ofLNCS (Lecture Notes in Computer Sciences) 50,
pages 295–312, Eindhoven, The Netherlands, 1991. Springer-Verlag

[Baeten 87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistenc
koomen’s fair abstraction rule. InTheoretical Computer Science, pages
129–176, 1987.

[Barbey 96] Stéphane Barbey, Didier Buchs, and Cécile Péraire. A theory
specification-based testing for object-oriented software. InProceedings of
EDCC2 (European Dependable Computing Conference), LNCS (Lecture
Notes in Computer Science) 1150, pages 303–320, Taormina, I
October 1996. Springer verlag. Also available as Technical Rep
(EPFL-DI No 96/163).

[Barbey 97] Stéphane Barbey.Test Selection for Specification-Based Testing
Object-Oriented Software Based on Formal Specifications. PhD thesis,
Swiss Federal Institute of Technology in Lausanne (EPFL), Decem
1997. Ph.D. Thesis 1753.

[Barbey 98] Stéphane Barbey, Didier Buchs, and Cécile Péraire. Modeling
production cell case study using the fusion method. Technical Repor
EPFL-DI, 1998. to appear.

[Beizer 84] Boris Beizer.Software System Testing and Quality Assurance. Van
Nostrand Reinhold, 1984.
233

References

ion

. In
es.

ting

ith
n
th

rd,
view
33,

e
,

ce.

ort.

ion

s

ts on

del.
gic

ods.
[Belina 89] F. Belina and D. Hogrefe. The CCITT-Specification and Descript
Language SDL.Computer Network and ISDN Systems, 16, 1989.

[Bernot 91a] Gilles Bernot. Testing against formal specifications: A theoretical view
TAPSOFT ’91, number 494 in Lecture Notes in Computer Scienc
Springer Verlag, April 1991.

[Bernot 91b] Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software tes
based on formal specifications: a theory and a tool.IEE Software
Engineering Journal, 6(6):387–405, November 1991.

[Biberstein 95a] Olivier Biberstein and Didier Buchs. Structured algebraic nets w
object-orientation. InProceedings of the first international workshop o
"Object-Oriented Programming and Models of Concurrency" in the 16
International Conference on Application and Theory of Petri Nets, Torino,
Italy, June 26-30 1995.

[Biberstein 95b] Olivier Biberstein, Didier Buchs, Mathieu Buffo, Christophe Buffa
Jacques Flumet, and Pascal Racloz. SANDS1.5/COOPN1.5 An over
of the language and its supporting tools. Technical Report 95/1
EPFL-DI-LGL, June 1995.

[Biberstein 97a] Olivier Biberstein.CO-OPN/2: An Object-Oriented Formalism for th
Specification of Concurrent Systems. PhD thesis, University of Geneva
July 1997.

[Biberstein 97b] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi.Object-Oriented
Nets with Algebraic Specifications: The CO-OPN/2 formalism. Advances
in Petri Nets on Object-Orientation, Lecture Notes in Computer Scien
Springer-Verlag, 1997.

[Binder 94] Robert V. Binder. Testing object-oriented systems: a status rep
American Programmer, April 1994.

[Binder 95] Robert V. Binder. Object-oriented testing: Myth and reality.Object
magazine, May 1995.

[Binder 96] Robert V. Binder. Testing object-oriented software: a survey.Journal of
Testing, Verification and Reliability, 6(3):125–252, September 1996.

[Bolognesi 87] T. Bolognesi and E. Brinksma. Introduction to the ISO specificat
language LOTOS.Computer Network and ISDN Systems, 14(1), 1987.

[Booch 94] G. Booch.Object-Oriented Analysis and Design with Application.
Benjamin-Cummings, second edition, 1994.

[Bosco 91] P.G. Bosco, E. Giovannetti, and C. Palamidessi C. Moiso. Commen
logic-programming with equations. InJournal of Logic Programming,
volume 11, pages 85–89. North-Holland, 1991.

[Bougé 86] Luc Bougé, Nicole Choquet, Laurent Fribourg, and Marie-Claude Gau
Test sets generation from algebraic specifications using lo
programming.Journal of Systems and Software, 6(4):343–360, November
1986. (Also available as rapport de Recherche LRI 240).

[Bowen 95] J. Bowen and M.G. Hinchey. Ten commandments of formal meth
IEEE Computer, April 1995.
234

References

et

on

ques
ent
d

r

ata.

of

9.

ena
t

raic
f an

s. In
.

n.
es

test

r

ing

s

[Brams 83a] G.W. Brams.Réseaux de Petri: théorie et pratique - Tome1: Théorie
analyse. Masson, 1983.

[Brams 83b] G.W. Brams.Réseaux de Petri: théorie et pratique - Tome2: Modélisati
et applications. Masson, 1983.

[Buchs 95] Didier Buchs, Jarle Hulaas, Pascal Racloz, Mathieu Buffo, Jac
Flumet, and Erik Urland. SANDS structured algebraic net developm
system for CO-OPN.16th International Conference on Application an
Theory of Petri Nets, pages 45–53, 1995. Turin-Italie.

[Buffo 97] Mathieu Buffo. Contextual Coordination: a Coordination Model fo
Distributed Object Systems. PhD thesis, University of Geneva, jul 1997.

[Chen 76] P. P. Chen. The entity-relationship model: towards a unified view of d
ACM TODS, 1(1), 1976.

[Chen 96] T. Y. Chen and Y. T. Yu. On some characterisation problems
subdomain testing. In Alfred Strohmeier, editor,Reliable Software
Technologies – Ada-Europe’96, volume 1088 ofLNCS (Lecture Notes in
Computer Sciences), pages 147–158, Montreux, Switzerland, 1996.

[Clark 79] K.L. Clark. Predicate Logic as a Computational Formalism. Research
Report DOC 79/59, Department of Computing, Imperial College, 197

[Coleman 94] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chirs Dollin, Hel
Gilchrist, Fiona Hayes, and Paul Jeremaes.Object-Oriented Developmen
The Fusion Method. Object-Oriented Series. Prentice Hall, 1994.

[Dauchy 93] Pierre Dauchy, Marie-Claude Gaudel, and Bruno Marre. Using algeb
specifications in software testing: a case study on the software o
automatic subway.Journal of Systems and Software, 21(3):229–244, June
1993. North Holland, Elsevier Science Publishing Company.

[Dawes 91] J. Dawes.The VDM-SL Reference Guide. Pitman, 1991.

[Deransart 83] P. Deransart. An operational algebraic semantics of prolog program
Programmation en Logique, Perros-Guirrec, France, 1983
CNET-Lannion.

[Dick 92] J. Dick and A. Faivre. Automatic partition analysis for VDM specificatio
Research Report RAD/DMA/92027, Bull Research Center, L
Clayes-sous-Bois, France, October 1992.

[Dick 93] J. Dick and A. Faivre. Automating the generation and sequencing of
cases from model-based specifications. InFME’93: Industrial-Strength
Formal Methods, volume 670 ofLNCS (Lecture Notes in Compute
Sciences), pages 268–284, Odense, Denmark, 1993. Springer-Verlag.

[Dijkstra 72] E.W. Dijkstra. The humble programmer. InCommunications of the ACM,
volume 15, pages 859–866, 1972. Turing Award Lecture.

[Dodani 95] Mahesh Dodani. The many faces of formal methods for specify
object-oriented software.ROAD, 1(6):36–40, March-April 1995.

[Doong 93] Roong-Ko Doong.An Approach to Testing Object-Oriented Program.
PhD thesis, Polytechnic University, January 1993.
235

References

to

ual

and

ata

n
l

, and

ation

. An
ith
al
June

sing
es.
en

or

,

les
des

ses,
[Doong 94] Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT approach
testing object-oriented programs.ACM Transactions on Software
Engineering and Methodology, 3(2):101–130, April 1994.

[Ecl 94] ECLIPSE 3.4: ECRC Common Logic prohramming System, User Man,
1994.

[Ehrich 91] Hans-Dieter Ehrich, Martin Gogolla, and Amilcar Sernadas. Objects
their specification. In M. Bidoit and C. Choppy, editors,Recent Trends in
Data Type Specification - 8th Workshop on Specification of Abstract D
Types, volume 655 ofLecture Notes in Computer Sciences, pages 40–63,
Douran, France, August 1991. Springer Verlag.

[Ehrig 85] Hartmut Ehrig and Bernd Mahr.Fundamentals of algebraic specificatio
1: equations and initial semantics. EATCS Monographs on Theoritica
Computer Science. Springer-Verlag, March 1985.

[Fernandez 92a] J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez
J. Sifakis. A tool box for the verification of Lotos programs. In14th
International Conference on Software Engineering, Melbourne, Australia,
May 1992.

[Fernandez 92b] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jéron. On-the-fly verific
of finite transition systems.Formal Methods in System Design, 1:251–273,
1992.

[Fernandez 96a] J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, and C. Viho
experiment in automatic generation of test suites for protocols w
verification technology. Research Report 2923, INRIA (Institut Nation
de Recherche en Informatique et en Automatique), Rennes, France,
1996.

[Fernandez 96b] J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, and C. Viho. U
on-the-fly verification techniques for the generation of test suit
Research Report 2987, INRIA (Institut National de Recherche
Informatique et en Automatique), Rennes, France, September 1996.

[Fiedler 89] Steven P. Fiedler. Object-oriented unit testing.Hewlett Packard Journal,
40(1):69–74, April 1989.

[Finney 96] K. Finney. Mathematical notation in formal specification: Too difficult f
the masses?IEEE Transactions on Software Engineering, 22(2):158–159,
1996.

[Fribourg 88] L. Fribourg. Prolog with simplification. In M. Nivat K. Fuchi, editor
Programming of future generation computers. Elsevier Science, North
Holland, 1988.

[Gall 93] Pascale Le Gall.Les algèbres étiquetées: une sémantique pour
spécifications algébriques fondée sur une utilisation systématique
termes. Application au test de logiciel avec traitement d’exceptions. PhD
thesis, Université de Paris-Sud, Centre d’Orsay, 1993.

[Gaudel 95] Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mos
Mogens Nielsen, and Michael I. Schwartzbach, editors,TAPSOFT’95:
Theory and Practice of Software Development, volume 915 ofLNCS
236

References

,

ra I:
ns,

r,
er.
ort

072
,

nism

ct in

are
l

d
e

88.

unnar
en

,

(Lecture Notes in Computer Sciences), pages 82–96, Aarhus, Denmark
1995. Springer Verlag.

[Giannesini 86] F. Giannesini, H. Kanoui, R. Pasero, and M. vanCaneghem.PROLOG.
Addison-Wesley, 1986.

[Goguen 92] Joseph Goguen and Razvan Diaconescu. Order-sorted algeb
Equational deduction for multiple inheritance, overloading, exceptio
and partial operations.Theoretical Computer Science, 105(2):217–273,
1992.

[Guelfi 97] Nicolas Guelfi, Olivier Biberstein, Didier Buchs, Ercüment Canve
Marie-Claude Gaudel, Friedrich von Henke, and Detlef Schwi
Comparison of object-oriented formal methods. Technical Rep
Technical Report of the Esprit Long Term Research Project 20
“Design For Validation”, University of Newcastle Upon Tyne
Department of Computer Science, 1997.

[Hall 96] A. Hall. Using formal method to develop an atc information system.IEEE
Software, 13(2):66–76, 1996.

[Hennessy 85a] Matthew Hennessy and Robin Milner. Algebraic laws for nondetermi
and concurrency.Journal of the ACM, 32(1):137–161, January 1985.

[Hennessy 85b] Matthew Hennessy and Colin Stirling. The power of the future perfe
program logics. Information and Control, 67(1-3):23–52,
October/November/December 1985.

[Hoercher 94] H.-M. Hoercher and J. Peleska. The role of formal method in softw
testing. In FME’94 Industrial Benefit of Formal Methods, Tutoria
Program Track 1, October 1994.

[Hulaas 97] Geir Jarle Hulaas.An incremental prototyping methodology for distribute
systems based on formal specifications. PhD thesis, Ecole polytéchniqu
fédérale de Lausanne, 1997.

[Hussmann 88] H. Hussmann. Unification in conditional equational theories. InEuropean
Conference on Computer Algebra, EUROCAL ’85, LNCS (Lecture Notes
in Computer Sciences) 204, pages 543–553, Linz, Austria, 19
Springer-Verlag.

[IEEE 94] IEEE Standards Collection, Software Engineering, 1994.

[Jacobson 94] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and G
Övergaard.Object-Oriented Software Engineering, A Use Case Driv
Approach. Addisson Wesley, 1994. Revised printing.

[Kowalski 74] R. Kowalski. Predicate logic as a programming language. InInformation
Processing’74, pages 569–574. North Holland, 1974.

[Kowalski 79] R. Kowalski.Logic for Problem Solving. The Computer Science Library
Artificial Intelligence, Nils J. Nilsson. North-Holland, 1979.

[Kowalski 83] R. Kowalski. Logic programming. InIFIP 1983, pages 133–145, 1983.

[Lalement 90] René Lalement.Logique réduction résolution. Etudes et recherches in
informatique. Masson, 1990.
237

References

t

lisant

er

tions

de

ale Le
nd

2.

ted

e

d

:

ing

ia,

ion
ral
[Laprie 95] Jean-Claude Laprie, editor.Guide de la sûreté de fonctionnemen.
Cépaduès, 1995.

[Lewerentz 95] C. Lewerentz and T. Lindner, editors.Formal Development of Reactive
System: Case Study Production Cell, volume 891 ofLNCS (Lecture Notes
in Computer Science). Springer Verlag, 1995.

[Lloyd 87] J.W. Lloyd.Foundations of Logic Programming. Springer-Verlag, 1987.
Second Extended Edition.

[Marre 88] Bruno Marre. Vers une génération automatique de jeux de tests en uti
les spécifications algébriques et la programmation logique. InCGL4 - 4th
Conference on Software Engineering, pages 19–29, Paris, France, Octob
18-21 1988. AFCET.

[Marre 89] Bruno Marre. Génération automatique de jeux de tests: Spécifica
algébriques et programmation logique. InProgrammation en Logique,
pages 213–236, Tregastel, France, 1989. CNET-Lannion.

[Marre 91] Bruno Marre.Sélection automatique de jeux de tests à partir
spécifications algébriques en utilisant la programmation logique. PhD
thesis, LRI, Université de Paris XI, Orsay, France, January 1991.

[Marre 92] Bruno Marre, Pascale Thévenod-Fosse, Hélène Waeselynck, Pasc
Gall, and Yves Crouzet. An experimental evaluation of formal testing a
statistical testing. In Heinz H. Frey, editor,SAFECOMP ’92: Safety of
Computer Control System, pages 311–316, Zurich, Switzerland, 199
Pergamon Press.

[McGregor 92] John D. McGregor and David A. Sykes.Object-Oriented Software
Development: Engineering Software for Reuse. VNR Computer Library.
Van Nostrand Reinhold, 1992.

[McGregor 94] John D. McGregor and Timothy D. Korson. Integrated object-orien
testing and development process.Communications of the ACM,
37(9):59–77, September 1994.

[Meyer 92] Bertrand Meyer.Eiffel: The Language. Object-Oriented Series. Prentic
Hall, 1992.

[Meyer 97] Bertrand Meyer. Object-Oriented Software Construction (Secon
Edition). Prentice-Hall, 1997.

[Milner 89] Robin Milner.Communication and Concurrency. Prentice Hall, 1989.

[Muller 97] Pierre-Alain Muller.Modélisation objet avec UML. Eyrolles, 1997.

[Myers 79] Glenford J. Myers.The Art of Software Testing. Business Data Processing
a Wiley Series. John Wiley & Sons, 1979.

[Nicola 90] Rocco De Nicola and Frits Vaandrager. Three logics for branch
bisimulation (extended abstract). InFifth Annual IEEE Symposium on
Logic in Computer Science, pages 118–129, Philadelphia, Pennsylvan
June 1990. IEEE Computer Society Press.

[OSI 92] OSI. Information technology - Open Systems Interconnect
Conformance Testing Methodology and Framework - Part 1: Gene
238

References

and
.

aa,

rale.

n for

98)
n &
ed

uction
DI,

and

la

iple.

e

ddy,

le,
e

al

rouzet.
rie,
Concept - Part 2: Abstract Test Suites Specification - Part 3: The Tree
Tabular Combined Notation (TTCN). Standard ISO/IEC 9646-1/2/3, 1992

[Padawitz 88] P. Padawitz.Computing in Horn Claude Theory. EATCS Monographs on
Theoretical Computer Science, W. Brauer, G. Rozenberg, A. Salom
Volume 16. Springer-Verlag, 1988.

[Péraire 95] Cécile Péraire. Une Méthode de Tests Fonctionnelle Géné
Postgraduate in Software Engineering, November 1995.

[Péraire 98a] Cécile Péraire, Stéphane Barbey, and Didier Buchs. Test selectio
object-oriented software based on formal specifications. InIFIP Working
Conference on Programming Concepts and Methods (PROCOMET’,
pages 385–403, Shelter Island, New York, USA, June 1998. Chapma
Hall. Also available as Technical Report (EPFL-DI No 97/252), Publish
in DeVa second year report (January 98).

[Péraire 98b] Cécile Péraire, Stéphane Barbey, and Didier Buchs. Testing the prod
cell case study from co-opn specification. Technical Report 98, EPFL-
1998. to appear.

[Perry 90] Dewayne E. Perry and Gail E. Kaiser. Adequate testing
object-oriented programming.Journal of Object-Oriented Programming,
2(5):13–19, January 1990.

[Pressman 97] R.S. Pressman.Software Engineering - A Practitioner’s approach.
McGraw-Hill, 1997. Fourth Edition.

[Proth 95] J.-M. Proth and X. Xie.Les réseaux de Petri pour la conception et
gestion des systèmes de production. Masson, 1995.

[Reisig 91] W. Reisig. Petri nets and algebraic specifications. InTheoretical
Computer Science 80, pages 1–34, 1991.

[Robinson 65] J.A. Robinson. A machine-oriented logic based on the resolution princ
In Journal of ACM 12, pages 23–41, 1965.

[Roper 94] Marc Roper.Software Testing. International Software Quality Assuranc
Series. McGraw-Hill, 1994.

[Rumbaugh 91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick E
and William Lorensen.Object-Oriented Modeling and Design. Prentice
Hall, 1991.

[Saiedian 96] H. Saiedian. An invitation to formal methods.IEEE Computer, pages
16–30, April 1996.

[Schnoebelen 90] Philippe Schnoebelen.Sémantique du parallélisme et logique temporel
Application au langage FP2. PhD thesis, Institut National Polytechniqu
de Grenoble, 1990.

[Spivey 92] J.M. Spivey.Understanding Z: a Specification Language and its Form
Semantics. Cambridge University Press 1988, U.K., 1992.

[Thévenod-Fosse 95] Pascale Thévenod-Fosse, Hélène Waeselynck, and Yves C
Software statistical testing. In Brian Randell, Jean-Claude Lap
Hermann Kopetz, and Eds Benjamin Littlewood, editors,Predictably
239

References

es

atistical

ms.
S,

with
e of

. In
,

ebraic
&

9
987.

rman
o,

,

sting

ms.
Dependable Computing Systems, ESPRIT Basic Research Series, pag
253–272. Springer Verlag, 1995.

[Thévenod-Fosse 97] Pascale Thévenod-Fosse and Hélène Waeselynck. Towards a st
approach to testing object-oriented programs. InProceedings of the 27th
International Symposium on Fault-Tolerant Computing (FTCS-97), pages
99–108, Seattle, Washington, USA, June 1997.

[Turner 92] C. D. Turner and D. J. Robson. The testing of object-oriented progra
Technical Report TR-13/92, Computer Science Division, SEC
University of Durham, England, November 1992.

[Vachon 98] Julie Vachon and Didier Buchs. Towards a complete semantics
negation rules for CO-OPN/2. Technical report, Swiss Federal Institut
Technology, Switzerland, 1998.

[vanEmden 87] M.H. vanEmden and K. Yukawa. Logic programming with equations
Journal of Logic Programming, volume 4, pages 265–288. North-Holland
1987.

[vanGlabbeek 87] R.J. vanGlabbeek and F.W. Vaandrager. Petri net models for alg
theories of concurrency (extended abstract). In A.J. Nijman
P.C. Treleaven J.W. de Bakker, editor,PARLE conference, volume II
(Parallel Languages) ofLNCS (Lecture Notes in Computer Sciences) 25,
pages 224–242, Eindhoven, The Netherlands, August 15-17 1
Springer-Verlag.

[Wegner 87] Peter Wegner. Dimensions of object-based language design. In No
Meyrowitz, editor, OOPSLA ’87 Conference Proceedings, Orland
Florida, volume 22 of SIGPLAN Notices, pages 168–182. ACM
SIGPLAN, ACM Press, December 1987.

[Weyuker 80a] Elaine J. Weyuker. The oracle assumption of program testing. In13th
International Conference on System Sciences, pages 44–49, Hawaii, USA
1980.

[Weyuker 80b] Elaine J. Weyuker and Thomas J. Ostrand. Theories of program te
and the application of revealing subdomains.IEEE Transactions on
Software Engineering, SE-6(3):236–246, May 1980.

[Wilde 92] Norman Wilde and Ross Huitt. Maintenance of object-oriented progra
IEEE Transactions on Software Engineering, 18(12):1038–1044,
December 1992.

[WirfsBrock 90] Rebecca WirfsBrock, Brian Wilkerson, and Richard Wiener.Designing
object-oriented software. Prentice-Hall International, 1990.
240

List of Figures

...... 16
..... 22
.... 23
ues 25

...... 42

. 43
4

6

..... 63
...... 65
...... 66

..... 70
...... 73
..... 75
..... 83
... 88

... 89

... 90

.. 90

.. 91

.. 92

..... 94
List of Figures

Fig. 1. Formal testing process ..
Fig. 2. V model for software development ...
Fig. 3. Classification of verification techniques ...
Fig. 4. Relationship between specification-based and program-based testing techniq
Fig. 5. Algebraic specification of the Abstract Data TypeCoordinates 30
Fig. 6. The classes and their internal description and synchronizations
Fig. 7. The ADTsPin andMoney ..
Fig. 8. Textual specification of the classPhoneCard .. 4
Fig. 9. Textual specification of the classReloadablePhoneCard 45
Fig. 10. Textual specification of the classTelephone ... 4
Fig. 11. Relation between abstract and concrete syntax in the ADTFifo 52
Fig. 12. Relation between abstract and concrete syntax in the classTelephone 56
Fig. 13. Inference rules for the partial semantics construction
Fig. 14. Inference rules for the closure operation ..
Fig. 15. Inference rules for the stabilization process ...
Fig. 16. Derivation tree for the event c.create (1234) .. c.withdraw (12) .. c.get-balance (8) ... 67
Fig. 17. Abstract view of the formal testing process ..
Fig. 18. Formal testing process ..
Fig. 19. Iterative refinement of the test context ..
Fig. 20. Example of bisimulation between two graphs ..
Fig. 21. Test set TCard2..

Fig. 22. Test set TCard3..

Fig. 23. Test set TCard4..

Fig. 24. Test set TCardGround...

Fig. 25. Power of theand (∧) operator ...
Fig. 26. Power of thenot (¬) operator ...
Fig. 27. The full agreement theorem and its corollary ...
241

List of Figures

....... 98
...... 99
..... 102
... 106

..... 138
..... 138
43

... 146
. 148
.. 149
50

... 154

.. 156

.. 156
57

158

158
9
163

.... 169
.. 171
... 171
.. 172
.. 173
.... 176
... 177
181
82
5

.... 186

... 189
.... 192

209
... 216
Fig. 28. Test selection process ..
Fig. 29. Focus and environment ...
Fig. 30. Reduction hypotheses ..
Fig. 31. Classification of the operations and evolution of the system’s state
Fig. 32. Derivation tree for the test

〈<c.create (v0)> <c.withdraw (v1)> <c.get-balance (v2)> <c.get-pin (v3)>T, result〉 131

Fig. 33. Practical test selection process ..
Fig. 34. Specification coverage versus number of test cases
Fig. 35. Partial view of theCO-OPNTEST architecture .. 1
Fig. 36. Inference rules for invalid behaviors ...
Fig. 37. CO-OPN algebraic specification ...
Fig. 38. HML algebraic specification ...
Fig. 39. Excerpt of theCONSTRAINT algebraic specification .. 1
Fig. 40. SLD-derivation ..
Fig. 41. Depth-first search ...
Fig. 42. Breadth-first search ...
Fig. 43. Iterative depth-first search withk = k’ = 2 ... 1
Fig. 44. SLD-resolution ofP ∪ {:- and (a, b, false), not (a, false)}

with theleft-most computation rule ..
Fig. 45. SLD-resolution ofP ∪ {:- and (a, b, false), not (a, false)}

with theunifiable-least computation rule ...
Fig. 46. SLD-resolution ofP ∪ {:- max(a, b, m)} .. 15
Fig. 47. TheCO-OPNTEST architecture ...
Fig. 48. Snapshot of the test selection for the classPhoneCard with CO-OPNTEST 166
Fig. 49. Case study development life-cycle ...
Fig. 50. Top view of the production cell ..
Fig. 52. Robot (side view) ..
Fig. 51. Production cycle of a blank (side view) ...
Fig. 53. Modified FZI simulator ..
Fig. 54. System context diagram (inside) ..
Fig. 55. Object model of the robot ..
Fig. 56. BuildingCO-OPN specifications from Fusion models
Fig. 57. CO-OPN specification of theRobot agent .. 1
Fig. 58. Robot test driver and stubs (inCO-OPN) ... 18
Fig. 59. Petri net of the robot event treatment ...
Fig. 60. Test of the blank table-to-press transfer mechanism withCO-OPNTEST............. 188
Fig. 61. Robot reachability graph ...
Fig. 62. Petri net of the deposit belt event treatment ...
Fig. 63. {Robot, Deposit belt} test driver and stubs (inCO-OPN) 193
Fig. 64. BuildingCO-OPN specifications from Fusion models
Fig. 65. Robot rotation constants (top view) ..
242

List of Tables

...... 29

...... 38
58
...... 80
...... 95
... 185
.... 199
List of Tables

Table 1. Advantages and drawbacks of object-oriented paradigms for testing.............
Table 2. Main characteristics of four test methods and tools ..
Table 3. Summary of the syntax of CO-OPN..
Table 4. Main differences between the BGM approach and our approach
Table 5. Example of oracle truth table ..
Table 6. Truth table of the driver oracle ...
Table 7. Main characteristics of our test method and tool ..
243

List of Tables
244

Curriculum Vitae
Curriculum Vitae

Cécile Péraire

Diploma of Engineering 1993
in Computer Sciences Swiss Federal Institute of Technology (EPFL)

Research Assistant 1993 - 1994
EPFL - Computer Science Department
Peripheral Systems Laboratory

Research on color reproduction
(calibration of color devices).

Postgraduate Degree 1995
 in Software Engineering EPFL

Research and Teaching 1994 - 1998
Assistant EPFL - Computer Science Department

Software Engineering Laboratory

Research on object-oriented software testing.
245

Curriculum Vitae
246

	Formal Testing of Object-Oriented Software: from the Method to the Tool
	Remerciements
	Résumé
	Summary
	Table of Contents
	Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Document organization

	Test Methods and Tools
	2.1 Testing classifications
	2.1.1 Testing in the software life-cycle
	2.1.2 Test methods in the verification taxonomy

	2.2 Testing object-oriented software
	2.2.1 Objects
	2.2.2 Classes
	2.2.3 Inheritance
	2.2.4 Polymorphism
	2.2.5 Summary

	2.3 Test methods and tools
	2.3.1 The BGM method and the LOFT tool
	2.3.2 The ASTOOT method and tools
	2.3.3 The BULL method and tool
	2.3.4 The TGV method and tool
	2.3.5 Summary

	The CO-OPN Object-Oriented Specification Language
	3.1 CO-OPN object-oriented concepts
	3.2 Introductory example: the telephone system
	3.2.1 ADT modules
	3.2.2 Class modules

	3.3 Syntax of CO-OPN
	3.3.1 Abstract data types
	3.3.1.1 ADT concrete syntax
	3.3.1.2 ADT abstract syntax
	3.3.1.3 Relation between abstract and concrete syntax of an ADT

	3.3.2 Classes
	3.3.2.1 Class concrete syntax
	3.3.2.2 Class abstract syntax
	3.3.2.3 Relation between abstract and concrete syntax of a class

	3.3.3 Syntax of a specification
	3.3.4 Summary of the syntax of CO-OPN

	3.4 Semantics of CO-OPN
	3.4.1 Order-sorted algebras and multi-set extension
	3.4.2 Object Management
	3.4.3 State space
	3.4.4 Semantics and inference rules
	3.4.4.1 Partial semantics of a class
	3.4.4.2 Semantics of a CO-OPN specification
	3.4.4.3 Example of the semantics of CO-OPN

	3.5 Summary

	Theory of Formal Testing for Object-Oriented Software
	4.1 Theory of formal testing
	4.1.1 Test foundation
	4.1.2 Test process
	4.1.3 Test selection
	4.1.4 Reduction hypotheses for test selection
	4.1.4.1 Uniformity hypotheses
	4.1.4.2 Uniformity hypotheses with subdomain decomposition
	4.1.4.3 Regularity hypotheses

	4.1.5 Test satisfaction
	4.1.6 Our approach vs. the BGM approach

	4.2 Theory of formal testing for object-oriented software
	4.2.1 Specification formalism: CO-OPN
	4.2.1.1 CO-OPN semantics
	4.2.1.2 CO-OPN equivalence relationship: strong bisimulation equivalence
	4.2.1.3 Satisfaction relationship between programs and CO-OPN specifications

	4.2.2 Test formalism: Hennessy-Milner Logic (HML)
	4.2.2.1 Syntax and semantics of HML
	4.2.2.2 HML equivalence relationship: the HML equivalence
	4.2.2.3 HML test cases and exhaustive test set
	4.2.2.4 Satisfaction relationship between programs and HML test sets
	4.2.2.5 Example of HML test case selection
	4.2.2.6 HML discriminating power

	4.2.3 Full agreement between CO-OPN and HML
	4.2.3.1 Full agreement theorem
	4.2.3.2 Full agreement corollary

	4.2.4 Oracle construction

	4.3 Summary

	Practical Test Selection
	5.1 Practical test selection process
	5.2 The language HMLSP,X
	5.3 Reduction hypotheses
	5.3.1 Structural uniformity hypotheses
	5.3.1.1 Number of events
	5.3.1.2 Depth of a formula
	5.3.1.3 Number of occurrences of a given method
	5.3.1.4 Event classification
	5.3.1.5 Shape of HML formulas

	5.3.2 Regularity hypotheses
	5.3.3 Uniformity hypotheses
	5.3.4 Choosing reduction hypotheses

	5.4 Uniformity hypotheses with subdomain decomposition
	5.4.1 General strategy for subdomain decomposition
	5.4.2 Where to find b-constraints?
	5.4.3 How to find b-constraints in algebraic conditions?
	5.4.4 How to find b-constraints in method parameters?
	5.4.5 How to find b-constraints in pre- and postconditions (without synchronization expressions)?
	5.4.6 How to find b-constraints in pre- and postconditions in the presence of synchronization exp...
	5.4.6.1 Single synchronization
	5.4.6.2 Sequential synchronization
	5.4.6.3 Simultaneous synchronization
	5.4.6.4 Alternative synchronization

	5.4.7 Example of subdomain decomposition
	5.4.7.1 Finding constraint systems characterizing the subdomains
	5.4.7.2 Solving constraint systems and selecting values

	5.5 Minimal test set
	5.6 Summary

	Operational Techniques and Test Set Generation Tool: Co-opnTest
	6.1 Operational techniques for test set selection
	6.1.1 Algebraic specifications (CO-OPN, HML, Constraint)
	6.1.1.1 Algebraic specification of the CO-OPN language
	6.1.1.2 Algebraic specification of the HML language
	6.1.1.3 Algebraic specification of the Constraint language

	6.1.2 From formal specifications to computational Horn clauses
	6.1.2.1 From formal specifications to PROLOG facts
	6.1.2.2 From PROLOG facts to computational Horn clauses

	6.1.3 PROLOG resolution procedure
	6.1.3.1 SLD-resolution rule
	6.1.3.2 SLD-resolution procedure
	6.1.3.3 SLD-resolution search rule
	6.1.3.4 SLD-resolution computation rule

	6.1.4 Control mechanisms for subdomain decomposition

	6.2 The Co-opnTest tool
	6.2.1 The Co-opnTest architecture
	6.2.2 The Co-opnTest functionalities and graphical interface

	6.3 Summary

	Case Study: Production Cell
	7.1 Presentation of the case study
	7.1.1 Description of the production cell
	7.1.2 Control program and simulator
	7.1.3 Safety requirements

	7.2 Summary of Fusion
	7.2.1 Analysis
	7.2.2 Design

	7.3 Analysis and design with the Fusion method
	7.3.1 Analysis
	7.3.1.1 System context diagram
	7.3.1.2 Object model
	7.3.1.3 System life-cycle
	7.3.1.4 Operation models

	7.3.2 Design
	7.3.2.1 Interaction graphs
	7.3.2.2 Class description

	7.4 From Fusion to CO-OPN
	7.5 Test selection for the production cell
	7.5.1 Unit testing of the robot
	7.5.1.1 Definition of the robot test driver and stubs
	7.5.1.2 Test set selection
	7.5.1.3 Test set execution and error detection
	7.5.1.4 Testing safety requirements

	7.5.2 Integration testing of the robot and deposit belt
	7.5.2.1 Presentation of the deposit belt
	7.5.2.2 Definition of the {robot, deposit belt} test driver and stubs
	7.5.2.3 Test set selection for safety requirement

	7.6 Summary

	Conclusion
	8.1 Contribution
	8.2 Limitations, enhancements and perspectives

	Annex A CO-OPN specifications
	A.1 Unique
	A.2 Booleans
	A.3 Naturals
	A.4 States

	Annex B Developing CO-OPN specifications from Fusion models
	Annex C CO-OPN specification of the agent Robot
	Annex D Ada 95 implementation of the agent Robot
	Annex E Language of constraints
	References
	List of Figures
	List of Tables
	Curriculum Vitae

