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Pairing–based cryptosystems are well implemented with Ate–type pairing over Barreto–Naehrig (BN)
curve. Then, for instance, their securities depend on the difficulty of Discrete Logarithm Problem (DLP)
on the so–denoted G3 over BN curve. This paper, in order to faster solve the DLP, first proposes to
utilize Gauss period Normal Basis (GNB) for Pollard’s rho method, and then considers to accelerate the
solving by an adoption of lazy random walk, namely tag tracing technique proposed by Cheon et al.

1 Introduction

After year 2000, pairing–based cryptosystems have
been contrived such as ID–based encryption [1, 2], group
signature [3], and timed–release encryption [4]. Pair-
ing is defined as a bilinear map from an additive group
or 2 additive groups over elliptic curve to a multiplica-
tive group in finite field. The securities of pairing–based
cryptosystems depend on the difficulties of Discrete Log-
arithm Problem (DLP) on a certain multiplicative group
in finite field, and Elliptic Curve DLP (ECDLP) on (a)
certain additive group(s) over elliptic curve. Several
kinds of elliptic curves to make these difficulties opti-
mal have been proposed, and are called pairing–friendly
curves [5]. Among them, Barreto–Naehrig (BN) curve
[6], which this paper focuses on, is known as one of the
elliptic curves which will provide the optimal difficulties
of both DLP and ECDLP after year 2030 [7], that is,
which will reasonably achieve the 128–bit security [5].

As fast pairings over BN curve, the improved Ate
pairings [8] such as R–ate [9], optimal Ate [10], and
Xate [11] pairings have been contrived. These Ate–type
pairings are bilinear maps from the Cartesian product
of the so–denoted G1 and G2, which are 2 certain cyclic
additive subgroups over elliptic curve, to the so–denoted
G3, which is a certain cyclic multiplicative subgroup in
finite field. The securities of the cryptosystems based on
Ate–type pairing depend on the difficulties of both the
ECDLPs on G1 and G2, and the DLP on G3. Thus, for
any adoption of Ate–type pairing, it is one of the most
important to explore the possibilities of solving these
ECDLPs and DLP.
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As approaches to solve DLP and ECDLP, for exam-
ple, most researchers adopt Pollard’s rho method [12]
and its varieties. Let a group G be an attack target
for solving DLP or ECDLP. This rho method needs the
procedure called random walk, which iterates to ran-
domly generate elements in G until a newly generated
element in G corresponds to one of the previously gener-
ated elements. The corresponding element is called the
self–collision element. The number of the iterations re-
quired to solve a DLP or ECDLP is stochastically given
[13], and it can be reduced by applying automorphism
technique [14]. Thus, the authors have already demon-
strated a possibility to solve the ECDLP on G2 with
the rho method applied the automorphism technique,
namely the so–called skew–Frobenius map [15]. This pa-
per explores a possibility to solve the DLP on G3 with
the rho method.

Since G3 over BN curve is the multiplicative sub-
group in a certain extension filed, the random walk
mainly consists of multiplication in the extension field.
Additionally, as an automorphism available for the rho
method, the extension field has the so–called Frnobenius
map. Thus, in the case of using the rho method, the
calculation times of both multiplication and Frobenius
mapping become very important. Note that the solvers
need not to use the extension field adopted as G3 in
the actual cryptosystems. By applying basis conversion
technique [16], they can select an extension field conve-
nient for solving the DLP on G3. Thus, this paper fo-
cuses on the extension field constructed by Gauss period
Normal Basis (GNB) [17] which achieves fast multipli-
cation and needs no arithmetic operations for Frobenius
mapping. And, this paper first clarifies the computation
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times of solving a DLP on G3 when adopting the exten-
sion field.

On the other hand, as an acceleration technique of
the rho method to solve DLP on finite fields, Cheon
et al. have proposed tag tracing technique [18]. This
technique allows the random walk to skip several steps
by predicting the originally generated elements. In other
words, the random walk seems to be lazy. This paper
optimizes this technique for solving the DLP on G3,
and shows that the optimized technique is more superior
than the automorphism technique.

Notation : Zr denotes a finite integer ring with an
order r, Fp denotes a prime field with a characteristic p,
Fpm denotes an m–th degree extension field over Fp F∗

pm

denotes the multiplicative group in Fpm , and E(Fpm)
denotes an elliptic curve additive group over Fpm . For 2
positive integers m and n, m | n means that m divides
n, m - n means that m does not divide n, and m ‖ n
means that m divides n only once.

2 Attack Target and Method

This paper tries to attack the output of Ate–type
pairing over Barreto–Naehrig (BN) curve, namely the
so–denoted G3. Concretely, the Discrete Logarithm Pro-
blem (DLP) on G3 aspires to be solved with Pollard’s
rho method. Therefore, this section introduces the at-
tack target G3, Pollard’s rho method, and its accelera-
tion technique.

2.1 G3 of Ate–type Pairing over BN Curve

Ate–type pairing [8, 9, 10, 11] is a class of bilinear
and negligible map. Let it be given by the following α,

α : G2 × G1 → G3 = F∗
pk/(F∗

pk)r, (1a)
G1 = {E(Fpk)/[r]E(Fpk)} ∩ Ker(φ − [1]), (1b)
G2 = {E(Fpk)/[r]E(Fpk)} ∩ Ker(φ − [p]), (1c)

where “Ker” and φ respectively denote the kernel of
a homomorphism and the Frobenius map. Additionally,
the above k is the smallest positive integer such that
r|(pk − 1), and is called embedding degree.

BN curve [6] is a class of ordinary pairing–friendly
curves with embedding degree k = 12. In the case of
BN curve, the p and r of Eq. (1) are given by

p(χ) = 36χ4 + 36χ3 + 24χ2 + 6χ + 1, (2a)

r(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ + 1, (2b)

where χ is a positive or negative integer such that p(χ)
becomes a prime number. In order to achieve the 128–
bit security for Ate–type pairing over BN curve, the
p and r of Eq. (2) must be assigned 256–bit prime
numbers.

As the above, the attack target G3 is a certain cyclic
subgroup with the order r in Fpk(=12) .

2.2 Pollard’s Rho Method with Automorphism

This paper considers how to solve an DLP on G3

over BN curve with Pollard’s rho method, that is, how
to derive a exponent c in Zr from X and Y (= Xc) in
G3 by using Alg. 1. The procedure of iterations from
Step 8 to 11 is the random walk. The number of the
iterations is given by average

√
πr/2 [13].

For this rho method, the acceleration technique with
equivalence classes derived by an automorphism [14]
can be applied. In the case of G3 over BN curve, for
any element W in G3, there exists the Frobenius map
W ∈ G3 7→ W p ∈ G3 as an efficient automorphism, and
the conjugate set {W,W p,W p2

, . . . ,W pk−1=11} is con-
sidered as an equivalence class. Thus, the rho method
can be improved by canonically deciding a unique repre-
sentative for each equivalence class. The improvement
is achieved by adopting Alg. 2 to Alg. 1. Then, the
number of the iterations can be theoretically reduced
to

√
πr/24 [14]; however, every representative decision

shown in Alg. 2 must be efficiently performed. Addi-
tionally, this automorphism technique occurs that the
random walk gets trapped into fruitless cycles. Thus,
in order to break away from the trap, for example, the
countermeasure as introduced in [20] must adapt.

Algorithm 1: Solving with Pollard’s rho method [12, 19]

Input: X,Y ( = Xc) ∈ G3.
Output: c ∈ Zr.

for i = 0 to T − 1 do1

assign random elements in Zr to ai, bi.2

Wi ← Xai ·Y bi .3

assign random elements in Zr to aT , bT .4

WT ← XaT · Y bT .5

for i = T + 1 to r − 1 do6

f ← η(Wi−1).7

ai ← ai−1+af , bi ← bi−1+bf , Wi ← Wi−1 · Wf .8

if Wi = Wj (0 ≤ j < i) then go to Step 12.11

c ← −(ai − aj)/(bi − bj).12

† η denotes a hash function. For example, let w denote the 1–st
element of W ∈ G3, then it is given by η(W ) = w mod n.

Algorithm 2: Representative decision

decide the representative W pj

i from the9

equivalence class {Wi,W
p
i ,W

p2

i , . . . ,W pk−1=11

i }.
ai ← pjai, bi ← pjbi, Wi ← W pj

i .10

3 Extension Field Efficient for Attack

As introduced in Sec. 2.2, in order to more effi-
ciently perform the rho method with the Frobenius map,
the Fronibeus mapping in G3 must be fast carried out.
Thus, as how to construct an extension field such that
the Frobenius mapping requires no arithmetic opera-
tions, this section introduces Gauss period Normal Ba-
sis (GNB). Additionally, as shown in Alg. 1, the main
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operation in every random walk is a multiplication in
G3. Thus, this section also introduces some fast multi-
plication algorithms.

3.1 Extension Field Constructed by GNB

GNB [17] requires not only a characteristic p and an
extension degree m but also a positive integer h which
satisfies the following conditions.

Condition 1 (The parameter h of GNB)

1. n=hm+1 is a prime number not equal to p.

2. gcd (hm/e,m)=1, where e is the order of p in Fn.

Here, let d and β respectively denote any primitive h–th
power root of unity in Fn and any primitive n–th power
root of unity in Fpe , and then GNB is defined as follows.

Definition 1 The conjugate set provided by the follow-
ing γ forms normal basis in Fpm .

{γ, γp, · · · , γpm−1
}, γ =

h−1∑
l=0

βdl

(3)

This paper calls this normal basis type–〈h,m〉 GNB. ¤

Because type–〈h,m〉 GNB can be prepared whenever
4p - m(p− 1) [17], it is available in Fpm for every pair of
characteristic p and extension degree m when p > m.

Since type–〈h,m〉 GNB is normal basis, a Frobenius
mapping in the extension field constructed by this basis
requires no arithmetic operations. Concretely, a Frobe-
nius mapping can be performed with only a cyclic shift
as follows.

C =
m−1∑
i=0

ciγ
pi

∈ Fpm , ci ∈ Fp

7→ Cp =
m−1∑
i=0

c(i−1) mod mγpi

∈ Fpm . (4)

On the other hand, generally, a multiplication in
the extension field constructed by type–〈h,m〉 GNB re-
quires more additions as the parameter h becomes larger.
Thus, in order to more efficiently perform the multipli-
cation, the parameter h should be as small as possible.
Moreover, it is the most desirable that h = 1 or h = 2
because the multiplication in the extension field con-
structed by type–〈h=1,m〉 or type–〈h=2, m〉 GNB are
the most efficient. Actually, type–〈h=1,m〉 and type–
〈h=2,m〉 GNBs are respectively called type–I and type–
II Optimal Normal Bases (ONBs).

When type–〈h,m〉 GNB is applied to construct the
G3 convenient for solving the DLP, the following exten-
sion fields can be considered.

1. The Fp12 constructed by type–〈h12,m=12〉 GNB

2. The F(p3)4 towering with type–〈h4, m=4〉 over Fp3

constructed by type–〈h3,m=3〉 GNB

3. The F(p4)3 towering with type–〈h3,m=3〉 over Fp4

constructed by type–〈h4,m=4〉 GNB

Below, this section introduces some multiplication algo-
rithms available for these extension fields, and discusses
the calculation costs of a multiplication.

3.2 Lazy Reduction

Before some multiplication algorithm in extension
field are introduced, this subsection introduces lazy re-
duction technique [21, 22] which is an acceleration tech-
nique of arithmetic operations in extension field .

A multiplication in Fpm requires some multiplica-
tion in Fp, and thus generally requires some reductions
modulo p as many as the multiplications in Fp. The
calculation cost of a reduction modulo p is not small
but rather very heavy. In the case of lazy reduction
technique, the every multiplication in Fp necessary for
a multiplication in Fpm is repraced an integer multiplica-
tion, and reductions modulo p are performed only in the
last of the multiplication in Fpm . Then, the originally
necessary additions in Fp are replaced to integer addi-
tion with double precision, where double precision means
(dlog2 pe×2)–bit. By applying lazy reduction technique
in the same way as Aranha et al.’s implementation [22],
the number of reductions modulo p which are neces-
sary for a multiplication in Fp12 , F(p3)4 or F(p4)3 can be
reduced to 12. As the above, a multiplication in Fpm

becomes to require some integer addition with double
precision; however, it can be accelerated since many re-
ductions modulo p can be deleted. This paper supposes
that lazy reduction technique is applied for multiplica-
tion algorithms in extension field.

Below, M̃1, A1, Ã1, and R1 respectively denote the
calculation costs of an integer multiplication, an addi-
tion in Fp (an integer addition with single precision), an
integer addition with double precision, a reduction mod-
ulo p. Note that this paper supposes that the calculation
costs of a subtraction in Fp and an integer subtraction
with double precision are respectively given by A1 and
Ã1. In this paper, the calculation costs are given by the
above notations.

3.3 Cyclic Vector Multiplication Algorithm

As an efficient multiplication algorithm in the exten-
sion field constructed by type–〈h,m〉 GNB, the authors
have proposed type–〈h, m〉 Cyclic Vector Multiplication
Algorithm (CVMA) [23]. Type–〈h,m〉 CVMA is illus-
trated in Alg. 3. With type–〈h,m〉 CVMA, the calcu-
lation cost of a multiplication Mm is given by

Mm =
{
m(m + 1)/2

}
M1 +

{
m(m−1)

}
A1

+

{{
(hm+2)(m−1)/2

}
Ã1+H̃1 (h: odd){

hm(m−1)/2
}
Ã1 (h: even)

, (5)

where H̃1 denotes the calculation cost of an integer mul-
tiplication by the integer h with double precision.
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Algorithm 3: Type–〈h, m〉 CVMA [23]

Input: X =
m−1∑
i=0

xiγ
pi

, Y =
m−1∑
i=0

yiγ
pi

, xi, yi ∈ Fp.

Output: Z = X · Y =
m−1∑
i=0

ziγ
pi

, zi ∈ Fp.

Precomputation steps:
get an h–th power root d of unity in Fn.1

ε[0] ← m.2

for i = 0 to m − 1 do3

for l = 0 to h − 1 do ε
[〈〈

pidl
〉〉]

← i.4

for i = 0 to m − 2 do5

for j = i + 1 to m − 1 do6

for l = 0 to h − 1 do7

λ[i, j, l] ← ε
[〈〈

pi + pjdl
〉〉]

.8

Main calculation steps:
for i = 0 to m do vi ← 0.9

for i = 0 to m − 2 do10

for j = i + 1 to m − 1 do11

u ← (xi − xj)(yi − yj).12

for l = 0 to h − 1 do13

vλ[i,j,l] ← vλ[i,j,l] + u.14

if h is odd then15

w ← hvm.16

for i = 0 to m − 1 do zi ← −xiyi − vi + w.17

else for i = 0 to m − 1 do zi ← −xiyi − vi.18

3.4 Karatsuba’s Multiplication Algorithm

Since the γ of type–〈h=1,m〉 GNB shown in Eq. (3)
satisfy that γm+1 = 1, this basis forms not only normal
basis but also pseudo plynomial basis as follows.

{γ, γp, · · · , γpm−1
} = {γ, γ2, · · · , γm}. (6)

Thus, Karatsuba’s multiplication algorithm [25] can be
applied for the extension field constructed by type–〈h=
1, m〉 GNB. Below, this subsection shows Karatsuba’s
multiplication in the Fp12 constructed by type–〈h12 =1,
m=12〉 GNB, and that in the Fp4 constructed by type–
〈h4 =1, m=4〉 GNB. On the other hand, according to
Cond. 1, this subsection does not discuss about the Fp3

since there exists no type–〈h3 =1,m=3〉 GNB.

The case of the Fp12 : Let 2 elements X and Y in
Fp12 be represented by pseudo polynomial basis as

X = (x0 + x1γ
6)γ, Y = (y0 + y1γ

6)γ, (7a)

xi = xi,0 + xi,1γ
3, yi = yi,0 + yi,1γ

3, (7b)

xi,j = xi,j,0 + xi,j,1γ + xi,j,2γ
2, xi,j,l ∈ Fp,

yi,j = yi,j,0 + yi,j,1γ + yi,j,2γ
2, yi,j,l ∈ Fp. (7c)

Then, the polynomial product Z = X ·Y is obtained as

Z = u0γ
2 + u1γ

8 + u2γ
14, u0 = x0 ·y0, u2 = x1 ·y1,

u1 = (x0 − x1)(y1 − y0) + u0 + u2. (8)

According to Eq. (8), the polynomial product requires
3 multiplications of sextic polynomial whose coefficients
are single precision integers, 2 additions of sextic poly-
nomial whose coefficients are elements in Fp, and 2 ad-
ditions of eleventh degree polynomial whose coefficients
are double precision integers. Below, this subsection
shows only the polynomial product u0 = x0 · y0.

u0 = u0,0 + u0,1γ
3 + u0,2γ

6,

u0,0 = x0,0 ·y0,0, u0,2 = x0,1 ·y0,1,

u0,1 = (x0,0 − x0,1)(y0,1 − y0,0) + u0,0 + u0,2. (9)

According to Eq. (9), the polynomial product requires
3 multiplications of cubic polynomial whose coefficients
are single precision integers, 2 additions of cubic polyno-
mial whose coefficients are elements in Fp, and 2 addi-
tions of quintic polynomial whose coefficients are double
precision integers. Below, this subsection shows only the
polynomial product u0,0 = x0,0 · y0,0.

u0,0 = u0,0,0+u0,0,1γ+u0,0,2γ
2+u0,0,3γ

3+u0,0,4γ
4,

u0,0,0 = x0,0,0 ·y0,0,0, u0,0,4 = x0,0,2 ·y0,0,2,

v0 = x0,0,1 ·y0,0,1, v1 = u0,0,0 + v0,

u0,0,1 = (x0,0,0−x0,0,1)(y0,0,1−y0,0,0)+v0,

u0,0,2 = (x0,0,0−x0,0,2)(y0,0,2−y0,0,0)+v0+u0,0,4,

u0,0,3 = (x0,0,1−x0,0,2)(y0,0,2−y0,0,1)+v1+u0,0,4. (10)

According to Eq. (10), the polynomial product requires
6 integer multiplications, 6 additions in Fp, and 6 integer
additions with double precision Therefore, the polyno-
mial product Z = X · Y of Eq. (8) is finally given by

Z = u0γ
2 + u1γ

8 + u2γ
14 =

24∑
i=2

ziγ
i

= (z14−z13)γ +
11∑

i=2

(zi+zi+13−z13)γi + (z12−z13)γ12,(
∵ γm+1=13 = 1,

m=12∑
i=1

γi = −1
)

, (11)

where each zi is a double precision integer. According to
Eq. (11), the polynomial product additionally requires
22 integer multiplications with double precision. Last,
by performing a reduction modulo p for every coefficient
zi of Z in Eq. (11), the product Z = X · Y in Fp12 can
be obtained.

The case of the Fp4 : Let 2 elements X and Y in
Fp4 be represented by pseudo polynomial basis as

X =
m−1=3∑

i=0

xiγ
i+1, Y =

m−1=3∑
i=0

yiγ
i+1, xi, yi ∈ Fp. (12)
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Then, the product Z = X · Y in Fp4 is obtained as

Z =
m−1=3∑

i=0

(vi−v4)γi+1,
x0,2 = x0−x2, y0,2 = y2−y0,

x1,3 = x1−x3, y1,3 = y3−y1,

u0 = x0 ·y0, u1 = x1 ·y1, u2 = x2 ·y2, u3 = x3 ·y3,

u4 = (x0 − x1)(y1 − y0), u5 = (x2 − x3)(y3 − y2),
u6 = u1 + u3, u7 = x1,3 ·y1,3 + u6, v0 = u2 + u7,

u8 = u0 + u2, u9 = x0,2 ·y0,2 + u8, v3 = u1 + u9

v4 = (x0,2 − x1,3)(y1,3 − y0,2) + u4 + u5 + u7 + u9,

v1 = u3 + u5 + u8, v2 = u0 + u4 + u6. (13)

This calculation cost is 9M̃1 + 10A1 + 18Ã1 + 4R1.

3.5 Calculation Cost of Multiplication

Table 2 shows the calculation costs of a multiplica-
tion in the Fp12 constructed by type–〈h12,m=12〉 GNB,
and the F(p3)4 and F(p4)3 constructed by type–〈h3,m=3〉
and type–〈h4,m=4〉 GNBs. Note that this paper sup-
poses that h3 =2, h4 =1, h12 =1. Actually, these costs
are comparable to those in Optimal Extension Field
(OEF) [24, 25], which is often applied for the remarkable
implementations of Ate–type pairing [22, 28]. Accord-
ing to Table 2, the implementations with Karatsuba’s
multiplication is faster than that with type–〈h,m〉 CMVA.
Thus, in what follows, this paper considers to adopt
Karatsuba’s multiplication.

In order to perform a multiplication in G3 by the cal-
culation costs shown in Table 2, there must exist type–
〈h12 =1,m=12〉 GNB, or both type–〈h3 =2,m=3〉 and
type–〈h4 =1,m=4〉 GNBs. Type–〈h=1,m〉 and type–
〈h=2,m〉 GNBs, namely type–I and type–II ONBs, ex-
ist only when the following conditions are satisfied.

Condition 2 (Type–I ONB [26])

1. n=m+1 is a prime number not equal to p.

2. The order of p in Fr is m.

Condition 3 (Type–II ONB [27])

1. n=2m+1 is a prime number not equal to p.

2. The order of p in Fr is 2m, or the order of p in Fr

is m and 2 - m.

Here, suppose that χ is assigned with a random inte-
ger. Then, according to Table 3, 4, 5, the theoretical
probability to perform a multiplication by the calcula-
tion cost shown in Table 2 is about 81%. However, in
order to make the security of the pairing–based cryp-
tosystems maximum, it is desirable that the order r is
a prime number. By considering to add this condition,
the theoretical probability is reduced to about 60%.

4 Acceleration of Attack

In order to accelerate the rho method as Alg. 1, 2,
the authors notes that the parameter required by the
hash function η in Alg. 1 is only the 1–st element of an

element in G3. Thus, the author considers that the rho
method is improved to one which continues to compute
only the 1–st element of the originally generated element
in G3.

For instance, consider when G3 is the Fp12 constructed
by type–〈h12 =1,m=12〉 GNB. Let X, Y , and Z = X·Y
in Fp12 be represented by pseudo polynomial basis as

X =
m−1=12∑

i=0

xiγ
i+1, Y =

m−1=12∑
i=0

yiγ
i+1, Z =

m−1=12∑
i=0

ziγ
i+1,

xi, yi, zi ∈ Fp. (14)

Then, the 1–st element in the product Z is obtained as

z0 = u0,11 + u1,10 + u2,9 + u3,8 + u4,7 + u5,6

− u1,11 − u2,10 − u3,9 − u4,8 − u5,7 − x0y0,

ui,j = (xi − xj)(yi − yj), (15)

where each difference (yi − yj) can be precomputed.
Then, this calculation cost is given by 12M̃1 +22A1 +
11Ã1+R1.

Here, let µ the function such that µ(X,Y ) = z0,
then a DLP on G3 can be solved by using Alg. 4. This
algorithm iterates to compute the 1–st elements of the
originally generated element in G3 N times, and then it
completely computes the element in G3 after N steps.
Actually, the above technique is called tag tracing tech-
nique [18], and this paper especially calls this walk lazy
random walk. Note that this technique needs to pre-
compute T+1HN (= T+NCN ) elements in G3 (namely
all VS ’s in G3) and to store the precomputed elements
in the memory. Additionally, the acceleration technique
with automorphism such as Frobenius map is not con-
currently available for it. Here, suppose that the cal-
culation costs of a multiplication and an addition in Zr

are respectively given by M̃1 + R1 and A1. Then, the
computation time of solving a DLP on G3 with each
acceleration technique is shown in Table 6.

5 Experimentation

The authors experimented 128 DLPs in G3 with 62–
bit prime numbers p and r, for which the computational
environment shown in Table 1 is used. In this experi-
mentation, Montgomery reduction [29] was applied for
reductions modulo p. Table 6 shows the computation
times of solving a DLP on G3. According to Table
6, compared to the automorphism technique, the pro-
posed technique can be reduced the computation time
by about 38% without occurrences of the fruitless cycles.
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Algorithm 4: Solving with the rho method applied the
tag tracing technique [18] optimized for the DLP on G3

Input: X,Y (= Xc) ∈ G3.
Output: c ∈ Zr.

for i = 0 to T − 1 do1

assign random elements in Zr to ai, bi.2

Wi ← Xai ·Y bi , wi ← ν(Wi).3

WT ← 1.4

calculate VS for every S.5

assign random elements in Zr to aT , bT .6

W ← XaT · Y bT , wT ← ν(W ).7

for i = T + 1 to r − 1 do8

i ← i − 1, S ← {T, T, . . . , T}.9

for l = 0 to N − 1 do10

i ← i + 1, f ← wi−1 (mod T ).11

ai ← ai−1 + af , bi ← bi−1 + bf .12

S ← S − {T} + {f}.13

if i < N − 1 then wi ← µ(W,VS).14

else W ← W ·VS , wi ← ν(W ).15

if wi =wj (0≤j <i) then go to Step 17.16

c ← −(ai − aj)/(bi − bj).17

† S denotes a repeated combination such that S = {s0, s1, . . . ,
sN−1} (0 ≤ si ≤ T, si ≤ si+1). Additionally, VS denotes VS

=
QN−1

i=0 Wsi .
‡ ν denotes the function such that ν(W ) = w for w ∈ Fp which

is the 1–st element of W ∈ G3.

Table 1: The computational environment

CPU Intel Core i3–540 3.06 GHz
(Only 1 core was used.)

Main memory DDR3 PC3–10600 2.0 GB × 4
OS Windows 7 Professional

Language C
Compiler GCC 4.6.2 (64–bit)

Compile Option –O2

6 Conclusion

This paper demonstrated the efficiencies of the rho
method with the automorphism technique and that with
the tag tracing technique for solving DLP on G3 over
BN curve. Additionally, it was shown by an experimen-
tation that the proposed is certainly effective.
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Table 2: The calculation cost of a multiplication in G3

Adopted Extension Field Fp12 F(p3)4 F(p4)3

Multiplication Algorithm CVMA Karatsuba CVMA Karatsuba‡ CVMA Karatsuba‡

Calculation Cost † (78, 132, 77) (54, 84, 150) (60, 96, 87) (54, 84, 108) (60, 96, 78) (54, 84, 132)

† (i, j, l) denotes iM̃1 + jA1 + lÃ1 + 12R1. ‡ Type–〈h=2, m=3〉 CVMA is adopted for each cubic extension part.

Table 3: Existence of type–〈h=1,m=12〉 GNB

χ (mod n) 0 1 2 3 4 5 6 7 8 9 10 11 12

p (mod n) 1 12 11 2 8 6 5 7 7 6 11 9 6

r (mod n) 1 6 0 0 3 12 10 12 0 1 9 11 0

Existence No No Yes Yes No Yes No Yes Yes Yes Yes No Yes
(Security∗) (Low) (High) (High) (High) (Low) (High) (High) (Low)

Table 4: Existence of type–〈h=1,m=4〉 GNB

χ (mod n) 0 1 2 3 4

p (mod n) 1 3 3 3 4

r (mod n) 1 2 4 4 3

Existence No Yes Yes Yes No
(Security∗) (High) (High) (High)

Table 5: Existence of type–〈h=2, m=3〉 GNB

χ (mod n) 0 1 2 3 4 5 6

p (mod n) 1 5 0 0 1 2 5

r (mod n) 1 6 4 2 3 6 6

Existence No Yes No Yes Yes
(Security∗) (High) (High) (High)

∗ When n | r (when r is certainly a composite number), this paper evaluates the security as “Low”–level one.

When n - r, this paper evaluates the security as “High”–level one.

Table 6: The computation cost and the number of iterations of random walk

With automorphism With tag tracing

The comput- With Fp12 56M̃1+86A1+150Ã1+14R1 (14+42/N)M̃1+(24+62/N)A1+(11+139/N)Ã1+(3+11/N)R1

ation cost With F
p(p3)4 56M̃1+86A1+108Ã1+14R1 (14+42/N)M̃1+(34+50/N)A1+(11+97/N)Ã1+(3+11/N)R1

The number of iterations average
p

πr/24 average
p

πr/2

Table 7: The experimental result when adopting the Fp(p3)4 as G3

With automorphism With tag tracing

The parameters T = 1024 T = 5, N = 7

The number of iterations average 6.1 × 107 average 15.5 × 107

The computation time average 12 min. 11 sec. average 7 min. 33 sec.
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