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In previous papers (1, 2), it has been reported that the stimulating
effect of calcium on the rubidium uptake of excised barley roots was
closely related to the metabolic process of ion uptake. To investigate
in more detail the mechanisms of the calcium effect the present study
was done by using some metabolic inhibitors. The metabolic inhibitors
used were as follows: (i) cyanide, an inhibitor of metal oxidases in the
respiratory chain (3, 4); (ii) 2,4-dinitrophenol (DNP), an uncoupling agent
of oxidative phosphorylation (3, 4); (iii) g-strophanthin (ouabain), an
inhibitor of adenosine triphosphatase (ATPase) and of the active trans-
port of potassium and sodium in animal cells (5-18).

MATERIALS AND METHODS

Preparation of Root Materials

Excised roots of barley (Hordeum vulgare L., variety Akashinriki)
were used. Root materials were prepared according to the procedure
described previously (1, 2).

Experimental Procedure

An equimolar mixture of rubidium chloride and sodium chloride
(1.0 mM each) was used as the absorption solution in this study, except
in the experiment in which cyanide was used. When cyanide was
added, the absorption solution was a mixture of rubidium chloride and
sodium cyanide (1.0 mM each). Absorption solutions were labeled with
radioactive rubidium (¥*Rb) or radioactive sodium (*Na). The initial pH
of the absorption solution was adjusted to about 5.4 immediately before
an experiment.

Procedures for the absorption experiment, washing operation, and
desorption treatment after washing were virtually identical with those
described in previous papers (1, 2). In all the experiments, an equimolar
mixture of rubidium chloride and sodium chloride (1.0 mM each) was
used as the desorption solution, which was non-radioactive.

* Data presented in this paper were published in the Journal of the Science of Soil
and Manure, Japan, Vol. 41, p. 467-472 (1970), in Japanese.
** Department of Applied Biology, Radiation Center of Osaka Prefecture.
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Redioactive Assay
The procedure for the radioactive assay was also identical with
that described in previous papers (1, 2).

RESULTS

Influence of Cyanide

The effects of calcium on the uptakes of rubidium and sodium as
influenced by cyanide were investigated under various conditions with or
without the desorption treatment of roots after an absorption period at
25° and 2°C. Figs. 1 and 2 show the rates of rubidium and sodium
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Fig. 2. Effects of calcium and cyanide on the sodium uptake.
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uptake, respectively. Numbers on bars indicate the ratio of the results
when calcium chloride was added to that when there was no addition.
The same system is used in figures presented below.

At 25°C, the rubidium uptake was increased by calcium when no
cyanide was added, with or without the desorption treatment, while the
calcium effect was not found when cyanide was added. At 2°C, however,
the rubidium uptake was decreased by calcium when there was no
desorption treatment and it was increased by calcium when there was
desorption treatment with no addition of cyanide. The rubidium uptake
was, however, decreased by calcium with the addition of cyanide with
or without the desorption treatment.

The sodium uptake was decreased by calcium under all the experi-
mental conditions; on the addition or omission of cyanide, with or with-
out the desorption treatment, and at 25° and 2°C.

Influence of DNP

The effects of calcium on the uptakes of rubidium and sodium as
influenced by DNP were investigated under various conditions with or
without the desorption treatment at 25° and 2°C. Figs. 3 and 4 show
the rates of rubidium and sodium uptake, respectively.
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Fig. 3. Effects of calcium and DNP on the rubidium uptake.

[——1 cCaCl;: in absorption solution: 0 mM
B C:Cl:; in absorption solution: 0.5 mM

At 25°C, the rubidium uptake was increased by calcium when no
DNP was added and was decreased by calcium on the addition of 0.01
mM of DNP, with or without the desorption treatment. However, in
spite of the lowering of the rubidium uptake with the addition of 0.001
mM of DNP, the calcium effect was clear. At 2°C, the rubidium uptake
decreased on the addition of 0.001 and 0.01 mM of DNP, and the effect of



32 T. Kawasaki, S. Horl & M. Moritsugu

Temperature : 25C Temperature : 2°C

2.0F 100 100

Na uptake
4 moles /0.5 g roots

absorption

e . 0 0.0]/ \0 0.01 ,mM \8 0.01/ " 0 0 .Oll mM
Non» Desorption Non- Desorption
desorption desorption

Fig. 4. Effects of calcium and DNP on the sodium uptake.
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calcium on the rubidium uptake became more inhibitory with increasing
concentrations of DNP.

The sodium uptake was decreased by calcium under all the experi-
mental conditions; on the addition and omission of 0.01 mM of DNP,
with or without the desorption treatment, and at 25° and 2°C.

Influence of Ouabain

The effects of calcium on the uptakes of rubidium and sodium as
influenced by ouabain were investigated under various conditions. Figs.
5 and 6 show the rates of rubidium and sodium uptake, respectively.
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Fig. 5. Effects of calcium and ouabain on the rubidium uptake.
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The rubidium uptake was increased by calcium on desorption treat-
ment at both 25° and 2°C, but ouabain up to 1.0 mM did not affect the
rubidium uptake in either the presence or absence of calcium. The
sodium uptake was decreased by calcium, but ouabain up to 0.5 mM did
not affect the sodium uptake.

DISCUSSION

A great number of experiments on ion uptake have been performed
with metabolic inhibitors, especially respiratory inhibitors, and ion uptake
has been found to be largely dependent upon the aerobic respiration in
plant roots. In this study, the relation between the calcium effect in ion
uptake and a series of metabolic processes made up of aerobic respira-
tion, the formation of ATP, and the hydrolysis of ATP, was investigated.
Three metabolic inhibitors were used: cyanide, a known inhibitor of
metal oxidases in the respiratory chain; DNP, a known uncoupling agent
in oxidative phosphorylation; and ouabain, a known inhibitor of ATPase
in animal cells.

Waisel (19) reported that calcium decreased the rubidium uptake in
a supply of nitrogen gas or DNP. In the present experiments also, the
stimulating effect of calcium on rubidium uptake was reduced or abo-
lished on the addition of cyanide (Fig. 1). A similar trend was found
on the addition of DNP. The rubidium uptake decreased with increasing
concentrations of DNP, and the effect of calcium on this uptake was
clear when the rubidium uptake was slightly reduced. However, when
the rubidium uptake was markedly reduced, the calcium effect became
inhibitory.

It has been reported that the oxygen uptake in barley roots was
not reduced by about 0.1~0.001 mM of DNP (20, 21); thus, the abolition
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of the calcium effect on the addition of cyanide may be due to the forma-
tion of ATP being decreased indirectly by the inhibition of aerobic re-
spiration. These results suggest that the stimulating efféct of calcium
on rubidium uptake is related to the supply of energy.

On the other hand, animal cells (i.e.,, erythrocytes and nerve cells
etc.) have been found to contain ATPases which were activated in the
presence of sodium and/or potassium (6-8, 12-17, 22-25), and these
ATPases were inhibited by ouabain (6-8, 12-17). In addition, ouabain
has been reported to inhibit the active transport of sodium and potassium
(5, 7, 9-11). Thus, a close linkage has been established between active
ion transport and ATPase activity in animal cells (6, 7, 12, 26).

Recently, cation-activated ATPase has been found in plant cells (27-
36), and a possible relationship between ion uptake and ATPase activity
was suggested (31, 35). Although it has been reported that ouabain
inhibited ion transport in algal cells (37, 38) and in higher plant cells
(39), many experiments have shown that ouabain did not inhibit ATPase
activity (28, 29) or ion transport (40-43) in higher plants. In the present
investigation, ouabain at concentrations up to about 1.0 mM did not
affect the rubidium and sodium uptakes, though a concentration of
ouabain for half maximal inhibition was about 107*~10"° mM on both
the systems of ATPase and ion transport in animal cells (7, 8, 13, 18).
Also, the calcium effect on monovalent cation uptake was not affected
by ouabain. Since the influence of ouabain in plant cells is obscure at
the present time, it is necessary to account these discrepancies.

SUMMARY

The mechanism of the calcium effect on selective cation uptake by
excised barley roots was investigated with three metabolic inhibitors.
The inhibitors used in this study were cyanide, DNP and ouabain.

1) The rates of rubidium and sodium uptake decreased in the
presence of 1.0 mM of cyanide. Calcium chloride increased the rubidium
uptake in the absence of cyanide, but this stimulating effect of calcium on
rubidium uptake was not observed in the presence of 1.0 mM of cyanide.

2) The rate of rubidium uptake decreased with an increasing con-
centration of DNP. When the rubidium uptake was slightly reduced,
the stimulating effect of calcium on rubidium uptake was clear, whereas
the calcium effect was abolished when the rubidium uptake was mark-
edly depressed. The sodium uptake also decreased in the presence of
DNP.

The results suggest that the calcium effect on selective monovalent
cation uptake is closely related to the energy supply.
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3) The rates of rubidium and sodium uptake were not influenced

significantly by the addition of ouabain up to 1.0 mM; the stimulating
effect of calcium on the rubidium uptake did not change regardless of
the addition of ouabain.
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