# The Resolution Modules of A Space and Its Universal Covering Space

Ryousuke FUJITA \*

(Received January 12, 2000)

Let G be a finite group, Y a finite connected G-CW-complex, and let  $\Pi(Y)$  denote the Gposet (in the sense of Oliver-Petrie) associated to Y. They defined the abelian group  $\Omega(G, \Pi(Y))$ consisting of all equivalent classes of  $\Pi(Y)$ -complexes. They also defined the subgroup  $\Phi(G, \Pi(Y))$ related to  $\Pi(Y)$ -resolutions. We call  $\Phi(G, \Pi(Y))$  the resolution module of Y. Applying the Oliver-Petrie theory to the universal covering space  $\tilde{Y}$ , we obtain the group  $\Omega(\tilde{G}, \Pi(\tilde{Y}))$ , where  $\tilde{G}$  is a certain extension of G by  $\pi_1(Y)$ . Then the canonical homomorphism  $\nu : \Omega(\tilde{G}, \Pi(\tilde{Y})) \to$  $\Omega(G, \Pi(Y))$  induced by the projection  $\tilde{Y} \to Y$  is an isomorphism. In this paper, for  $G = \mathbb{Z}_p \times \mathbb{Z}_q$ we construct a finite G-CW-complex Y such that  $\pi_1(Y) \cong \mathbb{Z}_p$  and  $\nu(\Phi(\tilde{G}, \Pi(\tilde{Y})) \neq \Phi(G, \Pi(Y))$ , where p and q are arbitrary distinct primes.

Keywords: G-CW-complex, G-map, G-poset

## **1** INTRODUCTION

Í

Throughout this paper let G be a finite group and S(G) denote the set of all subgroups of G. Let  $f: X \to Y$  be a G-map between finite G-CW-complexes. When does there exist a G-CW-complex  $X' \supseteq X$  with  $X'^G = X^G$  and a quasi-equivalence  $f': X' \to Y$  extending f? Here a quasi-equivalence  $f': X' \to Y$  means that f' is a G-map inducing an isomorphism on  $\pi_1$  and integral homology. R.Oliver and T.Petrie treated this problem in [5]. To solve the problem, they introduced the set

$$\Pi(Y) = \prod_{H \in S(G)} \pi_0(Y^H) \quad \text{(the disjoint union of } \pi_0(Y^H)\text{'s)}.$$

Here  $Y^H$  is the *H*-fixed point set of *Y* and  $\pi_0(Y^H)$  is the set of all connected components of  $Y^H$ . The set  $\Pi(Y)$  is called a *G*-poset associated to *Y*. We regard S(G) as a *G*-set via the action  $(g, H) \mapsto gHg^{-1}(g \in G$  and  $H \in S(G)$ ) and as a partially ordered set via

$$H < K \iff H \supseteq K \quad (H, K \in S(G)).$$

Let S(Y) denote the set of all subcomplexes of Y. We also regard S(Y) as a G-set by left traslation, i.e.  $(g,A) \mapsto gA \ (g \in G \text{ and } A \in S(Y))$ . Suppose that  $S(G) \times S(Y)$  has the diagonal action, i.e.  $(g,(H,A)) \mapsto (gHg^{-1},gA) \ (g \in G, H \in S(G), A \in S(Y))$ .

For  $\alpha \in \Pi(Y)$ , there exists uniquely a subgroup  $H \in S(G)$  such that  $\alpha \in \pi_0(Y^H)$ . Hence we can define a map  $\rho : \Pi(Y) \to S(G)$  by  $\alpha \mapsto H$ . In addition,  $\Pi(Y)$  is given the partial order  $\leq$  by

$$\alpha \leq \beta$$
 if and only if  $\rho(\alpha) \supseteq \rho(\beta)$  and  $|\alpha| \subseteq |\beta|$   $(\alpha, \beta \in \Pi(Y))$ 

where  $|\alpha|$  is the underlying space for  $\alpha \in \Pi(Y)$ .

<sup>\*</sup>Liberal Arts of General Education, Wakayama National College of Technology, Wakayama, 644-0023 Japan.

Current Address : Department of Environmental and Mathematical Sciences, Faculty of Environmental Science and Technology, Okayama University, Okayama, 700-8530 Japan. Communicated with Prof. Masaharu Morimoto

**Definition 1.1.** We abbreviate  $\Pi(Y)$  to  $\Pi$ . A finite *G*-*CW*-complex *Z* with a basepoint *q* is called a  $\Pi$ -*complex* if it is equipped with a specified set  $\{Z_{\alpha} \mid \alpha \in \Pi\}$  of subcomplexes  $Z_{\alpha}$  of *Z*, satisfying the following
four conditions:

(i)  $q \in Z_{\alpha}$ , (ii)  $q \in Z_{\alpha} = Z$ 

(ii)  $gZ_{\alpha} = Z_{g\alpha}$  for  $g \in G$ ,  $\alpha \in \Pi$ , (iii)  $Z_{\alpha} \subseteq Z_{\beta}$  if  $\alpha \leq \beta$  in  $\Pi$ , and (iv) for any  $H \in S(G)$ ,

$$Z^{H} = \bigvee_{\alpha \in \Pi \text{ with } \rho(\alpha) = H} Z_{\alpha}.$$

Let  $\mathcal F$  denote the family of all  $\Pi$ -complexes and define the equivalence relation  $\sim$  on  $\mathcal F$  by

$$Z \sim W \iff \chi(Z_{\alpha}) = \chi(W_{\alpha}) \text{ for all } \alpha \in \Pi \quad (Z, W \in \mathcal{F})$$

where  $\chi(Z_{\alpha})$  is the Euler characteristic of  $Z_{\alpha}$ .

The set  $\Omega(G,\Pi) = \mathcal{F}/\sim$  is an abelian group via

 $[Z] + [W] = [Z \lor W] \quad (Z, W \in \mathcal{F}).$ 

Moreover it is finitely generated. We call  $\Omega(G, \Pi)$  the Oliver-Petrie module associated with  $\Pi$ .

The set

 $\Delta(G,\Pi) = \{ [Z] \in \Omega(G,\Pi) \mid Z \text{ is contractible } \}$ 

is a submodule of  $\Omega(G, \Pi)$ . By [5, Proposition 2.6] the submodule  $\Phi(G, \Pi)$  given below is useful for computing  $\Delta(G, \Pi)$ , since

$$\Phi(G,\Pi)\supset \Delta(G,\Pi) \hspace{0.2cm} ext{and}\hspace{0.2cm} [\Phi(G,\Pi)\,:\,\Delta(G,\Pi)]<\infty.$$

We define

$$\mathcal{P}(\Pi) = \{ \alpha \in \Pi \mid \rho(\alpha) \text{ is a subgroup of } G \text{ of prime power order} \}, \text{ and } S(G, \alpha) = \{ K \in S(G) \mid \rho(\alpha) \triangleleft K \subseteq G_{\alpha} \text{ and } K/\rho(\alpha) \text{ is cyclic} \}$$

where  $G_{\alpha}$  is the isotropy subgroup at  $\alpha$ . We set  $\bar{\chi}(Z) = \chi(Z) - 1$  for any space Z. Then the resolution module  $\Phi(G, \Pi)$  is defined by

$$\Phi(G,\Pi) = \{ [Z] \in \Omega(G,\Pi) \mid \bar{\chi}((Z_{\alpha})^{K}) = 0, \text{ for all } \alpha \in \mathcal{P}(\Pi) \text{ and } K \in S(G, \alpha) \}$$

It is easy to check that  $\Phi(G,\Pi)$  is a subgroup of  $\Omega(G,\Pi)$ . This  $\Phi(G,\Pi)$  can be defined in the term of  $\Pi$ -resolutions, which will be explained in 2.3. Applying the Oliver-Petrie theory to a covering space, M.Morimoto and K.Iizuka [4] gave a necessary and sufficient condition to extend a *G*-map  $f: X \to Y$  to a pseudo-equivalence  $f'': X'' \to Y$  such that  $X''^G = X^G$  when  $\pi_1(Y)$  is finite. Here a pseudo-equivalence f''means a *G*-map which is a (non-equivariant) homotopy equivalence.

Let G and  $\widetilde{G}$  be finite groups,  $\sigma : \widetilde{G} \to G$  an epimorphism, Y a finite connected G-CW-complex,  $\widetilde{Y}$ a finite connected  $\widetilde{G}$ -CW-complex, and  $(\widetilde{Y}, p, Y)$  a  $\sigma$ -equivariant covering space (i.e.  $p(gb) = \sigma(g)p(b)$ for  $g \in \widetilde{G}, b \in \widetilde{Y}$ ). Put  $\pi = \ker \sigma$ . Furthermore assume that  $\pi$  acts freely and transitively on each fiber. Under the conditions, the canonical map  $\nu : \Omega(\widetilde{G}, \Pi(\widetilde{Y})) \to \Omega(G, \Pi(Y))$  is defined by  $[\widetilde{X}] \mapsto [G \times_{\sigma} \widetilde{X}]$ and it is an isomorphism. As for the resolution submodules, we have  $\nu(\Delta(\widetilde{G}, \Pi(\widetilde{Y}))) \subseteq \Delta(G, \Pi(Y))$  and  $\nu(\Phi(\widetilde{G}, \Pi(\widetilde{Y}))) \subseteq \Phi(G, \Pi(Y))$  [4, Proposition 3.6]. In the present paper, we study the next problem :

**Problem** Do there exist G-CW-complexes Y such that

$$\nu(\Phi(\widetilde{G},\Pi(\widetilde{Y})) \neq \Phi(G,\Pi(Y))$$
 ?

Our result is:

**Theorem 1.2.** Let p, q be distinct primes,  $G = \mathbb{Z}_p \times \mathbb{Z}_q$  and  $\tilde{G} = \pi \times (\mathbb{Z}_p \times \mathbb{Z}_q)$ , where  $\pi$  is a copy of  $\mathbb{Z}_p$ . Then there exists a finite connected and simply connected  $\tilde{G}$ -CW-complex  $\tilde{Y}$  such that the G-CW-complex  $Y = \tilde{Y}/\pi$  satisfies  $\pi_1(Y) \cong \pi$  and  $\nu(\Phi(\tilde{G}, \Pi(\tilde{Y})) \neq \Phi(G, \Pi(Y))$ .

This paper is organized as follows. In Section 2, we review basic properties of the Oliver-Petrie module and the resolution module. In Section 3, we study relations between the posets of a base space and its covering space. Finally, in Section 4, we prove Theorem 1.2.

## 2 BASIC PROPERTIES OF THE OLIVER-PETRIE MODULES

In this section, we recall basic properties needed later from R.Oliver-T.Petrie [5] and M.Morimoto-K.Iizuka [4].

**2.1** For a finite G-CW-complex Y, the map  $\rho \times | | : \Pi(Y) \to S(G) \times S(Y)$  given by  $\alpha \mapsto (\rho(\alpha), |\alpha|)$  is injective. We regard  $\Pi(Y)$  as a subset of  $S(G) \times S(Y)$ . Then  $\Pi = \Pi(Y)$  has a G-action given by  $(g, \alpha) \mapsto g(\rho \times | |)(\alpha)$ . Furthermore  $\Pi$  satisfies the following three conditions: (i)  $\rho(\alpha) \subseteq G_{\alpha}$  for  $\alpha \in \Pi$ ,

(ii) if  $\alpha \leq \beta$  then  $g\alpha \leq g\beta$  for  $g \in G$ , and

(iii) for  $\alpha \in \Pi$  and  $H \subseteq \rho(\alpha)$ , there exists uniquely  $\gamma \in \Pi$  such that  $\gamma \geq \alpha$  and  $\rho(\gamma) = H$ .

In the case where  $\overline{Y} = \{*\}$  (a singleton),

$$\Pi(Y) = \prod_{H \in S(G)} \pi_0(\{*\}^H) \stackrel{\rho \times | \ |}{=} \prod_{H \in S(G)} \{(H, \{*\})\} \stackrel{\text{proj}}{=} S(G).$$

Let Z be a  $\Pi$ -complex. For each cell c in  $Z \setminus \{*\}$ , there exists a unique element  $\alpha(c) \in \Pi$  such that  $\rho(\alpha(c)) = G_x$ ,  $x \in c$ , and  $c \subset Z_{\alpha(c)}$ . We say that c of type  $\alpha(c)$ .

**2.2** For each  $\alpha \in \Pi(Y)$ , the G-space  $(\alpha)^+ = G/\rho(\alpha) \amalg \{*\}$  is equipped with  $\Pi(Y)$ -complex structure such that

$$(lpha)^+_eta=\{g
ho(lpha)\ \mid\ g\in G,\ glpha\leqqeta\}\ {
m II}\ \{*\}\quad {
m for}\ \ eta\in\Pi(Y).$$

Let  $\{\alpha_i \mid 1 \leq i \leq s\}$  be the complete representative system of  $\Pi(Y)/G$ . Then the set  $\Omega(G, \Pi(Y))$  is a free abelian group with a basis  $\{[(\alpha_i)^+] \mid 1 \leq i \leq s\}$  i.e.

$$\Omega(G, \Pi(Y)) = \left\langle [(\alpha_i)^+] \mid 1 \leq i \leq s \right\rangle_{\mathbb{Z}}.$$

Suppose hereafter that Y is a finite connected G-CW-complex. Then  $\pi_0(Y^{\{1\}})$  consists of a unique element which will be denoted by m. The element m is the maximal element in  $\Pi(Y)$ .

**2.3** A finite k-dimensional  $\Pi(Y)$ -complex Z is called a  $\Pi(Y)$ -resolution if Z satisfies the following three conditions:

(i) Z is connected and simply-connected,

(ii) Z is (k-1)-connected, and

(iii)  $\tilde{H}_k(Z;\mathbb{Z})$  is  $\mathbb{Z}[G]$ -projective.

If Z is a k-dimensional  $\Pi(Y)$ -resolution, set

$$\gamma_G(Z) = (-1)^k [\tilde{H}_k(Z ; \mathbb{Z})] \in \tilde{K}_0(\mathbb{Z}[G]),$$

where  $\widetilde{K}_0(\mathbb{Z}[G])$  is the Grothendieck group of finitely generated projective  $\mathbb{Z}[G]$ -modules modulo free modules.

For a  $\Pi(Y)$ -resolution Z, we get a  $\Pi(Y)$ -complex  $Z^*$  with  $\bar{\chi}(Z^*) = 0$  by attaching some free cells  $G \times D^i$  to Z. Clearly  $\bar{\chi}(Z^*_{\alpha}) = \bar{\chi}(Z_{\alpha})$  for any  $\alpha \in \Pi(Y) \setminus \{m\}$ . Moreover for a k-dimensional  $\Pi(Y)$ -resolution Z with  $k \geq 1$ , there exists a  $\Pi(Y)$ -resolution W satisfying the following conditions:

(i) dim W = k + 1,

(ii)  $\gamma_G(Z) = \gamma_G(W)$ , and

(iii)  $[Z^*] = [W^*]$  in  $\Omega(G, \Pi(Y))$ .

By [5, Proposition 2.6],  $\Phi(G, \Pi(Y))$  defined in Section 1 coincides with

$$\{[Z^*] \in \Omega(G, \Pi(Y)) | Z \text{ is a } \Pi(Y)\text{-resolution}\}.$$

**Example 2.4.** Let  $G = \mathbb{Z}_2 \times \mathbb{Z}_2$  and  $Y = \{*\}$  (a singleton). There are three subgroups isomorphic to  $\mathbb{Z}_2$ . We denote them by  $\mathbb{Z}_2^1$ ,  $\mathbb{Z}_2^2$ ,  $\mathbb{Z}_2^3$ . By 2.1,

$$\Pi(\{*\}) = S(G) = \{\{1\}, \mathbb{Z}_2^1, \mathbb{Z}_2^2, \mathbb{Z}_2^3, \mathbb{Z}_2 \times \mathbb{Z}_2\}.$$

The partially ordered set  $\Pi(\{*\})$  is illustrated by the diagram below. We arrange the elements of  $\Pi(\{*\})$  such that if a > b  $(a, b \in \Pi(\{*\}))$ , then a is situated above b. Furthermore we connect a and b by a

segment if and only if a > b.



Fig.1

Since G is of prime power order,  $\mathcal{P}(\Pi(\{*\}))$  coincides with  $\Pi(\{*\})$ . As G is abelian, the G-action on  $\Pi({*}) = S(G)$  is trivial, which amounts to

$$\Pi(\{*\})/G = S(G)/G = S(G).$$

By 2.2, the free abelian group  $\Omega(G, \Pi(Y))$  has the basis

$$\{ [(\{1\})^+], [(\mathbb{Z}_2^1)^+], [(\mathbb{Z}_2^2)^+], [(\mathbb{Z}_2^3)^+], [(\mathbb{Z}_2 \times \mathbb{Z}_2)^+] \}.$$

In the following, we show that  $\Phi(G, \Pi(\{*\}))$  is the trivial group. Each  $[Z] \in \Phi(G, \Pi(\{*\}))$  is uniquely written in the form:

$$[Z] = n_{\mathbb{Z}_2 \times \mathbb{Z}_2} [(\mathbb{Z}_2 \times \mathbb{Z}_2)^+] + n_{\mathbb{Z}_2^1} [(\mathbb{Z}_2^1)^+] + n_{\mathbb{Z}_2^2} [(\mathbb{Z}_2^2)^+] + n_{\mathbb{Z}_2^3} [(\mathbb{Z}_2^3)^+] + n_{\{1\}} [(\{1\})^+],$$

where each coefficient is some integer and satisfies the condition

$$\bar{\chi}(Z_{\alpha}^{K}) = n_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}} \bar{\chi}((\mathbb{Z}_{2} \times \mathbb{Z}_{2})_{\alpha}^{+K}) + n_{\mathbb{Z}_{2}^{1}} \bar{\chi}((\mathbb{Z}_{2}^{1})_{\alpha}^{+K}) + n_{\mathbb{Z}_{2}^{2}} \bar{\chi}((\mathbb{Z}_{2}^{2})_{\alpha}^{+K}) + n_{\mathbb{Z}_{2}^{3}} \bar{\chi}((\mathbb{Z}_{2}^{3})_{\alpha}^{+K}) + n_{\{1\}} \bar{\chi}((\{1\})_{\alpha}^{+K}) = 0$$

$$(2.4.1)$$

for each  $\alpha \in \mathcal{P}(\Pi(\{*\}))$  and  $K \in S(G, \alpha)$ . Using (2.4.1), we shall verify that all coefficients vanish. First, consider the case of  $\alpha = \mathbb{Z}_2^1$ . Then we have  $S(G, \alpha) = \{\mathbb{Z}_2^1, \mathbb{Z}_2^1 \times \mathbb{Z}_2\}$ . For  $\alpha = \mathbb{Z}_2^1$  and  $K = \mathbb{Z}_2^1$ , since

$$\begin{split} \bar{\chi}((\mathbb{Z}_2 \times \mathbb{Z}_2)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1}) &= \bar{\chi}(\{\mathbb{Z}_2 \times \mathbb{Z}_2\} \amalg \{*\}) = 1, \\ \bar{\chi}((\mathbb{Z}_2^1)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1}) &= \bar{\chi}(G/\mathbb{Z}_2^1 \amalg \{*\}) = 2, \text{ and} \\ \bar{\chi}((\mathbb{Z}_2^2)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1}) &= \bar{\chi}((\mathbb{Z}_2^3)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1}) = \bar{\chi}((\{1\})_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1}) = \bar{\chi}(\emptyset \amalg \{*\}) = 0, \end{split}$$

the equation (2.4.1) implies

$$n_{\mathbb{Z}_2 \times \mathbb{Z}_2} + 2n_{\mathbb{Z}_2^1} = 0. \tag{2.4.2}$$

Next for  $\alpha = \mathbb{Z}_2^1$  and  $K = \mathbb{Z}_2^1 \times \mathbb{Z}_2$ , since

$$\begin{split} \bar{\chi}((\mathbb{Z}_2 \times \mathbb{Z}_2)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^* \times \mathbb{Z}_2}) &= \bar{\chi}(\{\mathbb{Z}_2 \times \mathbb{Z}_2\} \amalg \{*\}) = 1, \text{ and} \\ \bar{\chi}((\mathbb{Z}_2^1)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1 \times \mathbb{Z}_2}) &= \bar{\chi}((\mathbb{Z}_2^2)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1 \times \mathbb{Z}_2}) = \bar{\chi}((\mathbb{Z}_2^3)_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1 \times \mathbb{Z}_2}) \\ &= \bar{\chi}((\{1\})_{\mathbb{Z}_2^1}^{+\mathbb{Z}_2^1 \times \mathbb{Z}_2}) = \bar{\chi}(\emptyset \amalg \{*\}) = 0, \end{split}$$

we obtain

$$n_{\mathbf{Z}_2 \times \mathbf{Z}_2} = 0. \tag{2.4.3}$$

We get  $n_{\mathbb{Z}_2^1} = 0$ ,  $n_{\mathbb{Z}_2 \times \mathbb{Z}_2} = 0$  by (2.4.2) and (2.4.3). Similarly for  $\alpha = \mathbb{Z}_2^2$  and  $\mathbb{Z}_2^3$ , we have  $n_{\mathbb{Z}_2^2} = 0$  and  $n_{\mathbb{Z}_2^3} = 0$ . Moreover the case where  $\alpha = \{1\}$ , we have

$$S(G, \alpha) = \{\{1\}, \mathbb{Z}_2^1, \mathbb{Z}_2^2, \mathbb{Z}_2^3\}$$

Particularly, in the case where  $\alpha = \{1\}, K = \{1\}$ , we have

$$0 = n_{\{1\}} \bar{\chi}((\{1\})_{\{1\}}^{+\{1\}})$$
  
=  $n_{\{1\}} \chi(G)$   
=  $4n_{\{1\}}$ .

Hence  $n_{\{1\}} = 0$ . Putting all together,

$$n_{\mathbb{Z}_2 \times \mathbb{Z}_2} = n_{\mathbb{Z}_2^1} = n_{\mathbb{Z}_2^2} = n_{\mathbb{Z}_2^3} = n_{\{1\}} = 0.$$

This concludes [Z] = 0.

## 3 RELATIONS BETWEEN THE POSETS OF A BASE SPACE AND ITS COVERING SPACE

In this section let G and  $\tilde{G}$  be finite groups,  $\sigma: \tilde{G} \to G$  an epimorphism, Y a finite connected G-CW-complex,  $\tilde{Y}$  a finite connected  $\tilde{G}$ -CW-complex, and  $p: \tilde{Y} \to Y$  a  $\sigma$ -equivariant covering space. We put  $\pi = \ker \sigma$ . Moreover we assume that  $\pi$  acts freely and transitively on each fiber. Remark that the  $\tilde{G}$ -action on  $\tilde{Y}$  gives a  $\tilde{G}$ -poset  $\tilde{\Pi} = \Pi(\tilde{Y})$  and a  $\tilde{G}$ -map  $\tilde{\rho}: \tilde{\Pi} \to S(\tilde{G})$ .

Let  $\tilde{\alpha}$  be an element of  $\Pi(\tilde{Y})$ . Then  $|\tilde{\alpha}|$  is a connected component of  $\tilde{Y}^{\tilde{\rho}(\tilde{\alpha})}$ . Hence  $p(|\tilde{\alpha}|)$  is connected. Moreover we have  $p(|\tilde{\alpha}|) \subseteq Y^{\sigma(\tilde{\rho}(\tilde{\alpha}))}$ . Thus there exists a unique connected component  $\alpha \in \Pi(Y)$  such that  $\rho(\alpha) = \sigma(\tilde{\rho}(\tilde{\alpha}))$  and  $|\alpha| \supseteq p(|\tilde{\alpha}|)$ . Now we define the map  $\mu : \Pi(\tilde{Y}) \to \Pi(Y)$  by  $\tilde{\alpha} \mapsto \alpha$ .

**Lemma 3.1.** In the above situation,  $\rho(\mu(\tilde{\alpha})) = \sigma(\tilde{\rho}(\tilde{\alpha}))$  and  $|\mu(\tilde{\alpha})| = p(|\tilde{\alpha}|)$  hold for any  $\tilde{\alpha} \in \Pi(\tilde{Y})$ .

Proof. We have already showed  $\rho(\mu(\tilde{\alpha})) = \sigma(\tilde{\rho}(\tilde{\alpha}))$ . It suffices to show that  $|\alpha| \subseteq p(|\tilde{\alpha}|)$ , where  $\alpha = \mu(\tilde{\alpha})$ . First we take  $\tilde{y}_0 \in |\tilde{\alpha}|$ , and set  $y_0 = p(\tilde{y}_0)$ . Take  $y_1 \in |\alpha|$  arbitrarily. Remark that  $y_0 \in |\alpha|$  and  $y_1 \in |\alpha|$ . Then there exists a path  $y(t) : I \to |\alpha|$  such that  $y(0) = y_0$  and  $y(1) = y_1$ , where I = [0, 1]. Then we have a lift  $\tilde{y}(t) : I \to \tilde{Y}$  of y(t) with  $\tilde{y}(0) = \tilde{y}_0$ . On the other hand, for any  $\tilde{g} \in \tilde{\rho}(\tilde{\alpha})$ , a path  $\tilde{g}\tilde{y}(t) : I \to \tilde{Y}$  is also a lift of y(t) with  $\tilde{g}\tilde{y}(0) = \tilde{y}_0$ . Hence we have  $\tilde{g}\tilde{y}(t) = \tilde{y}(t)$  for any  $\tilde{g} \in \tilde{\rho}(\tilde{\alpha})$ . It follows at once that  $\tilde{y}(1) \in \tilde{Y}^{\tilde{\rho}(\tilde{\alpha})}$ . Since  $\tilde{y}_0 \in |\tilde{\alpha}| \subseteq \tilde{Y}^{\tilde{\rho}(\tilde{\alpha})}$ , we have  $\tilde{y}(1) \in |\tilde{\alpha}|$ . Thus  $y_1 = p(\tilde{y}(1)) \in p(|\tilde{\alpha}|)$ . This means that  $|\alpha| \subseteq p(|\tilde{\alpha}|)$ .

By Lemma 3.1, the following diagram commutes:

**Proposition 3.2.** For any  $\alpha \in \Pi(Y)$ ,  $\mu^{-1}(\alpha)$  is non-empty. Moreover  $\pi$  acts transitively on  $\mu^{-1}(\alpha)$ .

Proof. We first show that for any  $\alpha \in \Pi(Y)$ ,  $\mu^{-1}(\alpha)$  is non-empty. Arbitrarily choose and fix  $y \in |\alpha|$ . Since  $p: \tilde{Y} \to Y$  is surjective, there exists  $\tilde{y} \in p^{-1}(y)$ . Now, remark that  $\sigma | \tilde{G}_{\tilde{y}} : \tilde{G}_{\tilde{y}} \to G_y$  is an isomorphism. Since  $y \in |\alpha| \subseteq Y^{\rho(\alpha)}$ , we have  $\rho(\alpha) \subseteq G_y$ . Put  $\tilde{H} = (\sigma | \tilde{G}_{\tilde{y}})^{-1}(\rho(\alpha))$ . Since  $\tilde{H} \subseteq \tilde{G}_{\tilde{y}}$ ,  $\tilde{y}$  lies in  $\tilde{Y}^{\tilde{H}}$ . Hence there exists  $\tilde{\alpha} \in \pi_0(\tilde{Y}^{\tilde{H}})$  with  $\tilde{y} \in |\tilde{\alpha}|$ , which implies  $\tilde{\rho}(\tilde{\alpha}) = \tilde{H}$ . Thus we obtain  $\rho(\mu(\tilde{\alpha})) = \sigma(\tilde{\rho}(\tilde{\alpha})) = \sigma(\tilde{H}) = \rho(\alpha), y = p(\tilde{y}) \in p(|\tilde{\alpha}|) = |\mu(\tilde{\alpha})|$ , and  $y \in |\mu(\tilde{\alpha})| \cap |\alpha| \neq \emptyset$ . It follows at once that  $\mu(\tilde{\alpha}) = \alpha$ . Namely,  $\mu^{-1}(\alpha)$  is non-empty. Next we shall prove that  $\pi$  (= ker  $\sigma$ ) acts transitively on  $\mu^{-1}(\alpha)$ . Let  $\tilde{\alpha}$  and  $\tilde{\beta}$  be elements of  $\mu^{-1}(\alpha)$ . It suffices to show that  $\tilde{h}\tilde{\alpha} = \tilde{\beta}$  for some  $\tilde{h} \in \pi$ . By the definition of  $\mu$ , we have  $\sigma(\tilde{\rho}(\tilde{\alpha})) = \rho(\alpha) = \sigma(\tilde{\rho}(\tilde{\beta}))$  and  $p(|\tilde{\alpha}|) = |\alpha| = p(|\tilde{\beta}|)$ . Let  $\tilde{a}$  and  $\tilde{b}$  be the points on  $|\tilde{\alpha}|$  and  $|\tilde{\beta}|$  respectively such that  $p(\tilde{a}) = y = p(\tilde{b})$ . Then there exists  $\tilde{h} \in \pi$  such that  $\tilde{h}\tilde{a} = \tilde{b}$  because  $\pi$  acts transitively on each fiber. Now, it should be noted that  $\tilde{\rho}(\tilde{\alpha}) \subseteq \tilde{G}_{\tilde{a}}$  and  $\tilde{\rho}(\tilde{\beta}) \subseteq \tilde{G}_{\tilde{b}}$ . Observe that  $\tilde{G}_{\tilde{b}} = \tilde{G}_{\tilde{h}\tilde{a}} = \tilde{h}\tilde{G}_{\tilde{a}}\tilde{h}^{-1}$ . Remark that  $\sigma | \tilde{G}_{\tilde{b}}$  is an isomorphism from  $\tilde{G}_{\tilde{b}}$  to  $G_y$ . Now, since  $\tilde{\rho}(\tilde{\alpha}) \subseteq \tilde{G}_{\tilde{a}}$ , we have  $\tilde{h}\tilde{\rho}(\tilde{\alpha})\tilde{h}^{-1} \subseteq \tilde{h}\tilde{G}_{\tilde{a}}\tilde{h}^{-1} = \tilde{G}_{\tilde{b}}$ . Moreover since  $\tilde{\rho}(\tilde{\beta}) \subseteq \tilde{G}_{\tilde{b}}$ , we have  $\sigma(\tilde{h}\tilde{\rho}(\tilde{\alpha})\tilde{h}^{-1}) = \sigma(\tilde{h})\sigma(\tilde{\rho}(\tilde{\alpha}))\sigma(\tilde{h}^{-1}) = \rho(\alpha)$ . Recalling that  $\sigma(\tilde{\rho}(\tilde{\beta})) = \rho(\alpha)$ , we get  $\tilde{h}\tilde{\rho}(\tilde{\alpha})\tilde{h}^{-1} = \tilde{\rho}(\tilde{\beta})$ , that is,  $\tilde{\rho}(\tilde{h}\tilde{\alpha}) = \tilde{\rho}(\tilde{\beta})$ . Therefore we have  $\tilde{h}\tilde{\alpha}$ ,  $\tilde{\beta} \in \pi_0(\tilde{Y}^{\tilde{\rho}(\tilde{\beta})})$ . Remark that  $\tilde{b} = \tilde{h}\tilde{a} \in \tilde{h}|\tilde{\alpha}| = |\tilde{h}\tilde{\alpha}|$ . It follows at once that  $\tilde{b} \in |\tilde{h}\tilde{\alpha}| \cap |\tilde{\beta}| \neq \emptyset$ . Thus  $\tilde{h}\tilde{\alpha} = \tilde{\beta}$ .

Henceforth let  $\{\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_s\}$  be a complete representative system of  $\Pi(\tilde{Y})/\tilde{G}$ , that is,

$$\Pi(\widetilde{Y}) = \coprod_{i=1}^s \widetilde{G}\widetilde{lpha}_i \; ( ext{disjoint union}).$$

Lemma 3.3. For  $i \neq j$ , one has  $\mu(\tilde{G}\tilde{\alpha}_i) \cap \mu(\tilde{G}\tilde{\alpha}_j) = \emptyset$ .

Proof. Suppose that  $\mu(\tilde{G}\tilde{\alpha}_i) \cap \mu(\tilde{G}\tilde{\alpha}_j) \ni \alpha$ . Then  $\alpha$  is written in two ways:  $\alpha = \mu(\tilde{g}_1\tilde{\alpha}_i) = \mu(\tilde{g}_2\tilde{\alpha}_j)$  for  $\tilde{g}_1, \tilde{g}_2 \in \tilde{G}$ . Since  $\mu^{-1}(\alpha) \ni \tilde{g}_1\tilde{\alpha}_i, \tilde{g}_2\tilde{\alpha}_j$ , by Proposition 3.2 there exists  $\tilde{h} \in \pi$  such that  $\tilde{g}_1\tilde{\alpha}_i = \tilde{h}(\tilde{g}_2\tilde{\alpha}_j)$ . This means  $\tilde{g}_1\tilde{\alpha}_i \in \tilde{G}\tilde{\alpha}_i \cap \tilde{G}\tilde{\alpha}_j$ , so we get a contradiction.

Next we shall show that  $\mu$  is a  $\sigma$ -equivariant map.

**Lemma 3.4.** For  $\tilde{g} \in \tilde{G}$ ,  $\tilde{\alpha} \in \Pi(\tilde{Y})$ , one has  $\mu(\tilde{g}\tilde{\alpha}) = \sigma(\tilde{g})\mu(\tilde{\alpha})$ .

*Proof.* It suffices to show that  $(\rho \times | \ |)(\mu(\tilde{g}\tilde{\alpha})) = (\rho \times | \ |)(\sigma(\tilde{g})\mu(\tilde{\alpha}))$ . The following hold:

$$\begin{split} \rho(\mu(\widetilde{g}\widetilde{\alpha})) &= \sigma(\widetilde{\rho}(\widetilde{g}\widetilde{\alpha})) \\ &= \sigma(\widetilde{g}\widetilde{\rho}(\widetilde{\alpha})\widetilde{g}^{-1}) \\ &= \sigma(\widetilde{g})\sigma(\widetilde{\rho}(\widetilde{\alpha}))\sigma(\widetilde{g})^{-1} \\ &= \sigma(\widetilde{g})\rho(\mu(\widetilde{\alpha}))\sigma(\widetilde{g})^{-1} \\ &= \rho(\sigma(\widetilde{g})\rho(\mu(\widetilde{\alpha})), \text{ and } \\ |\mu(\widetilde{g}\widetilde{\alpha})| &= p(|\widetilde{g}\widetilde{\alpha}|) \\ &= p(\widetilde{g}|\alpha|) \\ &= \sigma(\widetilde{g})p(|\widetilde{\alpha}|) \\ &= \sigma(\widetilde{g})p(|\widetilde{\alpha}|) \\ &= |\sigma(\widetilde{g})\mu(\widetilde{\alpha})| . \end{split}$$

Hence we have

$$(
ho imes | \ |)(\mu(\widetilde{g}\widetilde{lpha})) = (
ho imes | \ |)(\sigma(\widetilde{g})\mu(\widetilde{lpha})).$$

Using Lemmas 3.3 and 3.4, we show that  $\Omega(\widetilde{G}, \Pi(\widetilde{Y}))$  and  $\Omega(G, \Pi(Y))$  are abstractly isomorphic.

**Proposition 3.5.** Both  $\Omega(\widetilde{G}, \Pi(\widetilde{Y}))$  and  $\Omega(G, \Pi(Y))$  have the same rank.

*Proof.* Note that  $\mu$  is surjective by Proposition 3.2. We have the following:

$$\Pi(Y) = \mu(\Pi(\widetilde{Y}))$$
$$= \mu(\prod_{i=1}^{s} \widetilde{G}\widetilde{\alpha}_{i})$$
$$= \prod_{i=1}^{s} \mu(\widetilde{G}\widetilde{\alpha}_{i})$$
$$= \prod_{i=1}^{s} \sigma(\widetilde{G})\mu(\widetilde{\alpha}_{i})$$
$$= \prod_{i=1}^{s} G\mu(\widetilde{\alpha}_{i}).$$

Thus  $\{\mu(\tilde{\alpha}_1), \mu(\tilde{\alpha}_2), \dots, \mu(\tilde{\alpha}_s)\}$  is a complete representatie system of  $\Pi(Y)/G$ . By 2.2, rank  $(\Omega(\tilde{G}, \Pi(\tilde{Y})))$  coincides with rank  $(\Omega(G, \Pi(Y)))$ .

In the remainder of this section, we shall show that the canonical map  $\nu : \Omega(\tilde{G}, \Pi(\tilde{Y})) \to \Omega(G, \Pi(Y))$  is an isomorphism.

**Definition 3.6.** Given a  $\tilde{G}$ -space  $\tilde{X}$ , let  $(g, \tilde{x})$ ,  $(g', \tilde{x}') \in G \times \tilde{X}$ . Then we write  $(g, \tilde{x}) \sim (g', \tilde{x}')$  to mean that there exists  $\tilde{g} \in \tilde{G}$  such that  $g' = g\sigma(\tilde{g})^{-1}$ ,  $\tilde{x}' = \tilde{g}\tilde{x}$ . This relation  $\sim$  can be easily verified to be an equivalence relation. The quotient space  $(G \times \tilde{X}) / \sim$  is denoted by  $G \times_{\sigma} \tilde{X}$ .

Remark that G-action on  $G \times_{\sigma} \widetilde{X}$  is naturally defined by  $(g', [g, \widetilde{x}]) \mapsto [g'g, \widetilde{x}]$  for  $g', g \in G$ , and  $\widetilde{x} \in \widetilde{X}$ . We regard  $G \times_{\sigma} \widetilde{X}$  as a G-space with respect to this action.

Suppose that  $\widetilde{X}$  has a  $\Pi(\widetilde{Y})$ -complex structure  $(\widetilde{X}, \{\widetilde{X}_{\widetilde{\alpha}} \mid \widetilde{\alpha} \in \Pi(\widetilde{Y})\})$ . Setting  $X = G \times_{\sigma} \widetilde{X}$ , we define the map  $p_{\widetilde{X}} : \widetilde{X} \to X$  by  $\widetilde{x} \mapsto [1, \widetilde{x}]$ . Take the point of X to which  $p_{\widetilde{X}}$  maps the basepoint of  $\widetilde{X}$ . For  $\alpha \in \Pi(Y)$ , we define

$$X_{\alpha} = \bigcup_{\widetilde{\alpha} \in \mu^{-1}(\alpha)} p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}}).$$

Let  $\tilde{\alpha}$  be an element of  $\mu^{-1}(\alpha)$ . Then  $X_{\alpha} = p_{\tilde{X}}(\tilde{X}_{\tilde{\alpha}})$  holds. Indeed, it is easy to see that  $p_{\tilde{X}}$  is  $\sigma$ -equivariant. For  $\tilde{\beta} \in \mu^{-1}(\alpha)$ , by Proposition 3.2 there exists  $\tilde{h} \in \pi$  such that  $\tilde{h}\tilde{\alpha} = \tilde{\beta}$ . Thus we have

$$p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\beta}}) = p_{\widetilde{X}}(\widetilde{X}_{\widetilde{h}\widetilde{\alpha}}) = p_{\widetilde{X}}(\widetilde{h}\widetilde{X}_{\widetilde{\alpha}}) = \sigma(\widetilde{h})p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}}) = p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}}).$$

We need the next lemma to prove Lemma 3.8, and Proposition 3.10 will follow from Lemmas 3.8 and 3.9.

**Lemma 3.7.** For  $\widetilde{\alpha}$ ,  $\widetilde{\beta} \in \Pi(\widetilde{Y})$  such that  $|\widetilde{\alpha}| \cap |\widetilde{\beta}| = \emptyset$ , one has  $\widetilde{X}_{\widetilde{\alpha}} \cap \widetilde{X}_{\widetilde{\beta}} = \{*\}$ .

Proof. Suppose that  $\widetilde{X}_{\widetilde{\alpha}} \cap \widetilde{X}_{\widetilde{\beta}} \neq \{*\}$ . Then we can take a cell  $\widetilde{e} \subseteq (\widetilde{X}_{\widetilde{\alpha}} \cap \widetilde{X}_{\widetilde{\beta}}) \setminus \{*\}$  and a point  $\widetilde{x} \in \widetilde{e}$ . Let  $\widetilde{\gamma} \in \Pi(\widetilde{Y})$  be the type of  $\widetilde{e}$ . By 2.1,  $\widetilde{\rho}(\widetilde{\gamma}) = \widetilde{G}_{\widetilde{x}}$  and  $\widetilde{X}_{\widetilde{\gamma}} \supset \widetilde{e}$  hold. On the other hand,  $\widetilde{x} \in \widetilde{X}_{\widetilde{\alpha}} \setminus \{*\} \subseteq \widetilde{X}^{\widetilde{\rho}(\widetilde{\alpha})}$ . Hence we have  $\widetilde{\rho}(\widetilde{\alpha}) \subseteq \widetilde{G}_{\widetilde{x}} = \widetilde{\rho}(\widetilde{\gamma})$ , and  $\widetilde{Y}^{\widetilde{\rho}(\widetilde{\alpha})} \supseteq \widetilde{Y}^{\widetilde{\rho}(\widetilde{\gamma})}$ . For each  $\widetilde{\gamma}' \in \pi_0(\widetilde{Y}^{\widetilde{\rho}(\widetilde{\gamma})})$ , there exists a unique  $\widetilde{\alpha}' \in \pi_0(\widetilde{Y}^{\widetilde{\rho}(\widetilde{\alpha})})$  such that  $\widetilde{\gamma}' \leq \widetilde{\alpha}'$ . Thus we obtain the map  $f : \pi_0(\widetilde{Y}^{\widetilde{\rho}(\widetilde{\gamma})}) \to \pi_0(\widetilde{Y}^{\widetilde{\rho}(\widetilde{\alpha})})$  such that  $\widetilde{\gamma}' \leq f(\widetilde{\gamma}')$  for any  $\widetilde{\gamma}' \in \pi_0(\widetilde{Y}^{\widetilde{\rho}(\widetilde{\gamma})})$ . If  $f(\widetilde{\gamma}) \neq \widetilde{\alpha}$ , then by Definition 1.1(iv),

$$\widetilde{X}_{f(\widetilde{\gamma})}\cap \widetilde{X}_{\widetilde{lpha}}=\{*\}.$$

On the other hand, since  $\tilde{\gamma} \leq f(\tilde{\gamma})$ , we have  $\tilde{X}_{\tilde{\gamma}} \subseteq \tilde{X}_{f(\tilde{\gamma})}$ , and hence

$$\widetilde{X}_{f(\widetilde{\gamma})} \cap \widetilde{X}_{\widetilde{\alpha}} \supseteq \widetilde{X}_{\widetilde{\gamma}} \cap \widetilde{X}_{\widetilde{\alpha}} \supseteq \widetilde{e}.$$

This is a contradiction, which concludes  $f(\tilde{\gamma}) = \tilde{\alpha}$ . This implies  $\tilde{\gamma} \leq \tilde{\alpha}$ . By an argument similar to the above, we have  $\tilde{\gamma} \leq \tilde{\beta}$ . Then since  $|\tilde{\gamma}| \leq |\tilde{\alpha}|$  and  $|\tilde{\gamma}| \leq |\tilde{\beta}|$ ,  $|\tilde{\alpha}| \cap |\tilde{\beta}|$  contains  $|\tilde{\gamma}|$ , which is not empty. This contradicts the assumption that  $|\tilde{\alpha}| \cap |\tilde{\beta}| = \emptyset$ .

**Lemma 3.8.** For  $\alpha$ ,  $\beta \in \pi_0(Y^H)$  such that  $\alpha \neq \beta$ , one has  $X_\alpha \cap X_\beta = \{*\}$ .

Proof. Let  $\tilde{\gamma}$  be an element of  $\mu^{-1}(\gamma)$  for each  $\gamma \in \pi_0(Y^H)$ . As noted previously,  $X_{\alpha} = p_{\tilde{X}}(\tilde{X}_{\tilde{\alpha}})$  and  $X_{\beta} = p_{\tilde{X}}(\tilde{X}_{\tilde{\beta}})$ . Suppose that  $X_{\alpha} \cap X_{\beta} \neq \{*\}$ . We take  $x \in (X_{\alpha} \cap X_{\beta}) \setminus \{*\}$ . Then x is written in two ways:  $x = p_{\tilde{X}}(\tilde{a}) = p_{\tilde{X}}(\tilde{b})$ , where  $\tilde{a} \in \tilde{X}_{\tilde{\alpha}} \setminus \{*\}$  and  $\tilde{b} \in \tilde{X}_{\tilde{\beta}} \setminus \{*\}$ . Now, by the definition of  $p_{\tilde{X}}$ , there exists  $\tilde{h} \in \pi$  with  $\tilde{h}\tilde{a} = \tilde{b}$ . Since  $\tilde{a} \in \tilde{X}_{\tilde{\alpha}}$ , we have  $\tilde{b} = \tilde{h}\tilde{a} \in \tilde{h}\tilde{X}_{\tilde{\alpha}} \setminus \{*\} = \tilde{X}_{\tilde{h}\tilde{\alpha}} \setminus \{*\}$ , hence  $\tilde{b} \in (\tilde{X}_{\tilde{h}\tilde{\alpha}} \cap \tilde{X}_{\tilde{\beta}}) \setminus \{*\}$ . Moreover by Lemma 3.7, since  $|\tilde{h}\tilde{\alpha}| \cap |\tilde{\beta}| \neq \emptyset$ , we have  $|\alpha| \cap |\beta| = p(|\tilde{h}\tilde{\alpha}|) \cap p(|\tilde{\beta}|) \supseteq p(|\tilde{h}\tilde{\alpha}| \cap |\tilde{\beta}|) \neq \emptyset$ . Both  $\alpha$  and  $\beta$  are connected components of  $Y^H$ , and so we obtain  $|\alpha| = |\beta|$ , hence  $\alpha = \beta$ . This is a contradiction, which implies  $X_{\alpha} \cap X_{\beta} = \{*\}$ .

**Lemma 3.9.** For any subgroup H of G,

$$X^{H} = \bigcup_{\widetilde{\alpha} \in \Pi(\widetilde{Y}) \quad s.t. \quad \rho(\mu(\widetilde{\alpha})) = H} p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}}).$$

Proof. For each  $\tilde{\alpha} \in \Pi(\tilde{Y})$  with  $\rho(\mu(\tilde{\alpha})) = H$ , we have  $\sigma(\tilde{\rho}(\tilde{\alpha})) = \rho(\mu(\tilde{\alpha})) = H$  by definition. Since  $p_{\tilde{X}}(\tilde{X}^{\tilde{\rho}(\tilde{\alpha})}) \subseteq X^{\sigma(\tilde{\rho}(\tilde{\alpha}))}$  and  $\tilde{X}$  is a  $\Pi(\tilde{Y})$ -complex, we obtain  $p_{\tilde{X}}(\tilde{X}_{\tilde{\alpha}}) \subseteq p_{\tilde{X}}(\tilde{X}^{\tilde{\rho}(\tilde{\alpha})}) \subseteq X^{\sigma(\tilde{\rho}(\tilde{\alpha}))} = X^{H}$ .

Conversely, take  $x \in X^H \setminus \{*\}$  arbitrarily. Since  $p_{\overline{X}}$  is surjective, there exists  $\widetilde{x} \in p_{\overline{X}}^{-1}(x)$ , and then we have  $\sigma(\widetilde{G}_{\widetilde{x}}) = G_x$ . Indeed, noting that  $p_{\widetilde{X}}$  is  $\sigma$ -equivarent and  $\pi$  acts transitively on each fibre of  $p_{\widetilde{X}}$ , one can easily verify that  $\sigma(\widetilde{G}_{\widetilde{x}}) = G_x$ . Take a cell  $\widetilde{e} \subset \widetilde{X}$  such that  $\widetilde{e} \ni \widetilde{x}$ . Let  $\widetilde{\gamma} \in \Pi(\widetilde{Y})$  be the type of  $\widetilde{e}$ . By 2.1,  $\widetilde{\rho}(\widetilde{\gamma}) = \widetilde{G}_{\widetilde{x}}$  and  $\widetilde{e} \subseteq \widetilde{X}_{\widetilde{\gamma}}$ . Take  $\widetilde{y} \in |\widetilde{\gamma}|$ , and we have  $p(\widetilde{y}) \in p|\widetilde{\gamma}| = |\mu(\widetilde{\gamma})|$ . Set  $y = p(\widetilde{y}), \gamma = \mu(\widetilde{\gamma})$ , and  $\widetilde{H} = (\sigma|\widetilde{G}_{\widetilde{y}})^{-1}(H)$  respectively. Putting all together, we get the following:

where each of the upper sets corresponds to each of the lower sets via the isomorphism  $\sigma | \widetilde{G}_{\widetilde{y}} : \widetilde{G}_{\widetilde{y}} \longrightarrow G_y$ . By the above diagram,  $\widetilde{x} \in \widetilde{X}^{\widetilde{H}}$  holds. Since  $\widetilde{X}$  is the  $\Pi(\widetilde{Y})$ -complex, we get  $\widetilde{x} \in \bigcup_{\widetilde{\alpha}} \widetilde{X}_{\widetilde{\alpha}}$ , where  $\widetilde{\alpha} \in \Pi(\widetilde{Y})$  with  $\rho(\widetilde{\alpha}) = \widetilde{H}$ . Mapping two sides by  $p_{\widetilde{X}}$ , we have  $x = p_{\widetilde{X}}(\widetilde{x}) \in \bigcup_{\widetilde{\alpha}} p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}})$ . On the other hand,  $\rho(\mu(\widetilde{\alpha})) = \sigma(\widetilde{\rho}(\widetilde{\alpha})) = \sigma(\widetilde{H}) = H$ , as was to be shown.

**Proposition 3.10.** The above space X is a  $\Pi(Y)$ -complex.

Proof. We must verify that X satisfies Definition 1.1(i)-(iv). Condition (i) is clearly fulfilled. We shall verify (ii)-(iv). First let  $\tilde{\alpha} \in \mu^{-1}(\alpha)$  and  $\tilde{g} \in \sigma^{-1}(g)$ . Then  $\mu(\tilde{g}\tilde{\alpha}) = \sigma(\tilde{g})\mu(\tilde{\alpha}) = g\alpha$ . This means  $\tilde{g}\tilde{\alpha} \in \mu^{-1}(g\alpha)$ . Hence we have  $X_{g\alpha} = p_{\tilde{X}}(\tilde{X}_{\tilde{g}\tilde{\alpha}}) = p_{\tilde{X}}(\tilde{g}\tilde{X}_{\tilde{\alpha}}) = \sigma(\tilde{g})p_{\tilde{X}}(\tilde{X}_{\tilde{\alpha}}) = gX_{\alpha}$ , which verifies (ii). Second, let  $\alpha \leq \beta \in \Pi(Y)$ . Let  $\tilde{\alpha}$  be the fixed element of  $\mu^{-1}(\alpha)$ . Take  $\tilde{y} \in |\tilde{\alpha}|$  and set  $y = p(\tilde{y}) \ (\in p(|\tilde{\alpha}|) = |\alpha| \subseteq Y^{\rho(\alpha)})$ . By assumption,  $Y^{\rho(\alpha)} \subseteq Y^{\rho(\beta)}$ . Hence we get  $y \in Y^{\rho(\beta)}$ . Then we have  $\rho(\beta) \subseteq G_y$ . Recall  $\sigma | \tilde{G}_{\tilde{y}} : \tilde{G}_{\tilde{y}} \to G_y$  is an isomorphism. Setting  $\tilde{H} = (\sigma | \tilde{G}_{\tilde{y}})^{-1}(\rho(\beta))$ , we obtain an element  $\tilde{\beta} \in \pi_0(\tilde{Y}^{\tilde{H}})$  with  $|\tilde{\beta}| \supseteq |\tilde{\alpha}|$ . Since  $\tilde{\rho}(\tilde{\beta}) = \tilde{H} \subseteq \tilde{\rho}(\tilde{\alpha})$ , we have  $\tilde{\alpha} \leq \tilde{\beta}$ . We get at once  $\sigma(\tilde{\rho}(\tilde{\beta})) = \sigma(\tilde{H}) = \rho(\beta)$ . The space  $p(|\tilde{\beta}|) \ (\supseteq |\alpha|)$  is a connected component of  $Y^{\sigma(\bar{\rho}(\beta))} = Y^{\rho(\beta)}$ , and  $|\beta| \ (\supseteq |\alpha|)$  is also a connected component of  $Y^{\rho(\beta)}$ . This means  $|\beta| \supseteq p(|\tilde{\beta}|)$ . By the definition of  $\mu$ , we have  $\mu(\tilde{\beta}) = \beta$ , that is,  $\tilde{\beta} \in \mu^{-1}(\beta)$ . Therefore  $X_{\alpha} = p_{\tilde{X}}(\tilde{X}_{\tilde{\alpha}}) \subseteq p_{\tilde{X}}(\tilde{X}_{\tilde{\beta}}) = X_{\beta}$ , which finishes the verification of (iii). Finally Lemmas 3.8 and 3.9 guarantee (iv).

The next lemma will be used to prove Theorem 3.12.

**Lemma 3.11.** Let  $\tilde{\alpha}$  be an element of  $\Pi(\tilde{Y})$  and set  $\alpha = \mu(\tilde{\alpha})$ . Then  $G \times_{\sigma} (\tilde{\alpha})^+$  is isomorphic to  $(\alpha)^+$  as  $\Pi(Y)$ -complexes.

Proof. We start with two definitions:

$$\begin{array}{l} (\widetilde{\alpha})^+ = \widetilde{G}/\widetilde{\rho}(\widetilde{\alpha}) \amalg \{*\}, \quad \text{and} \\ (\widetilde{\alpha})^+_{\overline{a}} = \{\widetilde{g}\widetilde{\rho}(\widetilde{\alpha}) \mid \widetilde{g} \in \widetilde{G}, \quad \widetilde{g}\widetilde{\alpha} \leq \widetilde{\beta}\} \amalg \{*\} \quad \text{for} \quad \widetilde{\beta} \in \Pi(\widetilde{Y}) \end{array}$$

Set  $\widetilde{X} = (\widetilde{\alpha})^+$  and  $X = G \times_{\sigma} (\widetilde{\alpha})^+ = G \times_{\sigma} \widetilde{X}$ . First we investigate the cardinality of  $\widetilde{X}$  and X respectively. It is obvious that  $|\widetilde{X}| = |\widetilde{G}/\widetilde{\rho}(\widetilde{\alpha})| + 1$ , where  $|\widetilde{X}|$  is the the cardinality of  $\widetilde{X}$ . Notice that

$$|X| = |G/\pi \widetilde{\rho}(\widetilde{\alpha})| + 1$$
  
= |G/\sigma(\widetilde{\rho}(\widetilde{\alpha}))| + 1  
= |G/\rho(\alpha)| + 1  
= |(\alpha)^+|.

Next we shall define a map  $f: X \to (\alpha)^+$  given by  $[1, \tilde{g}\tilde{\rho}(\tilde{\alpha})] \mapsto \sigma(\tilde{g})\rho(\alpha)$ , where the basepoint is mapped to the basepoint. This map is well-defined,  $\sigma$  being surjective, with the result that f is surjective. Since

|X| equals  $|(\alpha)^+|$ , f is also injective. In the following we shall verify that f is a G-map. Choose  $\tilde{a} \in \sigma^{-1}(a)$  for any  $a \in G$ . Then

$$\begin{split} f(a[1,\widetilde{g}\widetilde{\rho}(\widetilde{\alpha})]) &= f([a,\widetilde{g}\widetilde{\rho}(\widetilde{\alpha})]) \\ &= f([\sigma(\widetilde{a}),\widetilde{g}\widetilde{\rho}(\widetilde{\alpha})]) \\ &= f([1,\widetilde{a}\widetilde{g}\widetilde{\rho}(\widetilde{\alpha})]) \\ &= \sigma(\widetilde{a}\widetilde{g})\rho(\alpha) \\ &= \sigma(\widetilde{a})\sigma(\widetilde{g})\rho(\alpha) \\ &= af([1,\widetilde{g}\widetilde{\rho}(\widetilde{\alpha})]). \end{split}$$

Thus f is a G-CW-complex isomorphism. It remains to prove that f is a  $\Pi(Y)$ -map. Remark that the basepoint of X is mapped to the basepoint of  $\widetilde{X}$  by f. For  $x \in X_{\beta} \setminus \{*\}$ , it suffices to verify that  $f(x) \in (\alpha)_{\beta}^{+}$  for any  $\beta \in \Pi(Y)$ . Let  $\widetilde{\beta}$  be an element of  $\mu^{-1}(\beta)$ . Since  $p_{\widetilde{X}} : \widetilde{X} \to X$  is surjective and  $X_{\beta} = p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\beta}})$ , there exists  $\widetilde{x} \in \widetilde{X}_{\widetilde{\beta}}$  such that  $x = p_{\widetilde{X}}(\widetilde{x}) = [1, \widetilde{x}]$ . By the definition of  $\widetilde{X}_{\widetilde{\beta}} = (\widetilde{\alpha})_{\widetilde{\beta}}^{+}$ , the point  $\widetilde{x}$  is written in the form:  $\widetilde{x} = \widetilde{g}_0 \widetilde{\rho}(\widetilde{\alpha})$  with  $\widetilde{g}_0 \widetilde{\alpha} \leq \widetilde{\beta}$ , where  $\widetilde{g}_0$  is a certain element of  $\widetilde{G}$ . The following holds:

$$egin{aligned} f(x) &= f([1,\widetilde{x}]) \ &= f([1,\widetilde{g}_0\widetilde{
ho}(\widetilde{lpha})] \ &= \sigma(\widetilde{g}_0)
ho(lpha) & ext{with} \quad \sigma(\widetilde{g}_0)\mu(\widetilde{lpha}) &\leq \mu(\widetilde{eta}). \end{aligned}$$

Hence we have f(x) lies in

$$(\alpha)_{\beta}^{+} = \{g\rho(\alpha) \mid g \in G, g\alpha \leq \beta\} \amalg \{*\},\$$

which asserts f is a  $\Pi(Y)$ -map. It follows at once that f is an isomorphism between  $\Pi(Y)$ -complexes.  $\Box$ 

For each  $\alpha \in \Pi(Y)$ , take  $\tilde{\alpha} \in \mu^{-1}(\alpha)$ . Suppose that  $[\widetilde{X}] = [\widetilde{Z}]$ . Then  $\bar{\chi}(\widetilde{X_{\tilde{\gamma}}}) = \bar{\chi}(\widetilde{Z_{\tilde{\gamma}}})$  for all  $\tilde{\gamma} \in \Pi(\widetilde{Y})$ . We have already seen

$$(G \times_{\sigma} \widetilde{X})_{\alpha} = p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}}), \text{ and } (G \times_{\sigma} \widetilde{Z})_{\alpha} = p_{\widetilde{X}}(\widetilde{Z}_{\widetilde{\alpha}}).$$

Now,

$$\bar{\chi}(p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\alpha}})) = \bar{\chi}(\widetilde{X}_{\widetilde{\alpha}})/|\pi| = \bar{\chi}(\widetilde{Z}_{\widetilde{\alpha}})/|\pi| = \bar{\chi}(p_{\widetilde{X}}(\widetilde{Z}_{\widetilde{\alpha}})).$$

Hence we have  $\bar{\chi}((G \times_{\sigma} \tilde{X})_{\alpha}) = \bar{\chi}((G \times_{\sigma} \tilde{Z})_{\alpha})$  for all  $\alpha \in \Pi(Y)$ , which means  $[G \times_{\sigma} \tilde{X}] = [G \times_{\sigma} \tilde{Z}]$ . Thus the canonical correspondence  $[\tilde{X}] \mapsto [G \times_{\sigma} \tilde{X}]$  gives a well-defined map  $\Omega(\tilde{G}, \Pi(\tilde{Y})) \to \Omega(G, \Pi(Y))$  and it has been denoted by  $\nu$ .

**Theorem 3.12.** ([4, Proposition 3.5]) The map  $\nu$  is an isomorphism.

*Proof.* For two elements  $[\widetilde{X}_1], \ [\widetilde{X}_2] \in \Omega(\widetilde{G}, \Pi(\widetilde{Y}))$ , it is easily verified that

$$p_{\widetilde{X}}(\widetilde{X}_{1\widetilde{\alpha}}\bigvee\widetilde{X}_{2\widetilde{\alpha}})=p_{\widetilde{X}_{1}}(\widetilde{X}_{1\widetilde{\alpha}})\bigvee p_{\widetilde{X}_{2}}(\widetilde{X}_{2\widetilde{\alpha}}).$$

Then we have the following:

$$\nu([\widetilde{X}_1] + [\widetilde{X}_2]) = \nu([\widetilde{X}_1 \bigvee \widetilde{X}_2])$$
  
=  $[G \times_{\sigma} (\widetilde{X}_1 \bigvee \widetilde{X}_2)]$   
=  $[G \times_{\sigma} \widetilde{X}_1] + [G \times_{\sigma} \widetilde{X}_2]$   
=  $\nu([\widetilde{X}_1]) + \nu([\widetilde{X}_2]).$ 

Thus  $\nu$  is a homomorphism. By 2.2,

$$\Omega(G,\Pi(Y)) = \bigoplus_{\alpha} \left\langle [(\alpha)^+] \right\rangle_{\mathbb{Z}}$$

where  $[\alpha]$  runs over  $\Pi(Y)/G$ , hence by Proposition 3.2 and Lemma 3.11,  $\nu$  is surjective. We can write

$$\begin{split} [\widetilde{X}_1] &= \sum_{\widetilde{\alpha} \in \Pi(\widetilde{Y})/\widetilde{G}} n_{\widetilde{\alpha}}^{\widetilde{X}_1}[(\widetilde{\alpha})^+], \text{ and} \\ [\widetilde{X}_2] &= \sum_{\widetilde{\alpha} \in \Pi(\widetilde{Y})/\widetilde{G}} n_{\widetilde{\alpha}}^{\widetilde{X}_2}[(\widetilde{\alpha})^+], \end{split}$$

where  $n_{\widetilde{\alpha}}^{\widetilde{X}_1}$ ,  $n_{\widetilde{\alpha}}^{\widetilde{X}_2} \in \mathbb{Z}$ . By Lemma 3.11, it holds that

$$\nu([\widetilde{X}_1]) = \sum_{\widetilde{\alpha} \in \Pi(\widetilde{Y})/\widetilde{G}} n_{\widetilde{\alpha}}^{\widetilde{X}_1}[G \times_{\sigma} (\widetilde{\alpha})^+] = \sum_{\widetilde{\alpha} \in \Pi(\widetilde{Y})/\widetilde{G}} n_{\widetilde{\alpha}}^{\widetilde{X}_1}[(\mu(\widetilde{\alpha}))^+], \text{ and}$$
$$\nu([\widetilde{X}_2]) = \sum_{\widetilde{\alpha} \in \Pi(\widetilde{Y})/\widetilde{G}} n_{\widetilde{\alpha}}^{\widetilde{X}_2}[G \times_{\sigma} (\widetilde{\alpha})^+] = \sum_{\widetilde{\alpha} \in \Pi(\widetilde{Y})/\widetilde{G}} n_{\widetilde{\alpha}}^{\widetilde{X}_2}[(\mu(\widetilde{\alpha}))^+].$$

Note that  $\{[\mu((\tilde{\alpha})^+)] \mid \tilde{\alpha} \in \Pi(\tilde{Y})/\tilde{G}\}$  is a basis of  $\Omega(G, \Pi(Y))$  by Proposition 3.5. Thus  $\nu([\tilde{X}_1]) = \nu([\tilde{X}_2])$  implies that each of the coefficients is equal, hence only if  $[\tilde{X}_1] = [\tilde{X}_2]$ . This shows that  $\nu$  is injective, and therefore an isomorphism.

**Proposition 3.13.** The set  $\nu(\Phi(\tilde{G}, \Pi(\tilde{Y})))$  is contained in  $\Phi(G, \Pi(Y))$ .

Proof. Let  $x \in \Phi(\widetilde{G}, \Pi(\widetilde{Y}))$ . Then x is represented by  $\widetilde{X^*}$  for some  $\Pi(\widetilde{Y})$ -resolution  $\widetilde{X}$ . Then  $\nu([\widetilde{X^*}]) = [G \times_{\sigma} \widetilde{X^*}]$ . Since  $\overline{\chi}(\widetilde{X^*}) = 0$ ,

$$\bar{\chi}(G \times_{\sigma} \widetilde{X^*}) = \bar{\chi}(\widetilde{X^*})/|\pi| = 0$$

For  $\alpha \in \Pi(Y)$  with  $\alpha \neq \mathfrak{m}$  (where  $\mathfrak{m}$  is a unique maximal element of  $\Pi(Y)$ ),

$$\begin{split} \bar{\chi}((G\times_{\sigma} \widetilde{X}^*)_{\alpha}) &= \bar{\chi}(p_{\widetilde{X}^*}(\widetilde{X}^*_{\widetilde{\beta}})) \quad \text{(for an arbitrarily chosen } \widetilde{\beta} \in \mu^{-1}(\alpha)) \\ &= \bar{\chi}(p_{\widetilde{X}}(\widetilde{X}_{\widetilde{\beta}})) \\ &= \bar{\chi}((G\times_{\sigma} \widetilde{X})_{\alpha}). \end{split}$$

Since  $G \times_{\sigma} \widetilde{X}$  is a  $\Pi(Y)$ -resolution, we have  $\nu(x) = \nu([\widetilde{X^*}]) \in \Phi(G, \Pi(Y))$ .

## 4 PROOF OF THEOREM 1.2

In the following, we shall first define groups  $\pi$ , G and  $\tilde{G}$ , second define a finite  $\tilde{G}$ -CW-complex  $\tilde{Y}$  using the join operator \*, and finally check that  $\tilde{Y}$  is connected and simply connected, and that the G-CW-complex  $Y = \tilde{Y}/\pi$  satisfies  $\pi_1(Y) \cong \pi$  and  $\nu(\Phi(\tilde{G}, \Pi(\tilde{Y})) \neq \Phi(G, \Pi(Y))$ . Define

$$\pi=\mathbb{Z}_p, \quad G=\mathbb{Z}_p imes\mathbb{Z}_q, \quad ext{and} \quad G=\pi imes G.$$

Let  $\mathbb{Z}'_p$  be a subgroup of  $\pi \times \mathbb{Z}_p$  of order p such that  $\mathbb{Z}'_p \neq \pi \times \{1\}$  nor  $\{1\} \times \mathbb{Z}_p$ . Next define

$$B(\mathbb{Z}'_p \times \mathbb{Z}_q, +_1) = (G/(\mathbb{Z}'_p \times \mathbb{Z}_q) * G/(\mathbb{Z}'_p \times \mathbb{Z}_q)) \times \{1\},$$
  

$$B(\mathbb{Z}'_p \times \mathbb{Z}_q, +_2) = (\widetilde{G}/(\mathbb{Z}'_p \times \mathbb{Z}_q) * \widetilde{G}/(\mathbb{Z}'_p \times \mathbb{Z}_q)) \times \{2\},$$
  

$$B(\mathbb{Z}_p \times \mathbb{Z}_q, -_1) = (\widetilde{G}/(\mathbb{Z}_p \times \mathbb{Z}_q) * \widetilde{G}/(\mathbb{Z}_p \times \mathbb{Z}_q)) \times \{1\},$$
  

$$B(\mathbb{Z}_p \times \mathbb{Z}_q, -_2) = (\widetilde{G}/(\mathbb{Z}_p \times \mathbb{Z}_q) * \widetilde{G}/(\mathbb{Z}_p \times \mathbb{Z}_q)) \times \{2\},$$

and

$$B(\mathbb{Z}'_p, +) = B(\mathbb{Z}'_p \times \mathbb{Z}_q, +_1) * B(\mathbb{Z}'_p \times \mathbb{Z}_q, +_2),$$
  

$$B(\mathbb{Z}_p, -) = B(\mathbb{Z}_p \times \mathbb{Z}_q, -_1) * B(\mathbb{Z}_p \times \mathbb{Z}_q, -_2),$$
  

$$B(\mathbb{Z}_q, 1) = B(\mathbb{Z}'_p \times \mathbb{Z}_q, +_1) * B(\mathbb{Z}_p \times \mathbb{Z}_q, -_1),$$
  

$$B(\mathbb{Z}_q, 2) = B(\mathbb{Z}'_p \times \mathbb{Z}_q, +_2) * B(\mathbb{Z}_p \times \mathbb{Z}_q, -_2).$$

Further set

$$\widetilde{Y} = (B(\mathbb{Z}'_p, +) \amalg B(\mathbb{Z}_p, -) \amalg B(\mathbb{Z}_q, 1) \amalg B(\mathbb{Z}_q, 2)) * \widetilde{G}.$$

Then clearly  $\tilde{Y}$  is a finite  $\tilde{G}$ -CW-complex, moreover connected and simply connected. Define  $Y = \tilde{Y}/\pi$ . Since  $\pi$  acts freely on  $\tilde{Y}$ ,  $\pi_1(Y)$  is isomorphic to  $\pi$ .

In the remainder of this section, we shall prove that  $\Phi(\tilde{G}, \tilde{\Pi}) = 0$  and  $\Phi(G, \Pi) \neq 0$ , where  $\tilde{\Pi} = \Pi(\tilde{Y})$ and  $\Pi = \Pi(Y)$ , which concludes the proof of Theorem 1.2.

**Proposition 4.1.** The module  $\Phi(\tilde{G}, \tilde{\Pi})$  is a trivial group.

*Proof.* It is easy to see that  $\widetilde{\Pi}$  consists of 9 elements, that is,

$$\Pi = \{ \beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +_1), \ \beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +_2), \ \beta(\mathbb{Z}_p \times \mathbb{Z}_q, -_1), \ \beta(\mathbb{Z}_p \times \mathbb{Z}_q, -_2), \ \beta(\mathbb{Z}'_p, +), \ \beta(\mathbb{Z}_p, -), \ \beta(\mathbb{Z}_q, 1), \ \beta(\mathbb{Z}_q, 2), \ \widetilde{m} \}$$

such that

$$\begin{aligned} \beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +1) &= B(\mathbb{Z}'_p \times \mathbb{Z}_q, +1), \quad \rho(\beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +1)) = \mathbb{Z}'_p \times \mathbb{Z}_q, \\ \beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +2) &= B(\mathbb{Z}'_p \times \mathbb{Z}_q, +2), \quad \rho(\beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +2)) = \mathbb{Z}'_p \times \mathbb{Z}_q, \\ \beta(\mathbb{Z}_p \times \mathbb{Z}_q, -1) &= B(\mathbb{Z}_p \times \mathbb{Z}_q, -1), \quad \rho(\beta(\mathbb{Z}_p \times \mathbb{Z}_q, -1)) = \mathbb{Z}_p \times \mathbb{Z}_q, \\ \beta(\mathbb{Z}_p \times \mathbb{Z}_q, -2) &= B(\mathbb{Z}_p \times \mathbb{Z}_q, -2), \quad \rho(\beta(\mathbb{Z}_p \times \mathbb{Z}_q, -2)) = \mathbb{Z}_p \times \mathbb{Z}_q, \end{aligned}$$

and

$$\begin{aligned} |\beta(\mathbb{Z}'_{p},+)| &= B(\mathbb{Z}'_{p},+), \quad \rho(\beta(\mathbb{Z}'_{p},+)) = \mathbb{Z}'_{p}, \\ |\beta(\mathbb{Z}_{p},-)| &= B(\mathbb{Z}_{p},-), \quad \rho(\beta(\mathbb{Z}_{p},-)) = \mathbb{Z}_{p}, \\ |\beta(\mathbb{Z}_{q},1)| &= B(\mathbb{Z}_{q},1), \quad \rho(\beta(\mathbb{Z}_{q},1)) = \mathbb{Z}_{q}, \\ |\beta(\mathbb{Z}_{q},2)| &= B(\mathbb{Z}_{q},2), \quad \rho(\beta(\mathbb{Z}_{q},2)) = \mathbb{Z}_{q}, \\ |\widetilde{m}| &= \widetilde{Y}, \quad \rho(\widetilde{m}) = \{1\}. \end{aligned}$$

The  $\tilde{G}$ -poset  $\tilde{\Pi}$  is illustrated in Figure 2.



Fig.2

We recall

$$\mathcal{P}(\Pi) = \{ \alpha \in \Pi \mid \rho(\alpha) \text{ is a subgroup of } G \text{ of prime power order} \}, \text{ and } S(\tilde{G}, \alpha) = \{ K \in S(\tilde{G}) \mid \rho(\alpha) \triangleleft K \subseteq \tilde{G}_{\alpha} \text{ and } K/\rho(\alpha) \text{ is cyclic} \}.$$

We set  $\widetilde{\mathcal{K}} = \{(\alpha, K) \mid \alpha \in \mathcal{P}(\widetilde{\Pi}), K \in S(\widetilde{G}, \alpha)\}$ . Then, define the homomorphism

 $\bar{\chi}_{(\alpha, K)} : \Omega(\tilde{G}, \tilde{\Pi}) \to \mathbb{Z}$ 

by  $\bar{\chi}_{(\alpha, K)}([Z]) = \bar{\chi}(Z^K_{\alpha})$  for  $[Z] \in \Omega(\widetilde{G}, \widetilde{\Pi})$  and  $(\alpha, K) \in \widetilde{\mathcal{K}}$ , and the homomorphism

 $\bar{\chi}_{\alpha}: \Omega(\tilde{G}, \tilde{\Pi}) \to \mathbb{Z}$ 

by  $\bar{\chi}_{\alpha}([Z]) = \bar{\chi}(Z_{\alpha})$  for  $[Z] \in \Omega(\widetilde{G}, \widetilde{\Pi})$  and  $\alpha \in \widetilde{\Pi}$ . Since that  $\Phi(\widetilde{G}, \widetilde{\Pi}) = \{[Z] \in \Omega(\widetilde{G}, \widetilde{\Pi}) \mid \bar{\chi}(Z_{\alpha}^{K}) = 0, \text{ for all } \alpha \in \mathcal{P}(\widetilde{\Pi}) \text{ and } K \in S(\widetilde{G}, \alpha)\},\$ 

$$\begin{split} \Phi(\widetilde{G},\widetilde{\Pi}) &= \ker \left[ \bigoplus_{(\alpha, \ K) \in \widetilde{\mathcal{K}}} \bar{\chi}_{(\alpha, \ K)} : \mathcal{\Omega}(\widetilde{G},\widetilde{\Pi}) \to \bigoplus_{(\alpha, \ K) \in \widetilde{\mathcal{K}}} \mathbb{Z} \right] \\ &\subset \ker \left[ \bigoplus_{(\alpha, \ K) \in \widetilde{\mathcal{K}'}} \bar{\chi}_{(\alpha, \ K)} : \mathcal{\Omega}(\widetilde{G},\widetilde{\Pi}) \to \bigoplus_{(\alpha, \ K) \in \widetilde{\mathcal{K}'}} \mathbb{Z} \right] \end{split}$$

where  $\widetilde{\mathcal{K}'} := \{(\alpha, K) \in \widetilde{\mathcal{K}} \mid \widetilde{Y_{\alpha}}^K \text{ is connected}\}$ . It suffices to prove that

$$\ker(\oplus_{(\alpha, K)\in\widetilde{\mathcal{K}'}}\widetilde{\chi}(\alpha, K))$$

is a trivial group. Since  $\widetilde{Y_{\alpha}}^{K}$  is connected for  $(\alpha, K) \in \widetilde{\mathcal{K}'}$ , we define  $\phi : \widetilde{\mathcal{K}} \to \widetilde{\Pi}$  by  $\phi(\alpha, K) =$ the component of  $\widetilde{Y_{\alpha}}^{K}$ . Furthermore  $Z_{\alpha}^{K} = Z_{\phi(\alpha, K)}$  for  $(\alpha, K) \in \widetilde{\mathcal{K}'}$ , and so we have  $\overline{\chi}_{(\alpha, K)}([Z]) = \overline{\chi}_{\phi(\alpha, K)}([Z])$ . Remark that  $\phi(\widetilde{\mathcal{K}'}) = \widetilde{\Pi}$ . It follows at once that  $\ker(\oplus_{(\alpha, K)\in\widetilde{\mathcal{K}'}}\overline{\chi}_{(\alpha, K)})$  is a trivial group.  $\Box$ 

**Proposition 4.2.** The module  $\Phi(G, \Pi)$  is not a trivial group.

*Proof.* The G-poset  $\Pi = \Pi(Y)$  consists of 9 elements as follows:

$$\begin{split} \Pi(Y) &= \prod_{H \in S(G)} \pi_0(Y^H) \\ &= \prod_{H \in S(G)} \pi_0((\tilde{Y}/\mathbb{Z}_p)^H) \\ &= \pi_0((\tilde{Y}/\mathbb{Z}_p)^{\mathbb{Z}_p \times \mathbb{Z}_q}) \prod \pi_0((\tilde{Y}/\mathbb{Z}_p)^{\mathbb{Z}_p}) \prod \pi_0((\tilde{Y}/\mathbb{Z}_p)^{\mathbb{Z}_q}) \prod \pi_0((\tilde{Y}/\mathbb{Z}_p)^{\{1\}}) \\ &= \{\mu(\beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +_1)), \ \mu(\beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +_2)), \ \mu(\beta(\mathbb{Z}_p \times \mathbb{Z}_q, -_1)), \\ \mu(\beta(\mathbb{Z}_p \times \mathbb{Z}_q, -_2))\} \prod \{\mu(\beta(\mathbb{Z}'_p, +)), \ \mu(\beta(\mathbb{Z}_p, -))\} \prod \{\mu(\beta(\mathbb{Z}_q, 1)), \\ \mu(\beta(\mathbb{Z}_q, 2))\} \prod \{\mu(\tilde{m})\} \end{split}$$

We write the elements of II as follows:  $\alpha_1 := \mu(\beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +_1)), \ \alpha_2 := \mu(\beta(\mathbb{Z}'_p \times \mathbb{Z}_q, +_2)), \ \alpha_3 := \mu(\beta(\mathbb{Z}_p \times \mathbb{Z}_q, -_1)), \ \alpha_4 := \mu(\beta(\mathbb{Z}_p \times \mathbb{Z}_q, -_2)), \ \alpha_5 := \mu(\beta(\mathbb{Z}'_p, +)), \ \alpha_6 := \mu(\beta(\mathbb{Z}_p, -)), \ \alpha_7 := \mu(\beta(\mathbb{Z}_q, 1)), \ \alpha_8 := \mu(\beta(\mathbb{Z}_q, 2)), \ m := \mu(\widetilde{m}).$ 

It suffices to prove that  $\omega = [(\alpha_1)^+] + [(\alpha_4)^+] - [(\alpha_2)^+] - [(\alpha_3)^+]$  lies in  $\Omega(G, \Pi)$  and  $\omega \neq 0$ . However, by 2.5, it is clear that  $\omega \neq 0$ . Since  $G = \mathbb{Z}_p \times \mathbb{Z}_q$ , we have that  $\mathcal{P}(\Pi) = \{m, \alpha_5, \alpha_6, \alpha_7, \alpha_8\}$ . We must show that

$$ar{\chi}(X_{lpha}^{K})=0 \hspace{1mm} ext{for all} \hspace{1mm} lpha \in \mathcal{P}(\Pi) \hspace{1mm} ext{and} \hspace{1mm} K \in S(G, \hspace{1mm} lpha),$$

where X is a  $\Pi$ -complex representing  $\omega$ .

Consider the case of  $\alpha = \alpha_5$ . Then,  $S(G, \alpha) = \{\mathbb{Z}_p, \mathbb{Z}_p \times \mathbb{Z}_q\}$ . For  $K = \mathbb{Z}_p$ , the following hold:

$$\begin{split} \bar{\chi}((\alpha_1)_{\alpha_5}^{+\mathbb{Z}_p}) &= \chi(G/(\mathbb{Z}_p \times \mathbb{Z}_q)) = 1, \\ \bar{\chi}((\alpha_4)_{\alpha_5}^{+\mathbb{Z}_p}) &= \bar{\chi}(\{*\}) = 0, \\ \bar{\chi}((\alpha_2)_{\alpha_5}^{+\mathbb{Z}_p}) &= \chi(G/(\mathbb{Z}_p \times \mathbb{Z}_q)) = 1, \text{ and } \\ \bar{\chi}((\alpha_3)_{\alpha_5}^{+\mathbb{Z}_p}) &= \bar{\chi}(\{*\}) = 0. \end{split}$$

For  $K = \mathbb{Z}_p \times \mathbb{Z}_q$ , the following hold:

$$\begin{split} \bar{\chi}((\alpha_1)_{\alpha_5}^{+\mathbb{Z}_p \times \mathbb{Z}_q}) &= \chi(G/(\mathbb{Z}_p \times \mathbb{Z}_q)) = 1, \\ \bar{\chi}((\alpha_4)_{\alpha_5}^{+\mathbb{Z}_p \times \mathbb{Z}_q}) &= \bar{\chi}(\{*\}) = 0, \\ \bar{\chi}((\alpha_2)_{\alpha_5}^{+\mathbb{Z}_p \times \mathbb{Z}_q}) &= \chi(G/(\mathbb{Z}_p \times \mathbb{Z}_q)) = 1, \text{ and } \\ \bar{\chi}((\alpha_3)_{\alpha_5}^{+\mathbb{Z}_p \times \mathbb{Z}_q}) &= \bar{\chi}(\{*\}) = 0. \end{split}$$

Hence we obtain

$$\bar{\chi}(X_{\alpha}^{\kappa})=0$$

By arguments similar to the above, we obtain

$$\bar{\chi}(X_{\alpha}^{K}) = 0$$
 for all  $\alpha = \alpha_{6}, \alpha_{7}, \alpha_{8}, m$ , and  $K \in S(G, \alpha)$ .

Therefore  $\omega$  lies in  $\Phi(G, \Pi)$ .

**Remark 4.3.** Further computation proves that  $\Phi(G, \Pi) \cong \mathbb{Z}$ .

#### References

- Dovermann K.H and Rothenberg M, The generalized whitehead torsion of a G-fibre homotopy equivalence, Lecure Notes in Math, Transformation Groups (K.Kawakubo,ed), 1375, (1989), Springer-Verlag 60-88.
- [2] tom Dieck, T, Transformation Groups and Representation Theory, Lecture Notes in Math, 766, Springer-Verlag, 1978.
- [3] Kawakubo K, The Theory of Transformation Groups, Oxford University Press, London, (1991).
- [4] Morimoto M. and Iizuka K, Extendibility of G-maps to pseudo-equivalences to finite G-CW-complexes whose fundamental groups are finite, Osaka J. Math. 21 (1984), 59-69.
- [5] Oliver R. and Petrie T, G-CW-surgery and  $K_0(\mathbb{Z}G)$ , Math. Z. 179 (1982), 11-42.
- [6] Rim D.S, Modules over finite groups, Ann. Math. 69 (1958), 700-712.
- [7] Rotman J.J, An introduction to Algebraic Topology, GTM. 119, Springer-Verlag, 1988.
- [8] Swan R.G, Induced representations and projective modules, Ann. Math. 71 (1960), 552-578.