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Studies on Covariance Selection Models :

Stepwise Procedure and Local Influence
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Analysis of covariance selection models is a useful multivariate method to analyze the co-
variance structure of a multivariate normal distribution. It is used to reveal cause-and-effect
relationships. In the present paper we review the theory and study numerically how the
stepwise procedure of covariance selection works in actual data analysis. Then we try to
develop a method of influence analysis in covariance selection, and show a numerical example
to illustrate the usefulness of the method of influence analysis.
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1. INTRODUCTION

Graphical gaussian model or covariance selec-
tion model is originally proposed by Dempster (19
72) as a means of parameter reduction when the
covariance structure of multivariate normal distri-
bution is to be estimated. This method is charac-
terized by specified variable pairs that have zero
partial correlations, and the result of analysis is
often expressed by a linear graph which consists of
nodes and arcs. In this sense the analysis of co-
variance selection models is known as a member of
the family of graphical modeling, which has been
highlighted as a set of recently developed multi-
variate techniques to analyze cause-and-effect re-
lationships in complex phenomena. This analysis
seems interesting and effective in revealing causal
relationships. It may be sensitive to outlying ob-
servations, however, like other multivariate meth-
ods such as principal component analysis and fac-
tor analysis. So it will be valuable to develop a
method of influence analysis. In the present pa-
per we first review the theory of covariance selec-
tion models and study numerically how a stepwise
procedure of selecting partial correlations works
in actual data analysis. Then we try to develop a
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method for assessing local influence in the analy-
sis and show a numerical example to illustrate the
usefulness of the method.

2. ANALYSIS OF COVARIANCE SELEC-
TION MODELS

Suppose we have observations {g;,i = 1,-:-,n},
each of which follows independently a p-variate
normal distribution N(u,X). A covariance selec-
tion model or graphical gaussian model is defined
by specifying that some elements of inverse covari-
ance matrix & = £ = (¢;;) are zero, i.e.,

¢ij =0 for ('l,]) € I,

where I indicates a subset of index pairs of 2 =
{(4,4), 4,5 = 1,---,p, © < j}. The remaining ele-
ments ¢;; for (¢, j) € J, are not specified, where J
indicates the compliment of I in the whole set. It
is known that ¢;; = 0 is equivalent to the fact that
the partial correlation between variables ¢ and j is
zero.

Parameters ¢;;, (i,7) € J can be estimated by
maximizing the profile log-likelihood function

1(®,5) = glogltb] - %tr(@S),
where ® contains unknown parameters ¢;;, (4, j) €

J and zeros in the remaining elements. The max-
imum likelihood estimate ?1 satisfies
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¢, indicating a vector of ¢;; for (i,5) € J. Here
Ei; is a p x p matrix which has 1's as the (i, j)-
th and (j.7)-th elements and 0’s as the other el-
ements, and ¢V (= aij)is the (i,j)-th element of
®-!_ An iterative algorithm is given by Wermuth
and Scheidt(1977) for computing ¢, inaty pical
covariance selection model, where sev eral elements
of ® are forced to zero. They use 'INVEST opera-
tor’, which gives the closed form of the maximum
likelihood estimate for the inverse covariance ma-
trix with one zero element. For several zero ele-
ments the INVEST-operator is applied to each of
the prespecified or selected variable pairs in turn
repeatedly. The cycling ends when all these ele-
ments are close enough to zero. Based on the stan-
dard theory of maximum likelihood estimation a
consistent estimate 17; for the asymptotic covari-
ance matrix acov(él) can be obtained by inverting
the Hessian matrix of —{ with respect to 91’ ie.,

—1 62[ -1
Vie = |- =
11 [ 11] [ a¢ 6(]5 ]¢ ¢2—0

where the elements of the Hessian matrix are given
by

0?1 n o® o®
= |-t )
6¢,-j6¢>k, 2 T( 8¢kl 8¢ij

= -—%tr(é_lEkl(bAlEij)v (2)

for (i,37),(k,1) € J.

The above discussions can be applied to the
case where there is no constraint on partial cor-
relations, except that ordinary procedure of max-
imum likelihood estimation is used instead of the
iterative application of the INVEST- operator

Now let ¢, be partitioned to ¢, = (¢>) ,QS )T
and suppose we are interested in qb Then i 1t is

well known that the maximum likelihood ejitlm]ate
0, is given from partitioned vector o =(9,.9, )T
and a consistent estimate 15, for the asy mptotlc
covariance matrix aco,u(&),)) is given by the corre-
sponding part of 17, or more precisely,

Vo =[] = [f = Balilie]

The goodness of fit of the assumed model is
measured with the so-called deviance

G = —nlog|S| - nlog|®|, (3)

where G is compared with the upper « point of
a chi-squared distribution with f degrees of free-
dom, f indicating the number of partial correla-
tions forced to zero, and the significance of each
element ¢;; assuming model A/ can be tested by
comparing the difference of the deviances of model
A and model M N (H : ¢;; = 0) with the upper a
point of a chi-squared distribution with one degree
of freedom.

3. COOK’S LOCAL INFLUENCE

In this section we develop a method of influence
analysis in covariance selection models based on
the idea of Cook(1986). As perturbation schemes
we consider the following two types of case-weight
perturbations.

Typel : z; ~ N(p,w;'S).

Type2 : z; ~ N(p, [nw;/}; w;]HE).

Introducing perturbations from w, = (1,---,1)7
(unperturbed) to w = (wy,---,w,)T (perturbed),
in particular, to a certain direction d as w = w, +
td, ||d]| = 1, we search for influential directions in
the sense that the likelihood displacement. defined
by

D(w) = 2[l(1]we) — Uorwlwo)],

changes most as t varies slightly from zero, where
[ indicates the maximum likelihood estimate af-
ter the perturbation. The normal curvature along
d of the influence graph (w, D(w)) is given by

-~ T ~

Y . 1[0

T = sk
d [8_@}] [—l”] [@ﬂ 4

“ T -
= 9 dT 891 ‘7—1 891
= | owT [ owT

[\~

Cqs =
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and the influential directions are obtained as the
eigenvectors associated with dominant eigenvalues
of the eigenproblem

~ T
{2[%] V7t [%]—Al}d 0. (4)

Suppose that the parameter vector Qlis par-

titioned as ¢, = (%T,%T )T and also that we are
interested in only ¢, in @, Then the normal cur-
vature of the profile likelihood displacement

D(w) = 2[l(d2, $slwo) — Udzw, $3(d2w)|wp)]

is given by
~ aT R
9% . [ d
Ca(w) = 2|d7 I}éﬁl [—122-3] [3&_;] d

d¢ 0,
= 2 dT |:6—Z%:| V22 I:awT] d ’

where @3(¢2,,) indicates the function which max-
imize ! for fixed ¢3,,. Thus the influential direc-
tions are obtained as the eigenvectors associated
with dominant eigenvalues of the eigenproblem

- T
d 1o}
{2[%] Vas aq AI}4=Q. (5)

The partial derivative 8¢, /8wT can be derived
by expanding 0l{(¢1w, Sw|w)/0¢1 in w around w,
assuming that the log-likelihood function I(¢, lw)
T)T.

is twice continuously differentiable in (gf, w

0, [ o 17 o | os 6
ow’ — |4,9¢; |, |09,067 | OwT

where s = vech(S), both of 6¢ /OwT and 8s/0wT
being evaluated at w, Dlﬁerentlate both sides of
(1) in s,

&1 o, igi GREd D
a¢ij88ij n’ l J’ z’] ?

82l ..
m 0, (i,5) # (k,1), (8)

and, as shown by Tanaka and Zhang(1999), the
elements of partial derivative 8s/0w7 are given as
the elements of

0S8

o = nHz, —2)(z, — )T 9)

for the type 1 case-weight perturbation, and

oS

Owqa

=n""{(z,

-z —a—i)T_S} (10)

for the type 2 case-weight perturbation. Note that
for the type 2 perturbation 8S/0w, is just n~!
times the ordinary empirical influence function of
the sample covariance matrix, and it can also be
verified that the similar relation holds between

04, /0ws and the empirical influence function of

¢ In this sense we call partial derivatives of pa-
rameters with respect to w, by the name of influ-
ence functions in a broad sense.

4. INFLUENCE ANALYSIS BASED ON
INFLUENCE FUNCTIONS

A So far we have obtained the influence function
0¢, [Owa. It can be easily verified that the ap-
proximate relation

él(A) = ¢

Z Bwa

holds, where A indicates a subset of observations,
¢,(A) the estimate based on the sample without
the observations belonging to A, and ¢ a constant.
Making use of this additivity relation a general
procedure has been proposed for influence analysis
based on influence functions as below (see, Tanaka,
1994; Tanaka and Zhang, 1999).

Step 1. Compute the influence functions 6¢ JOw,,
a = 1,--- n, using eq.(6) with eqs. (2) (7),
(8) and (9) or (10).
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Step 2. For single-case diagnostics compute Cook’s

D defined by

Dy = [aél/BwQ]TVﬁl (08, /0w,
or

D = [08,/0u.] viz! [03,/0u.)

for each observation after computing the sec-
ond partial derivatives 821/0¢;;0¢x using
eq.(2). Regard the observations with large
values of D as singly influential observations.

Step 3. For multiple-case diagnostics apply PCA
with metric V7 or Vi;' to the data set of
{69}1 /Owq} or {08,/0we}, and draw scatter
plot of the PC scores. Then search for ob-
servations which are located far from and on
similar directions from the origin, and regard
them as candidates for influential subsets of
observations. The reason why we introduce
metric V™! is to take into account the co-
variances among variables. The PCA with
metric V;7* or V,5' of the influence functions
{8@1 /Owq } or {6&2 /0wy } are formulated by

0% 1 [947
{% [_B-Z}r—} [%:I —/\'Vu}Q:Qa (11)

or a similar eigenproblem for ¢_.

As discussed by Tanaka and Zhang(1999) there
is a close relationship between two eigenproblems
(4) and (11). It can be confirmed that these two
eigenproblems are equivalent and there exist rela-
tions

~T
o
A=2n)\, VaNd= —?—lg_,
ow

between the eigenvalues and eigenvectors of (4)
and (11). Therefore we can obtain the influential
directions in the sense of Cook’s local influence in
the above general procedure described in terms of
influence functions.

In step 2 we can also consider the influence on
the goodness-of-fit of the assumed model with the
influence function for the deviance given by

oG
Owq

= —ntr(S_1

5. NUMERICAL EXAMPLE

We use ”fertility of the Swiss soil and social
economics index” data to illustrate the method of
covariance selection and its influence analysis pro-
posed in this paper. This data set consists of six
variables and 47 observations, where the six vari-
ables are a: fertility of the soil , b: agricultural
work person ratio, ¢: ratio of the person who takes
the record of the top with test of the troop, d: ratio
of the person who has the educational background
above elementary school, e: ratio of the Catholic
believer, and f: infant death rate within one year.
These variables are measured at 47 autonomous
states in Switzerland in 1888.

5.1 MODEL FITTING

Covariance selection models are fitted succes-
sively in the following manner. First, we calculate
partial correlations and search for the pair of vari-
ables which gives the smallest absolute value. In
Table 1, the smallest absolute partial correlation
is 0.0007 for the pair of variables (5,6). Then, the
model with a restriction ¢s¢ = 0 (model M) is
fitted. The deviance difference is 0.00002 between
the assumed model M; and the full model (the
model without restriction, denoted by model Mjy).

Table 1 Matrix of partial correlations (no restriction)

1.0000

-0.3571 1.0000

-0.1568 -0.2819 1.0000

-0.5965 -0.4921 0.3724 1.0000

0.4188 0.3245 -0.4488 0.5887 1.0000
0.4032 -0.0651 0.0599 0.1116 0.0007 1.0000

Table 2 Matrix of partial correlations (with
restriction ¢zs = 0)

1.0000

-0.3571 1.0000

-0.1568 -0.2819 1.0000

-0.5965 -0.4921 0.3724 1.0000

0.4188 0.3245 -0.4488 0.5887 1.0000
0.4032 -0.0651 0.0599 0.1116 0.0000 1.0000

The estimated partial correlations under model
M, is given in Table 2. Next we search for the pair
of variables which gives the smallest partial corre-
lation among the partial correlations not restricted
to zero, and we can find that the pair of variables
(3,6) has the smallest absolute value. Thus, the
model with restrictions ¢ss = ¢36 = 0 (model M)
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is fitted. The deviance difference between models
M, and M, is 0.20978 (p = 0.6469).

Table 3 Stepwise procedure

Pairs of variables Deviance Deviance p-value

set to zero difference
1step: (5,6) 0.0000 0.0000 0.996
2step: 1step + (3,6) 0.2098 0.2097 0.646
3step: 2step + (2,6) 0.8789 0.6691 0.413
4step: 3step+ (1,3) 1.8795 1.0005 0.317
5step : 4step + (4, 6; 5.1846 3.3050  0.069
Bstep : Sstep + (2,3) 8.2596 3.0749 0.079

In the similar manner we apply stepwise (back-
ward elimination) procedure. The results are sum-
marized in Table 3. As the partial correlation
between variables 4 and 6 is almost significant in
step 5, we stop the successive process, and select
the model with zero partial correlations at vari-
able pairs (5,6),(3,6),(2,6) and (1,3) as the final
model. The hypothesis Hy : ¢56 = ¢35 = 26 =
¢13 = 0 can be tested with log likelihood ratio(LR)
or the deviance difference between the final model
and the full model. That is, LR=1.8793 (DF=4),
hence, the hypothesis is accepted (p=0.785) and
therefore those partial correlations can be regarded
as zero. The estimated partial correlations based
on this final model are given in Table 4.

Table 4 Estimated partial correlations (Final model)

a b C d e f

1.0000

-0.3569 1.0000

0.0000 -0.2319 1.0000

-0.6491 -0.4863 0.4509 1.0000

0.4701 0.3289 -0.5042 0.6133 1.0000
0.3928 0.0000 0.0000 0.1660 0.0000 1.0000

= ® o0 Tw

The obtained final model can be expressed in
a linear graph in Fig.1. From this figure we can
see that Catholic and Infant are conditionally in-
dependent given Fertility and Education and that
Infant and (Agriculture, Examination) are con-
ditionally independent given Fertility, Education
and Catholic.

Education

AN

Exad“ati&?/// \\—\f;%atnnlic
)

H///’iixf//’//uy
fAgriculture £ }l nfant

a’
Fertility

Fig.1 Linear graph of the final model
(abde//adf//bcde)

5.2 INFLUENCE ANALYSIS

5.2.1 INFLUENCE ON THE INVERSE CO-
VARIANCE MATRIX

Now let us investigate the influence of obser-
vations on the estimated elements of the inverse
covariance matrix for the assumed model. The
objective is to study the stability or sensitivity of
results of analysis under the assumed model.

For single-case diagnostics the influence func-
tions are computed and Cook’s D is evaluated.
Fig.2 shows the index plot of Cook’s D. It is no-
ticed that observation #45 is much more influen-
tial than the others. So, we regard observation
#45 as a singly influential observation.

0.0025
1

Cook' D
0.0015
1

0.0 0.0005

PR
i
gi

Index

Fig.2 Index plot of Cook’s D for él
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Fig.3 Scatter plot PC2 vs PC1 @1)

For multiple-case diagnostics we solved eigen-

problem (11). The eigenvalues obtained are 31.5178 >

6.0771 > 4.2079 > 3.6671 > --- in order of their
magnitudes. Fig.3 gives the scatter plot of PC2
versus PC1. In this figure we can see that the in-
fluential observation #45 found in single-case diag-
nostics does not form influential subset with other
observations, because it is located far from the ori-
gin but no other observation is located on the sim-
ilar direction with it.

Table 5 Estimated partial correlations without
observation #45 (Final model)

1.0000

-0.3545 1.0000

0.0000 -0.2283 1.0000

~0.5930 -0.4759 0.4189 1.0000

0.4696 0.3226 -0.5021 0.5332 1.0000
0.3944 0.0000 0.0000 0.1740 0.0000 1.0000

Table 6 Difference of partial correlations estimated
with and without observation #45

0.0000

-0.0025 0.0000

0.0000 -0.0036 0.0000

-0.0561 -0.0104 0.0320 0.0000

0.0005 0.0063 -0.0021 0.0801 0.0000
-0.0016 0.0000 0.0000 -0.0080 0.0000 0.0000

Table 5 shows the partial correlations estimated
assuming the final model based on the sample with-
out the #45 observation. Table 8 gives the dif-
ferences of the partial correlations estimated with
and without the #45 observation. The differences
are not so extreme, but rather large for partial
correlations of (4,5),(1,4) and (3,4). Partial cor-
relations become large in variable pairs (4,5) and

(3,4), while it become smaller in (1,4), by omitting
observation #45.

5.2.2 INFLUENCE ON COVARIANCE SE-
LECTION

Single-case diagnostics

§- 1P
N
g

15
g-
SIS
e

Fig.4 Index plot of Cook’s D for éz

Here we consider the stability or sensitivity of
the process of selecting variable pairs. We study
this problem in two different ways.

First we assume the full model and study in-
fluence on the estimated elements of the inverse
covariance matrix which are forced to zero in our
final model.

Multiple-case diagnostics

E

Fig.5 Scatter plot PC2 vs PC1 (9}2)

Fig.4 shows the index plot of Cook’s D and Fig.5
gives the scatter plot of PC2 versus PC1 obtained
by PCA with matrix V~1, where the eigenvalues
are 2157.0547 > 674.7341 > 347.7068 > 174.3873
in order of their magnitudes. These results sug-
gest that observations #6 and #19 are potentially
influential to the results of covariance selection.
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Another method to study the influence on the
process of covariance selection is to evaluate the
influence on the element to be forced to zero in
each step of the successive procedure. Though we
do not explain it in detail, we can find #6 and #19
as influential to the covariance selection procedure.

Table 7 Stepwise procedure (without #6 and #19)

Pairs of variables Deviance Deviance p-value

set to 0 difference
1step: (2,6) 0.0015 0.0015 0.9689
2step : 1step+ (5,6) 0.0615 0.0599 0.8066
3step : 2step + (4,6) 1.2124 1.1509 0.2834
4step : 3step+ (1,3) 4.0858 2.8734 0.0901
Sstep : 4step+ (2,3) 6.4615  2.3757 0.1232

Table 7 shows the result of the covariance selec-
tion procedure based on the sample without obser-
vations #6 and #19. Here we stop at step 4, be-
cause the p-value is less than 0.1. The final model
in this case is the model with ¢ = @56 = ¢46 = 0.
The first two ¢26 and ¢sg are common. But, ¢3¢
and ¢;3 are regarded zero in the former analysis,
which ¢4¢ is regarded zero in the analysis without
the observation (#6 and #19). It is a suprise that
only two observations among 47 cause such large
effects.

6. CONCLUDING REMARKS

In the present paper we have first studied nu-
merically how the stepwise procedure of covariance
selection works. In a numerical example the result
can be expressed in a simple linear graph, which is
convenient for explanation. Then we have tried to
develop a procedure of influence analysis, which
treats the influence on the estimated parameters
in the obtained model and the influence on the
process of covariance selection. In our numerical
example we could detect observations which are
very influential to the estimated parameters or to
the covariance selection process. It is interesting to
know that the detected observations are different
for the above two aspects of influence.
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