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Let G be a finite group, Y a finite connected G-CW-complex, and let II(Y) denote the G-
poset (in the sense of Oliver-Petrie) associated to Y. They defined the abelian group 2(G,II(Y))
consisting of all equivalent classes of II(Y)-complexes. They also defined the subgroup &(G,II(Y))
related to II(Y)-resolutions. We call #(G,II(Y)) the resolution module of Y. Applying the
Oliver-Petrie theory to the universal covering space Y, we obtain the group £2(G, II(Y)), where
G is a certain extension of G by m (Y). Then the canomcal homomorphism v : 2(G,TI(¥)) =
£2(G,1I(Y)) induced by the projection ¥ — Y is an isomorphism. In this paper, for G = Zp XLy
we construct a finite G-CW-complex Y such that 73 (Y) = Z, and v(®(G,II(Y)) # @(G, H(Y))
where p and q are arbitrary distinct primes.
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1 INTRODUCTION

Throughout this paper let G be a finite group and S(G) denote the set of all subgroups of G. Let
f:X — Y be a G-map between finite G-CW-complexes. When does there exist a G-CW-complex X' 2 X
with X’¢ = X6 and a quasi-equivalence f' : X' = Y extending f? Here a quasi-equivalence f' : X' = Y
means that f’ is a G-map inducing an isomorphism on m and integral homology. R.Oliver and T.Petrie
treated this problem in [5]. To solve the problem, they introduced the set

I(Y) = H mo(Y#)  (the disjoint union of mo(Y #)’s).
HES(G)

Here Y# is the H-fixed point set of ¥ and mo(Y#) is the set of all connected components of Y#. The set
II(Y) is called a G-poset associated to Y. We regard 5(G) as a G-set via the action (g, H) — gHg (g €
G and H € S(G)) and as a partially ordered set via

H<K<+=HI2K (HKecS(G)).

Let S(Y) denote the set of all subcomplexes of Y. We also regard S(Y') as a G-set by left traslation,
ie. (g,4) = gA (g € G and A € S(Y)). Suppose that S(G) x S(Y) has the diagonal action, i.e.
(9.(H,A)) — (gHg ', 94) (9 € G, H € S(G), A € S(Y)).

For a € II(Y), there exists uniquely a subgroup H € S(G) such that a € mo(Y#). Hence we can define
amap p:II{Y) = S(G) by a— H. In addition, II(Y) is given the partial order < by

a <4 if and only if p(a) 2 p(8) and |a] € 8] (e, B € I(Y))

where |af is the underlying space for a € II{Y).
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Definition 1.1. We abbreviate II(Y) to II. A finite G-CW-complex Z with a basepoint g is called a II-
complez if it is equipped with a specified set {Z, | o € I} of subcomplexes Z,, of Z, satisfying the following
four conditions:
(i) g € Za,
(1) gZy = Zga for g€ G, a€ll,
(il) Zo € Zg ifa S P inIl, and
(iv) for any H € S(G),

7" = V Z.

a€ll with p(a)=H

Let F denote the family of all II-complexes and define the equivalence relation ~ on F by
Z~W = x(Zy) =x(Wy) forallaeIl (Z,W € F)

where x(Z,) is the Eulér characteristic of Z,.
The set £2(G,II) = F/~ is an abelian group via

[Z]+[W]=[ZVvW] (Z,W € F).
Moreover it is finitely generated. We call £2(G,II) the Oliver-Petrie module associated with II.
The set
A(G, ) = {[Z] € 2(G,1T) | Z is contractible }
is a submodule of 2(G,II). By [5, Proposition 2.6] the submodule ®(G,II) given below is useful for
computing A(G,II), since
&(G,I) > A(G,II) and [&(G,II) : A(G,TI)] < co.
‘We define
P(II) = {a € I1 | p(a) is a subgroup of G of prime power order}, and
S(G, a) ={K € 5(G) | pla)a K C G5 and K/p(a) is cyclic}

where G, is the isotropy subgroup at a. We set x(Z) = x(Z) — 1 for any space Z. Then the resolution
module (G, I1) is defined by

3(G, 1) = {[Z] € 2(G, 1) | x((Za)®) =0, forall a € P(ll) and K € S(G, a)}.

It is easy to check that ®(G,II) is a subgroup of 2(G,II). This &(G,II) can be defined in the term
of II-resolutions, which will be explained in 2.3. Applying the Oliver-Petrie theory to a covering space,
M.Morimoto and K.Iizuka [4] gave a necessary and sufficient condition to extend a G-map f: X =Y toa
pseudo-equivalence f : X" — Y such that X"® = X when m(Y) is finite. Here a pseudo-equivalence f"
means a G- -map ° which is a (non- equwanant) homotopy equivalence.

Let G and G be finite groups, o : G = G an epimorphism, Y a finite connected G-CW -complex, ¥
a finite connected G-CW-complex, and (Y, p, Y) a o-equivariant covering space (i.e. p(gh) = o(g)p(b)
forge G, be Y). Put w = kero. Furthermore assume that = acts freely and transitively on each fiber.
Under the conditions, the canonical map v : (G, I(Y)) - Q(G,T(Y)) is defined by [X] — [G x, X]
and it is an isomorphism. As for the resolution submodules, we have v(A(G,II(Y))) € A(G,II(Y)) and
v(®(G,TI(Y))) S (G, TI(Y)) [4, Proposition 3.6). In the present paper, we study the next problem :

Problem Do there exist G-CW-complexes Y such that
v(®(G,T(Y)) # &(G,TI(Y)) ?

Our result is:

Theorem 1.2. Let p, ¢ be distinct primes, G = Z, X Z, and G=mx (Zp x Zg), where 7 is a copy of Z,.

Then there ezists a finite connected and simply connected G-CW -complez Y such that the G-CW - -complex
Y =Y/ satisfies m(Y) = 7 and v(®(G, H(Y)) # (G, TI(Y)).

This paper is organized as follows. In Section 2, we review basic properties of the Oliver-Petrie module
and the resolution module. In Section 3, we study relations between the posets of a base space and its
covering space. Finally, in Section 4, we prove Theorem 1.2.
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2 BASIC PROPERTIES OF THE OLIVER-PETRIE MODULES

In this section, we recall basic properties needed later from R.Oliver-T.Petrie [5] and M.Morimoto-
K.Iizuka [4].

2.1 For a finite G-CW-complex Y, the map p x | | : II(Y) = S(G) x S(Y) given by a + (p(c), |a|)
is injective. We regard II(Y) as a subset of S{(G) x S(Y). Then II = II(Y) has a G-action given by
(g, a) = g{p x| D)(a). Furthermore II satisfies the following three conditions:

(i) pla) €S Gy foraell,

(ii) if @ £ 3 then ga < g8 for g € G, and

(iii) for @ € I and H € p(«), there exists uniquely vy € II such that v 2 a and p(y) = H.
In the case where Y = {x} (a singleton),

ny)= [ =" 2" 1 (@ D)= s@.

HeS(G) HeS(G)

Let Z be a Il-complex. For each cell ¢ in Z \ {*}, there exists a unique element a(c) € II such that
plafc)) =Gz, z€c, and cC Z,(). We say that ¢ of type a(c).
2.2 For each a € II(Y), the G-space (@)t = G/p(a) It {*} is equipped with II(Y)-complex structure
such that
(a); ={gpla) | g€ G, ga <P} {x} for BeII(Y).

Let {a; |1 £ i< s} be the complete representative system of II(Y)/G. Then the set 2(G,II(Y)) is a free
abelian group with a basis {{(c;)"] | 1 £ < s} ie

2(G,11(Y)) = ([(as)*] | 1S $ 5,

Suppose hereafter that Y is a finite connected G-CW-complex. Then mo(Y{1}) consists of a unique
element which will be denoted by m. The element m is the maximal element in II(Y).

2.3 A finite k-dimensional II(Y')-complex Z is called a II(Y')-resolution if Z satisfies the following three
conditions:
(i) Z is connected and simply-connected,
(ii) Z is (k — 1)-connected, and
(iii) Hy(Z ;Z) is Z|G)-projective.

If 7 is a k-dimensional II(Y)-resolution, set

16(2) = (-1)¥[Hi(Z ; Z)] € Ko(Z[G)),

where I?O(Z[G]) is the Grothendieck group of finitely generated projective Z[G]-modules modulo free mod-
ules.

For a I1(Y)-resolution Z, we get a II(Y)-complex Z* with ¥(Z*) = 0 by attaching some free cells G x D}
to Z. Clearly x(Z2) = x(Z4) for any « € II(Y')\{m}. Moreover for a k-dimensional II(Y)-resolution Z with
k 2 1, there exists a II(Y )-resolution W satisfying the following conditions:

(i) dmW =k +1,
(ii) ’)/c;(Z) = 'yG(W), and
(iii) [2*] = [W*] in £2(G, II(Y)).
By [5, Proposition 2.6], ®(G,II(Y)) defined in Section 1 coincides with

{[Z*] € 2(G,I(Y))] Z is a II(Y)-resolution}.

Example 2.4. Let G = Zy x Zy and Y = {*} (a singleton). There are three subgroups isomorphic to Z,.
We denote them by Z1, 72, Z3. By 2.1,

I({*}) = S(G) = ({1}, %3, Z3, Z3, Tz x L}

The partially ordered set II({*}) is illustrated by the diagram below. We arrange the elements of II{({x})
such that if @ > b (a, b € II({*})), then a is situated above b. Furthermore we connect a and b by a
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segment if and only if a > b.

Zg XZz

Fig.1

Since G is of prime power order, P(II({*})) coincides with II({*}). As G is abelian, the G-action on
I1({*}) = S(G) is trivial, which amounts to

I({+))/G = S(G)/G = 5(G).
By 2.2, the free abelian group £2(G,II(Y)) has the basis
{ AN [(Z)*) (27 (2], [(Za x Z2)¥] ).

In the following, we show that ®(G, TI({*})) is the trivial group. Each [Z] € ®(G, II({*})) is uniquely
written in the form:

(2] = 2%, [(Z2 % Za)*) + ngy [(Z3)*] + nga[(Z) ) + ng3[(Z3)*] + niny [({1D ],
where each coefficient is some integer and satisfies the condition
X(Z28) = n2ax2, X(Z2 x Z2)E5) + ngy X(Z) 5 + nagx((23)EF)
+ g X((Z)E5) + nyx({1HEF) (24.1)
=0
for each o € P(II({*})) and K € S(G, «). Using (2.4.1), we shall verify that all coefficients vanish.
First, consider the case of @ = Z}. Then we have S(G, a) = {Z}, Z} x Z,}. For o = Z} and K = Z},

since

(2 x Ta)32) = 2({Za x Zo} U () =1,

()3 = X(G/B U (+}) =2, and
(ZD3) = R(@2)i) = (({1}) ) = (B {}) =0,

the equation (2.4.1) implies
Nz,x2, + 2ngy = 0. (2.4.2)
Next for @ = Z} and K = Z} x Z,, since
(22 x L) 3 ™) = x({Zy x T} 1 {x)) =
@B = (B = (@)”"‘“)
(({1})*“ ) = g(W 1 {}) = 0,
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we obtain

NZ,x2, = 0. (243)

We get nz; = 0, nz,xz, = 0 by (2.4.2) and (2.4.3). Similarly for @ = Z2 and Z}, we have nzz = 0 and
nzg = 0. Moreover the case where a = {1}, we have

S(G, o) ={{1}, 23, Z}, Z3}.

Particularly, in the case where @ = {1}, K = {1}, we have

0 =nmx({(1HEE)
=nyx(G)
= 47’1{1}.
Hence n(;y = 0. Putting all together,

NZyxZ, = Nzy = Mgz = Ngg = ng1y = 0.

This concludes [Z] = 0.

3 RELATIONS BETWEEN THE POSETS OF A BASE SPACE AND ITS COVERING
SPACE

In this_section let G and G be finite groups, o : G - G an epimorphism, Y a finite connected G-CW-
complex, Y a finite connected G-CW-complex, and p : Y — Y a o-equivariant covering space. We put
7 = kero. Moreover we assume that 7 acts freely and transitively on each fiber. Remark that the G-action
on Y gives a G-poset IT = II(Y ") and a G-map p: 11 - S(G).

Let a be an element of H(Y).~ Then |&| is a connected component of Y?(3), Hence p(|@|) is connected.
Moreover we have p({@|) € Y7(°(@). Thus there exists a unique connected component a € TI(Y') such that

pla) = o(p(a)) and a| 2 p(|a]). Now we define the map p: I(Y) = II(Y) by &~ o
Lemma 3.1. In the above situation, p(u(&)) = 6(p(a)) and |u(@)| = p(|a|) hold for any & € T(Y).

Proof. We have already showed p(u(@)) = o(p(&)). It suffices to show that |a| € p(la]), where a = u(a).
First we take gy € |&}, and set yo = p(Yo). Take y; € || arbitrarily. Remark that yo € |a| and y;, € |af.
Then there exists a path y(t) : I = |a| such that y{0) = yo and y(1) = y1, where I = [0, 1]. Then we have
alift §(¢) : I = Y of y(t) with §(0) = . On the other hand, for any § € p(@), a path gg(t) : I - Y is
also a lift of y(t) with gy(0) = 7. Hence we have gy(t) = y(t) for any g € g{a). It follows at once that
7(1) € YP@, Since 5, € |a| S Y7, we have §(1) € |a|. Thus y; = p(5(1)) € p(Jal). This means that
la} & p(lal). 0

By Lemma 3.1, the following diagram commutes:
i=my) 2 sG)xs(y)

il [oxe

N=MNIY) —— S(G) x S(Y).

px| |
Proposition 3.2. For any a € II(Y), p~!(a) is non-empty. Moreover m acts transitively on p~'(a).

Proof. We first show that for any a € II(Y), p"'(a) is non-empty. Arbitrarily choose and fix y € |a|.
Since p : Y — Y is surjective, there exists ¥ € p ~!(y). Now, remark that o} G G - gy is an
isomorphism. Since y € |af & C Y*®), we have p(a) C G,. Put H = (s G 7)) l(p(a)) Since HC C~;'~
¥ lies in YH. Hence there exists & € 7r0(YH ) with § € |a|, which implies p(a) = H. Thus we obtain

p(u(@) = o(p(@) = o(H) = p(a), y = p(F) € p(|al) = |u(@)], and y € |u(@)| N |a| # 0. It follows at once
that u(a) = «. Namely, p!(c) is non-empty.
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Next we shall prove that = (= ker o) acts transitively on p ~!(a). Let @ and £ be elements of p.”i(a). It
suffices to show that h& = f for some k € m. By the definition of x, we have o(p(&)) = p(a) = (ﬁiﬂ)) and
p(la@]) = |a| = p(|B]). Let @ and b be the points on |&| and |3| respectively such that p(a@) = y = p(b). Then

there exists h € 7 such that ha=1b because 7 acts transmvely on each fiber. Now, it should be noted that
p(@) € G; and 5(f3) C G- Observe that G~ G~~ = hGzh~!. Remark that o] G~ is an isomorphism from

é to G,. Now, since p(a) & G5, we have hp( yh=! C hGzh! é~ Moreover since 5(3) - ég, we have

(hp( @h) = o(B)o(3(&)o(h™") = p(a). Recalling that o(5(8)) = p(a), we get Eﬁ(a)ﬁ-l = 5(f), that
is, p(ha) = p(ﬁ) Therefore we have ha, 4 € WO(YP(ﬁ)) Remark that b = ha € hla| = |hdl. It follows at
once that b € [ha| N || # 0. Thus ha = . O

Henceforth let {a,, 03, ---, a5} be a complete representative system of H(?) /5, that is,

Y) = H Ga; (disjoint union).

i=1
Lemma 3.3. Fori # j, one has p(Ga;) N u(éaj) =0.

Proof. Suppose that pu(Ga;) ﬂp(@&j) 3 a. Then a is written in two ways: a = p(gi1a;) = u(gea;) for
91, g2 € G. Since p~(a) 3 q1@;, g28;, by Proposition 3.2 there exists h € m such that g1 &; = h(g.a;).
This means g;a; € Ga; N Ga;, so we get a contradiction. a

Next we shall show that u is a o-equivariant map.
Lemma 3.4. For Ge G, ac H(l?), one has p(ga) = o(g)u(a).
Proof. 1t suffices to show that (p x| ) (u(ga)) = (p x| |)(e(g)p(a)). The following hold:

p(p(9a)) = o(p(ga))
o (Gp(@)7 ")
o (§o(p(@)o()
o(9)p(u(@))o(g) ™!
plo(g)u(@)), and
= p(lgal)

p(glal)
a(g)p(lal)
a(g)ln(a)l
o (g)n(@)].

()
3!

ua(

o

Hence we have
(x| Nu(ga)) =(px]| DNe(@u(@). O
Using Lemmas 3.3 and 3.4, we show that £2(G, H( )) and 2(G,II(Y)) are abstractly isomorphic.

Proposition 3.5. Both 2(G,II(Y)) and 2(G,TI(Y)) have the same rank.
Proof. Note that p is surjective by Proposition 3.2. We have the following:

(Y) = u(ns(?»
= u(I_I1 Ga;)
= Ijjlu@&)
= i[la(é)u(ai)
= I;IIGN(&)'
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Thus {u(a1), p(@), ---, u(@s)} is a complete representatie system of I[I(Y)/G. By 2.2, rank (2(G,II(Y)))
coincides with rank (2(G,II(Y)}). O

In the remainder of this section, we shall show that the canonical map v : 2(G, H(?)) - 2(G,II(Y)) is
an isomorphism.

Definition 3.6. Given a G-space X, let (g,Z), (¢',%') € G x X. Then we write (g,Z) ~ (g’,%') to mean
that there exists § € G such that ¢’ = go(g)™', Z' = gz. This relation ~ can be easily verified to be an
equivalence relation. The quotient space (G x X)/ ~ is denoted by G x, X.

Remark that G-action on G x, X is naturally defined by (9',[9,%)) ~ [¢'g,%] forg', g€ G,and 7 € X.
We regard G X, Xi as a G-space with respect to this action. _ _

Suppose that X has a II(Y)-complex structure (X, {Xz | a € II(Y)}). Setting X = G x, X, we define
the map pz : XX by Z + {1,Z]. Take the point of X to which p3 maps the basepoint of X. For
a € II(Y), we define

Let & be an element of u~1(a). Then X, = p}?(ia) holds. Indeed, it is easy to see that p 3 is o-equivariant.
For 8 € p~!(a), by Proposition 3.2 there exists h € m such that ha = B. Thus we have

px(X5) = pg(Xs5) =pg(hXa) = o(h)p5(Xz) = px(Xa)-
We need the next lemma to prove Lemma 3.8, and Proposition 3.10 will follow from Lemmas 3.8 and 3.9.

Lemma 3.7. For @, f € II(Y) such that |&| N |8] =@, one has X5 N XE = {*}.

Proof. Suppose that X5 N )?5 # {*}. Then we can take a cell € € (5('& n }?5)\{*} and a point Z € €. Let
5 € II(Y) be the type of & By 2.1, 5(}) = Gz and )?:, O € hold. On the other hand, % € Xz\{*} C X7(@),
Hence we have p(a) € Gz = p(7), and YP(& 2 Y73, For each ¥ € mo(Y?™), there exists a unique
& € mo(YP@) such that 3 < &. Thus we obtain the map f : no(?ﬁ(r’)) — mo(Y?@) such that 7 < &)
for any 7 € mo(YPM). If f(7) # &, then by Definition 1.1(iv),

X5 N Xz = {*}.
On the other hand, since ¥ £ f(7), we have X}, - Xf(;), and hence
XppNXz 2X5nX5 2%
This is a contradiction, which concludes f(3) = a. This implies ¥ £ @. By an argument similar to the

above, we have 5 < 8. Then since || € |a| and || € |A], |&| 0 |B| contains |§|, which is not empty. This
contradicts the assumption that |&| N |8 = 0. O

Lemma 3.8. For a, § € mo(YH) such that a # B, one has Xo N Xp = {*}.

Proof. Let ¥ be an element of p~!(y) for each v € mo(YH). As noted previously, X, = pz(Xz) and
Xp = pg(X3). Suppose that X, N X # {x}. We take z € (Xo N Xp)\{*}. Then z is written in two ways:
z = pz(a) = pz(b), where @ € Xz\{+} and b € X5\{*}. Now, by the defintion of pz, there exists h € 7
with ha = b. Since @ € X5, we have b = ha € hXz\{*} = X;;\{*}, hence b € (X5, N Xﬁ)\{*} Moreover
by Lemma 3.7, since |ha| N |3| # 0, we have ja| N || = p(jha]) N p(|8]) 2 p(|ha| N {B]) # 0. Both a and 3

are connected components of Y and so we obtain |a| = |3], hence a = 8. This is a contradiction, which
implies X, N X5 = {*}. O

Lemma 3.9. For any subgroup H of G,

xH = U pz(Xz).
ael(Y) st p(p(a@)=H
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Proof. For each @ € TI(Y ) with p(u(@)) = H, we have o(p(@)) = p(p(@)) = H by definition. Since
(X”(“)) X°@®@®) and X is a II(Y )-complex, we obtain pX(X ) € (5{._(- ) € X)) = xH
Conversely, take z € XH\ {4} arbitrarily. Since Py is surjective, there exists T € P% 1(z), and then we

have O'(Gx) = G;. Indeed, noting that p3 is o-equivarent and 7 acts transitively on each fibre of pz, one

can easily verify that o(Gz) = G;. Take a cell € C X such that € 3 £. Let ¥ € II{Y') be the type of €. By

2.1, 5(7) = Gz and &  X5. Take § € |7], and we have p(3) € p|7| = |n(7)|. Set y = p(@),v = p(7), and

H = (0|Gy )~ (H) respectively. Putting all together, we get the following:

H

N

Gz =5 € Cy

HCGu=p(v) C Gy

where each of the upper sets corresponds to each of the Iower sets via the 1somorph1sm 0'|G G — Gy.

By the above diagram, Z € XH holds. Since X is the H( )-complex, we get T € U Xz, where @€ H(Y)
with p(a) = H. Mappmg two sides by pg, we have ¢ = pg(Z) € Uz pX(X ). On the other hand,
p(u(&)) = o(p(@)) = o(H) = H, as was to be shown. O

Proposition 3.10. The above space X is a II(Y)-complex.

Pmof. We must verify that X satisfies Definition 1.1(i)-(iv). Condition (i) is clearly fulfilled. We shall
verify (ii)-(iv). First let & € p~'(a) and § € 07'(g). Then u(§a@) = o(§)n(&@) = ga. This means
ga € p~!(ga). Hence we have Xyo = pX(Xga) = px(gX ) = (g)pX(X ) = 9Xo, which verifies (ii).
Second, let oo £ g € II(Y). Let & be the fixed element of p~!(a). Take § € |a| and set y = p(¥) (€ p(la|) =

laf € Y”(‘")) ‘By assumption, Y #(*) - Y#(). Hence we gety € Y#(). Then we have p(8) C € Gy. Recall

ol G Gy — Gy is an lsomorphlsm Setting H = (o Gy) 1(p(B)), we obtain an element ,3 € 7rg(YH)
with |3] 2 |@l. Since 7(8) = H C 5(a), we have &@ < . We get at once cr(p(ﬁ)) = 0’( = p(B). The
space p(|E|) (2 laf) is a connected component of yo@@) = = Y*¥) and |3} (2 la) is also a connected
component of Y#(8). This means |,8| 2 p(|ﬂ|) By the definition of p, we have ;.4(,3) B, that is, B € p=(B).
Therefore X, = p3 (Xz) C € rx (X ) = Xp, which finishes the verification of (iii). Finally Lemmas 3.8 and
3.9 guarantee (iv). O

The next lemma will be used to prove Theorem 3.12.

Lemma 3.11. Let & be an element of TI(Y) and set o = p(&). Then G x4 (&)* is isomorphic to ()* as
II(Y')-complezes.

Proof. We start with two definitions:

(@)* = G/p(@) 1 {x}, and
(a)~—{g/)( )| G€G, ga<FIU{+} for §e().

Set X = (@) and X = G x, (@)* = G x, X. First we investigate the cardinality of X and X respectively.
It is obvious that | X| = |G’/p( )| + 1, where | X| is the the cardinality of X. Notice that

Next we shall define amap f : X — (a)* given by [1,§p(&)] — ¢(3)p(a), where the basepoint is mapped
to the basepoint. This map is well-defined, o being surjective, with the result that f is surjective. Since
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| X| equals |(a)*|, f is also injective. In the following we shall verify that f is a G-map. Choose @ € o~ (a)
for any a € G. Then

[a, 35(@)])
[o(@), gp(a)])

f(a[1,gp(a)]) = g
g[l ,agp(a)])
(

ag)p(a)

Thus f is a G-CW-complex isomorphism. It remains to prove that f is a II{Y)-map. Remark that the
basepoint of X is mapped to the basepoint of X by f. For z € Xg\{*}, it suffices to verify that f(z) € (a);
for any 8 € TI(Y). Let 8 be an element of 4~1(8). Since p : X — X is surjective and X = p)?(XE), there
exists T € X5 such that = = p5(z) = [1,z]. By the definition of X5 = (a)g, the point Z is written in the

form: Z = gop(@) with goa < B, where go is a certain element of G. The following holds:

fl@) = F(LE)
= 71, 50p(@)] i
=0o(go)p(a) with o (go)u(@) < p(f)-
Hence we have f(z) lies in
()f = {gp(e) | g€ G, ga < PYU{s},
which asserts f is a II(Y)-map. It follows at once that f is an isomorphism between II(Y)-complexes. O
For each a € TI(Y), take &@ € p~(a). Suppose that [X] = [Z]. Then )2(5(7,-) = )’((Zv:,) for all § € TI(Y).
We have already seen

(G %o X)a = p3(
(G %o D) =

N ><1

a), and
&)

><r

Now, _ _ _ _
X(pz(Xz)) = X(Xa)/In| = x(Za)/|x| = X(p(Za))-
Hence we have %((G %o X)) = %((G %, Z) )a) for all a € II(Y'), which means [G X, X] =[G x, Z]. Thus

the canonical correspondence [X] — [G X, X] gives a well-defined map (G, I(Y)) = R(G,TI(Y)) and it
has been denoted by v.

Theorem 3.12. (|4, Proposition 3.5]) The map v is an isomorphism.

Proof. For two elements [X,], [X2] € (G, TI(Y)), it is easily verified that
Px (}zla V )-Zza) =Py, ()zla) vpﬂ(iza)-
Then we have the following:

(X)) + [ X)) = v([X;: \/ X2))
=[G x, (X1 \/ X2)] 3
=[G %y X1] + [G X X2]
= v([X4)) + v(|X3)).

Thus v is a homomorphism. By 2.2,

2(G,I(Y)) = EB([ 1),
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where [a] runs over II(Y)/G, hence by Proposition 3.2 and Lemma 3.11, v is surjective. We can write

K= Y nf@"], and
~ aen(yY)/G _
[X]= ). a2 (@),

aen(¥)/G
where n)?‘, n§2 € Z. By Lemma 3.11, it holds that

Vi) = Y nfGx.@= Y nf{u@)*], and

aen(y)/G _ aer(y)/G _
v(Xal)= Y. aflGx. @Y= Y. nl*m@)']
a&el(Y)/G acll(¥)/G .

Note that {[u((a)*)] | @ € II(Y)/G} is a basis of 2(G,11(Y)) by Proposition 3.5. Thus v([X1]) = v([X3])
implies that each of the coeffients is equal, hence only if {X;]} = [X3]. This shows that v is injective, and
therefore an isomorphism. , O

Proposition 3.13. The set v(®(G,II(Y))) is contained in &(G,II(Y)).

Proof. Let z € ®(G,I(Y)). Then z is represented by X* for some II(Y)-resolution X. Then V([)’E;]) =
[G x, X*]. Since x(X*) =0, _ _
X(G %o X*) = x(X*)/|x| = 0.

For a € II(Y) with @ # m (where m is a unique maximal element of II(Y)),

X((G X4 X*)a) = x(pz( é)) (for an arbitrarily chosen ﬁ € ,u_l(a))

Since G x, X is a II(Y)-resolution, we have v(z) = v([X*]) € ®(G,II(Y)). O
4 PROOF OF THEOREM 1.2

In the following, we shall first define groups =, G and é, second define a finite 5-0W—complex Y using
the join operator #, and finally check that Y is connected and simply connected, and that the G-C'W-complex
Y =Y /7 satisfies 1 (Y) = 7w and v(®(G,II(Y)) # &(G,II(Y)). Define

r=Zy G=Z,xZ, and G=mxG.

Let Z;, be a subgroup of 7 x Z, of order p such that Z;, # 7 x {1} nor {1} x Z,. Next define

B(Z, x Ly, +1) = (Cj/(z; X Zg) * q/(z;, X Zg)) x {1},
B(Z) x Ty, +2) = (G/(B, x ) * G/ (T} x L)) x {2},
B(Zp x Zg, —1) = (Cj/(Zp X Zq) *g/(Zp x Zq)) x {1},
B(Zp x Lq, —2) = (G/(Zp x L) * G[(Zp X Zy)) x {2},
and
B(Z;,, +) = B(Z;, X ZLgy+1) * B(Z;7 X Lg, +2),
B(Zp,—) = B{Zp x Lg,—1) * B(Zy x Zg, —2),
B(Z4,1) = B(Z; X Zqy+1) * B(Zp x Zy, —1),
B(Z4,2) = B(Z;, % Lq,+32) * B(Zp x Zg, —2)
Further set
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Then clearly Y is a finite é-CW—complex, moreover connected and simply connected. Define Y = 17/7r
Since = acts freely on Y, 7 (Y) is isomorphic to .

In the remainder of this section, we shall prove that @(é, ﬁ) = 0 and ®(G,II) # 0, where = H(?)
and IT = II(Y), which concludes the proof of Theorem 1.2.

Proposition 4.1. The module ®(G,1I) is a trivial group.

Proof. 1t is easy to see that I consists of 9 elements, that is,

I ={ﬂ(Z;, X Zq,+1), ,B(Z;, X Zq,+2), B(Zp X Zg,~1), B(Zp x Zq,~2), ﬂ(Z;J)+)v
B(Zp,—), B(Zg,1), B(Zq,2), W}

such that
|ﬁ(Z;, X ZLg,+1)| = B(Z;, X Zg,+1), /)(,B(Z;J X Zg,+1)) = Z;, X Zq,
\B(Zy X Zg,+2)| = B(Z, X Zq,+32),  p(B(Zy X Zg, +2)) = Z;, X Z,
],B(Zp X Zq;"‘l)l = B(Zp X Zq:"‘l)» P(,B(Zp X qu_l)) = Zp X qu
18(Zy x Zg, —2)| = B(Zp X Zq,—2), pP(B(Zp x Ly, —2)) = Zp X Ly,
and
|B(Zy, +)t = B(Zy,+),  p(B(Zy,+)) = Z,
|8(Zp, =)} = B(Zp, =), p(B(Zp,~)) =Ly,
|B(Zq,1)| = B(Zq,1), p(B(Zg,1)) = Zg,
|6(Zq, 2)] = B(Zg,2), p(B(Zq,2)) = Z,
lffl| = Y, /)(ffl) = {1}
The é-poset I is illustrated in Figure 2.
m
B(Z4,2)
B(Z;, +)

ﬁ(Zp,—)ﬂ(Zq,y
\\ /

/\/\

B2, % Lotz Zes=2)3(z, x Ty, —1 Y (Zp X Zgy +2)

Fig.2

We recall

p{e) is a subgroup of G of prime power order}, and

{exell]
S(G, @) = {K € S(G) | p(a) aK € Go and K/p(a) is cyclic}.
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We set K= {(a, K) | a € P(Il), K € S(G, a)}. Then, define the homomorphism
)2(0,‘ K): .Q(é, ﬁ) - 7Z
by X(a, x)([Z]) = %(ZK) for [Z] € 2(G,0) and (o, K) € K, and the homomorphism

by Xa([Z]) = X(Zo) for [Z] € 2(G,TI) and a€ll
Since that ®(G,II) = {[Z] € 2(G,1I) | x(Z2X)

‘I’(é’,ﬁ):ker( P X r:26GIH- P Z}

C ker @ X(a, K) * .Q(é, ﬁ) — @ Z]

L (cx, K)EI’.C‘7 (e, K)GE—;
—~ ~  ~K

where X' := {(a, K) € K |Y, is connected}. It suffices to prove that

ker(®(q, KyekiX(a K))

~K —~ ~ -~

is a trivial group. Since Y, is connected for (o, K) € K', we define ¢ : K — II by ¢la, K) =
the component of f’:K. Furthermore ZX = Z4(a, k) for (o, K) € X', and so we have X(a, k)([Z])
X¢(a, k)([Z]). Remark that d)(ﬁ) =T1. Tt follows at once that ker(EB(a Kyl X(a, k)) is a trivial group. O

Proposition 4.2. The module $(G, 1) is not a trivial group.

Proof. The G-poset Il = II(Y') consists of 9 elements as follows:

nw)= JI m@"

HeS(G)
= [ m((¥/z,)")
HeS(G)
= mo((Y/Zp)" ™) [ mo((Y /Zp) %) [ o (¥ /2)%) | mo((¥ /2,) M)
{W(B(Z), x Ly, +1)), WB(Z, X Ly, +2)), W(B(Zy x Zq, 1)),
1(B(Zp x Tg, —2))} [[{wB(Z,, +)), 1(B(Zp, -))} [T{r(B(Z4, 1)),
w(B(Zg,2)} [ [{n(7)}

We write the elements of II as follows: a; := w(B(Z, X Zg, +1)), @z = p(B(Zy, x Zq, +2)), as :
/"(ﬂ(ZpXZq: _1)), Qyq = /‘(ﬁ(ZPXZQa _2))7 Qs 1= I’L(ﬂ(Z;}7+))’ Qg 1= F"(IB(ZP’ =), a7 = #(ﬂ(Zq, 1)): Qg
M(IB(ZQaz))a m:= /—"('ﬁ")

It suffices to prove that w = [(a;)™] + [(aq)*] — [(az)T] — [(a3)*] lies in 2(G,II) and w # 0. However,
by 2.5, it is clear that w # 0. Since G = Z, x Z,, we have that P(II) = {m, as, as, a7, ag}. We must
show that

I

X(XEY=0 forall acP(ll) and K € S(G, a),

where X is a [I-complex representing w.
Consider the case of @ = as. Then, S(G, a) = {Z,, Z, x Z;}. For K = Z,, the following hold:

X((@1)t2) = x(G/(Zp x Zy)) =1,
x((c)t?) = x({=}) =0,

x((a2)¥F) = x(G/(Zp x Z,)) = 1, and
X((as)t) = x({=}) =
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For K = Z, x Z4, the following hold:

X((an)Elr7%e) = x(G/(Zp x Zy)) =1,
X((aa)fr %) = x({+}) = 0,
X((a2) %) = x(G/(Zp x Zy)) =1, and
X((as)dlr %) = x({+}) =
Hence we obtain
X(X5) =0

By arguments similar to the above, we obtain
X(XEKy=0 forall a=ag, a7, ag, m, and K € S(G, a).
Therefore w lies in (G, II). O

Remark 4.3. Further computation proves that ®(G,II) = Z.
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