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Abstract 

NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through 

microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 

(nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We 

recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to 

destabilize cortical microtubules possibly by direct binding to microtubules and the 

beta-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed 

the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 

mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth 

of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. 

In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors 

such as propyzamide and taxol. These results suggest that plant NEKs function in directional 

cell growth and organ development through the regulation of microtubule organization. 

 

TEXT 

The development of multicellular organisms depends on cellular growth and morphogenesis. 

The directional growth of plant cells depends on the cortical array of microtubules.1-3 

However, the mechanism of microtubule regulation remains to be elucidated. Recent genetic 

analyses suggested the involvement of protein phosphorylation in microtubule organization 

and directional cell expansion.4-6 

 

Never in mitosis A (NIMA) is a Ser/Thr protein kinase, which was first discovered from a 

mitotic mutant nimA of Aspergillus nidulans.7,8 NIMA-related kinases (NEKs) have been 
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found in various fungi and animals, and they comprise a family of mitotic kinases conserved 

in eukaryotes. In fungi and animals, NEKs regulate various mitotic events including mitotic 

initiation, centrosome separation, spindle formation, and cytokinesis.7,8 Plants have 6-9 NEK 

genes but their function is not clearly understood. NEK6 has been found to function in 

epidermal cell expansion and morphogenesis in Arabidopsis thaliana.9,10 NEK6 has also been 

identified as an interacting protein with armadillo repeat-containing kinesins (ARKs).9 The 

loss-of-function mutant of NEK6, ibo1/nek6, exhibits ectopic protuberances in epidermal cells 

of hypocotyls and petioles (Fig. 1A and B), indicating that NEK6 suppresses ectopic 

outgrowth in epidermal cells.9,10 A single ectopic protrusion is formed in the middle of the cell 

of the non-stomatal cell file in hypocotyls, suggesting that the protrusion might be a 

trichome-like structure.10 The ectopic outgrowth of ibo1/nek6 mutants is strongly promoted 

by ethylene signaling.10 Genetic and biochemical analyses revealed that the kinase activity of 

NEK6 and the microtubule localization of NEK6 are essential for suppressing ectopic 

outgrowth.10 

 

Recently, we showed that NEK6 interacts with other NEK members, directly binds to 

microtubules, phosphorylates beta-tubulins, and regulates cortical microtubule organization 

during epidermal cell expansion.11 The functional NEK6–green fluorescent protein fusion was 

concentrated in particles exhibiting dynamic movement along microtubules. The nek6/ibo1 

mutants showed disturbance in the cortical microtubule array at the site of ectopic protrusions 

in epidermal cells (Fig. 1C). The quantitative analysis of microtubule dynamics indicated 

excessive stabilization of cortical microtubules in ibo1/nek6. In addition, NEK6 directly 

bound to microtubules and phosphorylated beta-tubulin in vitro. The interaction of NEK6 
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with NEK4 and NEK5, which is affected by the ibo1-3 mutation, was shown to be required 

for the ectopic outgrowth phenotype of ibo1/nek6.11 These results suggest that NEK6 

regulates cortical microtubule organization by interacting with other NEKs and the 

phosphorylation of beta-tubulin. 

 

Here, we identified a new allele of NEK6 (ibo1-5), which had a point mutation in the kinase 

domain (Ala to Thr substitution at position 42). The ibo1-5 mutant exhibited ectopic 

protrusions from epidermal cells, which were identical to those of other nek6/ibo1 mutants 

(Fig. 1A). This result supports that the kinase domain is essential for the function of NEK6. 

We further analyzed the developmental phenotypes of nek6 mutants. The nek6-1/ibo1-4 

seedlings showed aberrant root waving or skewing pattern when grown vertically (Fig. 1D). 

In the root tip of the nek6-1/ibo1-4 mutant, cell files were disorganized and abnormal cell 

plates were formed (Fig. 1E), indicating that NEK6 is required for organized cell division and 

expansion, leading to regular cell file formation. The hypocotyl of a dark-grown 

nek6-1/ibo1-4 seedling exhibited twisted growth (Fig. 1F). In the hypocotyl cortex of the 

ibo1-4 mutant, reduced cell length and less organized cell files were observed (Fig. 1G). In 

addition, the nek6-1/ibo1-4 mutant had short petioles (Fig, 1H). Furthermore, trichomes in 

ibo1-2 had more branches than in the wild type (Fig. 1I). These results indicate that NEK6 is 

required for directional growth, organized cell division and expansion, petiole elongation and 

trichome branching. 

 

To study the involvement of NEK4, NEK5 and NEK6 in the process of 

microtubule-dependent growth, we analyzed the effects of a microtubule-depolymerizing drug, 
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propyzamide, and a microtubule-stabilizing drug, taxol, on the root growth in nek4, nek5 and 

nek6/ibo1 mutants. The nek4-1, nek5-1, and nek6-1/ibo1-4 mutants were hypersensitive to 

propyzamide and taxol (Fig. 2A-C). In the presence of microtubule inhibitors, the mutant 

roots were shorter and slanted rightward more severely than those of the wild type. This result 

implies that NEK4, NEK5, and NEK6 are involved in the regulation of microtubule 

organization during root growth. 

 

Taken together, the findings of the present study reveals that NEK6 regulates multiple 

developmental processes, including the directional growth of roots and hypocotyls, cell file 

formation, petiole elongation, and epidermal cell morphogenesis. Because NEK6 participates 

in the destabilization of microtubules, possibly through the phosphoryation of beta-tubulin,11 

the regulation of microtubule organization by NEK6 may be important for directional cell 

growth and an organized pattern of cell division during organ development. The 

hypersensitivity of nek4, nek5 and nek6 mutants to microtubule inhibitors indicates that 

NEK4 and NEK5 also regulate microtubule-dependent cellular growth in concert with NEK6. 

The pleiotropic phenotype of nek6/ibo1, together with the mild phenotypes of nek4 and nek5, 

suggests that NEK6 plays central roles in NEK-related regulatory pathways to control cell 

growth. In consonance with this, our previous study implied that NEK6 regulates the activity 

and localization of NEK4 and NEK5.11 This is also consistent with other reports of multiple 

functions of NEK6.9-12 In addition, we demonstrated the involvement of other NEK members 

in microtubule function, as was recently reported for another NEK member, namely, AtNek2 

in A. thaliana.13 Fungal and animal NEKs mainly regulate mitotic cell division7,8 whereas 

plant NEKs control directional cell expansion9-11 and also participate in stress response and 
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seed germination.12,14 This might reflect that plant NEKs have evolved to acquire novel 

functions for the adaptation of plants to changing environmental conditions. Recent genetic 

analyses suggest that plant mitotic regulators might be recruited for the regulation of cell 

growth (e.g. endocycle) and environmental responses.15,16 Besides beta-tubulin and ARKs, we 

identified novel proteins interacting with NEK6 and substrates phosphorylated by NEK6. 

Further analysis of the plant NEK family and its downstream factors will provide novel 

insights into the regulation of organized cell growth and the underlying microtubule 

functions. 
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Figure Legends 

Figure 1.  The nek6/ibo1 mutants exhibit disorganized cell growth. (A) Morphology of 

hypocotyls of 10-day-old seedlings of the wild type (WT) and ibo1. The right part shows a 

hypocotyl of ibo1-4 stained with propidium iodide. (B) Structure of NEK6. PEST sequence 

(green), coiled-coil domain (yellow), plant NEK C-terminal motif (blue) and mutation sites 

are shown. (C) Cortical microtubules were visualized with GFP-TUB6 in hypocotyl 

epidermal cells of the wild type (WT) and ibo1-1. Arrows and arrowheads in (C) indicate 

whirled arrays of microtubules and microtubule bundles, respectively. (D and E) Morphology 

of the wild type (WT) and ibo1-4 seedlings grown vertically for 7 days. (E) Seedlings were 

stained with propidium iodide and root tips were observed under a confocal microscope. 

Median longitudinal optical section (upper parts in E) and epidermis (lower parts in E) of root 

tip were shown. Arrows and arrowheads indicate aberrant cell plates and irregular cell files, 

respectively. (F) Morphology of hypocotyls of the wild type (WT) and ibo1-4 grown in the 

dark for 7 days. (G) Hypocotyl cortex of the wild type (WT) and ibo1-4. Seedlings grown in 

the light for 7 days were stained with propidium iodide and observed under a confocal 

microscope. (H) Morphology of 4-week-old wild type (WT) and ibo1-4 plants (left parts) and 

quantification of lengths of leaf blades and petioles of 14-day-old seedlings (right parts). 

Values are means ± SD (n = 10). Asterisk indicates significant difference from the wild type 

(Student t-test, P < 0.01). (I) Trichomes of the wild type (WT) and ibo1-4. Bars = 100 µm (A, 
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G and I), 50 µm (C and E), 10 mm (D and H) or 1 mm (F). 

 

Figure 2.  The nek4, nek5 and nek6/ibo1 mutants are hypersensitive to microtubule 

inhibitors. (A) Morphology of the wild type (WT) and nek mutant seedlings grown for 8 days 

on the MS agar medium in the absence (Mock) or presence of 3 µM propyzamide (+PPM) or 

1 µM taxol (+TAX). Bar = 10 mm. (B) Root length of the wild type (WT) and nek mutants 

grown for 10 days in the absence (Mock) or presence of 3 µM propyzamide (PPM) or 1 µM 

taxol (TAX). (C) Root slanting angles (θ) of 8-day-old seedlings of the wild type (WT) and 

nek mutants grown as described above. Rightward- and leftward-slanting angles (viewed from 

the shoot apex) are expressed as positive and negative values, respectively. In (B) and (C), 

values are means ± SE (n ≥ 22). Asterisks indicate significant difference from the wild type 

(Student t-test, P < 0.02). 
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