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Abstract

Let A be a bialgebra and let S be a right A-comodule algebra which has an A-comodule subalgebra
T with common identity. We show that if S is a separable extension of T, then for a left A-module
algebra K, K§S is a separable extension of K{T'. Similar result holds for left A-module algebras and
right A-comodule algebras.
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1. Introduction

Let R be a commutative ring with identity and let R C T C S be ring extensions with common identity.
It is known that some properties of a ring extension S/T are preserved by taking a tensor product. For
example, if S/T is a separable extension, then for any R-algebra K, K ®g S is a separable extension of
K®grT. .

In this note we will consider a similar things at the standpoint of the smash product. Throughout the
follwoing, R is a commutative ring with identity and all algebras, modules, maps and ® are considered over
R unless otherwise stated. We freely use the terminologies and notations in the new fundamental book [M]
for Hopf algebras and their actions.

2. Definitions and examples.

A bialgebra is both an algbera and a coalgebra such that the coalgebra structure maps A and ¢ are
algebra maps. Let A be a bialgebra and X an algebra. X is called a left A-module algebra if X is a left
A-module and

» = Zal(x)ag(y) and a(l)=¢c(a)l (a€ A,z,ycX,)
(a)
where A(a) = 37 (,)a1 ®az € A® A is the Sweedler’s sigma notation. We omit the summation index (a)
in case it is clear. X is called a right A-comodule algebra if X is a right A-comodule with the structure
map p: X —» X ® A such that p is an algebra map. For a left A-module algebra K and a right A-comodule
algebra S, we define the product by

(k®s)(t®t) = k(s1) ® sot

where p(s) => .51 ®s0 € A® S Then K ® S is an algebra. We denote this algebra by K#S which is called
the smash product of K and S, and we also denote an element in Kf§S by kffu. K{S has an identity 141

and the maps
lx : Ko>k— kil € K§S and 1lg:53s— 1is € K{S
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are algebra maps. By these maps K}S is a left K- and a right S-module with respect to the product in
K§S. If A is commutative and cocommutative, then by

a(klis) = akfls and kfs— Zkﬁso ® 1,
K{S is a left A-module algebra and a right A-comodule algebra, respectively.

Example 2.1. (1) Let K be an algebra and G a subgroup of the algebra automorphism group of K. It
is known that the crossed product algebra of K by G is the smash product of a left RG-module algebra K
and a right RG-comodule algebra RG.

(2) Let ¢ is an algebra automorphism of K and let D be a o-derivation of K, that is, D is a module
emdomorphism of K such that D(k€) = o(k)D(£) + D(k)¢ (k, £ € K). We set

K°={ke K|o(k) =k}, KP ={ke K|D(k)=0}.

Since these maps are R-linear, R is contained in K’ N KP. Let A = R[o, D] be the non-commutative free
algebra on variables 0 and D which has the following coalgebra structure

Alg)=0®0, €lo)=1, AD)=c®D+D®1, &D)=0.

Then A is a bialgebra and K is a left A-module algebra. Let R[X] be the polynomial ring over R with
indeterminate X. Define a linear map

p:RX]|5X—X®0c+1®De€ RX|®A.

Then R[X] is a right A-comodule algebra. Let K[X;o, D] be the skew polynomial ring in which the
multiplication is given by
Xk =o(k)X + D(k) (k € K).

Then it is easy to see that the map
¢ : KiR[X] 3> kX' Y kX' € K[X;0,D]

is an algebra isomorphism. Thus the skew polynomial ring K[X;o, D] is a special case of a smash product
of a left A-module algebra K and a right A-comodule algebra R[X] (cf. [N]). Of course it is generalized to
n-variables.

Let A be a bialgebra, K a left A-module algebra and S a right A-comodule algebra. A subalgebra L of
K is called a A-module subalgebra if L is a left A-submodule of K. Similarly, a subalgebra T of S is called
an A- comodule subalgebra if T is a right A-subcomodule of S. Then there exist the canonical algebra maps

L§S — K#S and KiT — K}S.

Thus K4S is an L§S-bimodule and a KfT-bimodule with respect to the multiplication in K}S. Moreover
(K4S) @rys (K4S) and (K§S) ®kyr (KHiS) are also a KfS-bimodule canonically.

In the following, for the sake of simplicity, we assume A is a commutative and cocommutative bialgebra.
K is a left A-module algebra with an A-module subalgebra L and S is a right A-comodule algebra with an
A-comodule subalgebra T. We fix these notations.

3. Extensions by module algebras.

In this section we define some module structures on K ® S @1 S and proves that the separability of
extensions of comodule algebras is preserved by taking the smash product Kf#(—).
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Lemma 3.1. K ® S®r S has a K§S- bimodule structure.

Proof. For any k, £ € K and s, u, v € S, we define
(ki) (t@u®v) = > k(s18) ® sou®v,
(E@uev)(ks) = Y Luvik)® up ® vos.

Then K ® § @7 S is a K}{S-bimodule.

Lemma 3.2. The map
¢ : (K§S) @kyr (K4S) > (ffu) @ (miv) = > £(um) @uo@vE K®S®r S

is a K§{S-bimodule isomorphism.

Proof. For any k, £, m € K and s, u, v € S, we have

(ktis)p((ffu) ® (miv)) = (kfis) Y £(urm) ®uo @ v
= Y ksi(¢(wim) ® souo @ v
= Z k(s2€)(s1u1m) ® souo ® v,
o((kts) (eu) ® (miv)) = (Y _(k(s10)fsou) ® (mfv))
= > k(s510)((sou1)1m) @ (sou1)o) ® v
= Z k(s2£)(s1u1m) ® soup ® v.
So ¢ is a left K§S-module map. Moreover by
o((fw) ® (mhv))(ktis) = Y L(urm) ® ug ® v)(kis)
= > L uym)(u1v1k) ® up ® vos,
(((fu) © (mipv)) (kis)) = o((Bu) ® Y m(vik)fvos)
= ) tuy(m(vik)) ® uo ® vos
= Z Luam)(u1v1k) ® ug ® vos,

@ is a right K§§S-module map. Define a map
Y:K@SQrS3f@u®u— (fu)® (1fv) € (KiS) ®kyr (K§S).

Then as is easily seen, 1 is a left K§S-module map such that ¢ = 1. Moreover using the following equality,
we see

(8u) © (miv)

(ffu) ® (mfl)(1fv)
(f4u)(mi1) @ (14v)
= ) (flurm)fug) ® (1fv).

Thus % is a right K§S-module map and ¢ = 1.

Lemma 3.3. Let : S@rS>u®ve—suww € S. Thenthemap1l@u: K®S®r S — K®S is a KiS-
bimodule map, where K ® S is the canonical K{S- bimodule by the multiplication and the K{S-bimodule
structure of K ® S ®r S is defined in Lemma 3.1.
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Proof. By
(kis) 1@ p)(l@uev) = (kis)(fQ uv)
= Z k(s1£) ® souv,
Lew((kiEeusv) = 1> ksif)® sudv)
= Z k(s1£) ® souv,

1® pis a left KS-module map. Similarly 1 ® i is a right K}S-module map.

Now, since S is a right A-comodule algebra, S ®r S is a right A-comodule by
p:S®rS>u®u— Zuo®vo®u1v1 €ES/TS®A,

and p: S®r S — S is a right A-comodule map. We call that a right A-comodule algebra S is a separable
extension of T in the category of right A-comodule algebras if there exists a right A-comodule and an
S-bimodule map 7: S — S @7 S such that ur = 1.

Example 3.4. Let G be a group and A = RG the group algebra. If S is a right A-comodule algebra,
then S is a G-graded algebra and T is a G-graded subalgebra of S. That S is a separable extension of R in
the category of right RG-comodule algebras means a G-graded separable extension in the sense of [CGO].
In case of T = R and A is a commutative and cocommutative Hopf algebra, it was discussed in [L}.

Theorem 3.5. If S is a separable extension of T in the categrory of right A-comodule algebras, then
K15 is a separable extension of K§{T in the category of right A-comodule algebras.

Proof. Let 7: § — S ®7 S be a right A-comodule and an S-bimodule map such that ur = 1. Then
17: K®S — K®Sr®S is a module map. Since K ® S has the canonical K{S-bimodule structure and
K ® S ®r S has also a K{{S-bimodule defined in Lemma 3.1, then by

)17 (k®s) = (Lu)(k®T(s))
= ) luik) ® (o ® 1)7(s)
= Y l(urk) ® (uos)
= (107))_ t(urk) ®uos)
= (1@ 7)((fu)(kis)),
1® 7 is a left K§S-module map. Moreover by
(1e7)(k®s)(lu) = (k® T(s))(éﬁu)

D E(7())10) ® (7(5))o(1 ® u)
> k(s18) ® 7(s0)(1 @ )
(
)

Zk 51¢) ® T(sou)
(18 7){(k ® s)(Lu)),

It

1® 7 is a right KffS-module map. Now consider the following sequences of maps from (K#S) Qkyr (KtS5)
to K{S:

(Iou)yy : (KiS)@kyr (KiS) > K®S®rS—-K®S,
Ourys : (KHS) ®xyr (K8S) —» KiS - K ® S,
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where 8 is the canonical isomorphism, pxys is the multiplication of K#S and ¢ is defined in Lemma 3.2.
Then we see (1 ® u)¢ = Oukys and by Lemma 3.2, ¢ is a K4S-bimodule isomorphism. Thus ¢~1(1 ® 7)6
is a KfS-bimodule map such that o™ }(1 ® 7)8ukys = 1.

It is know that a ring extension S/T is a separable extension if and only if there exist finite elements z;,
y; € S such that

Yryi=1 and Y rzr;Qryi = ;@7 yx for any x €S

(cf. [DI, Chap.II, Prop.1.1]). 3 z; ®ry; is called a separability idempotent and {z;,y;} is called a separable
coordinate system. Using this fact, we prove the following theorem.

Theorem 3.6. Let K be a left A-module algebra such that R is an R-direct summand of K. If K{{S
is a separable extension of K and if the projection map p : K — R is a left A-module map, then S is a
separable algebra.

Proof. Let x; = 3, kijfisi; and y; = 3, €i;Hu;; be a separble coordinate system of K#S over K. We set
a; = Zp(kij)sij and bi = Zp(&j)uij.
J J

Since
41 = Z“’iyi = Z kij(8i5)18in8(Si5)0%in,
i,j,n,(s;])
we have
1=p()1 = > plkiy(se3)18n)b(5e5)0tn
1,7,m,{8:5)

= Z p(kij)(8:1p(Lin )i(515)0Uin

%,5,m,(845)

= Z P(ki;)8i;0(lin)itin

(A

- Z aibi
Moreover by > (18s)z; @ y; = Y z; ® y;(1fis), we get

3" (s1(kij)s05:3) ® (linfftiin) = > (kijlisi) ® (Einfiuins).

1,7,(s) i,j,n
Applying the map (pf1) ® (pf1) on the both side, we have

Z P(kij)ssi; @ pllin)tin = Z P(ki;)8i5 ® p(€in)Uins,

i,3,n L,7n

that is,
Zsai ®b; = Zai R b;s.

This shows that {a;, b;} is a separable coordinate system of S over R.
4. Extension by comodule algebras.

In this section we dualize the results in section 3 by taking the smash product (—)§S. Since the proofs
are similar to the corresponding results, we omit them.
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Lemma 4.1. For any k, £, m € K and s, u € S, if we define

(kfs)(£®@mQu) Z k(s2f) ® sy ® spu,
Ce@meu)ks) = > L@m(urk)®uos,

then K @1 K ® S is a K§{S-bimodule structure.
Lemma 4.2. The map

¢ 1 (K§S) ®rs (KHS) 3 (fu) ® (mv) > Y €@ (uym) ®uov e K®L K ® S

is a K§S-bimodule isomorphism.

Lemma 4.3. Let u: KL K >5k®{+— kf € K. Thenthemap p®1 . KL K ®S - K® S isa
K}S-bimodule map, where K ® S is the canonical K§S-bimodule by the multiplication and K#S-bimodule
structure of K @1 K ® S is defined in Lemma 4.1

Let K be an A-module algebra. Then K ®p K is a left A-module by a(k ® £) = > a1k ® agf and
u: K®p K — K is a left A-module map. We call that a left A-module algebra K is separable extension of
L in the category of left A-module if there exists a left A-module and a K-bimodule map 7: K — K ®; K
such that ur = 1.

Theorem 4.4. If K is a separable extension of L in the category of left A-module algebras, then K§S
is a separable extension of LYS in the category of left A-module algebras.

Theorem 4.5. Let S be a right A-comodule algebra such that R is an R-direct summand of S. If K§S
is a separable extension of S and if the projection map p: S — R is a right A-comodule map, then K is a
separable algebra.

For a Galois extension S/T in the category of right A-comodule algebras, or in the category of left
A-module algebras, we can show that the corresponding theorems 3.5, 3.6, 4.4 and 4.5 hold for Galois
extensions, and the assumption that A is commutative and cocommutative also leave out. Moreover we
have an application of our theorems to the skew polynomial ring with respect to separable extensions and
Galois extensions. These results will be showed in the forthcomming paper.
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