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Principal Component Analysis for Functional Data
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In functional principal component analysis (PCA), we treat the data that consist of functions
not of vectors (Ramsay and Silverman, 1997). It is an attractive methodology, because we
often meet the cases where we wish to apply PCA to such data. But, to make this method
widely useful, it is desirable to study advantages and disadvantages in actual applications.
As alternatives to functional PCA, we may consider multivariate PCA applied to 1) original
observation data, 2) sampled functional nata with appropriate intervals, and 3) coefficients
of basis function expansion. Theoretical and numerical comparison is made among ordinary
functional PCA, penalized functional PCA and the above three multivariate PCA.

Keywords: Functional data, Multivariate data, Principal component analysis, Eigenvalue,
Eigenvecotor

1 INTRODUCTION

In functional data analysis, we can analyze the
data that look like curves (Ramsay and Silverman,
1997). We often confront the case in which it is
better to treat such data as functions or curves
rather than as multivariate observations. For ex­
ample, we have growth curves, brain waves or elec­
trocardiographic waves function. In such cases we
sometimes take samples at time points tt, t2, ...
and regard {x(tj),j = 1,2, ... } as a multivariate
observation vector. In this sense the original func­
tion x (t) can be regarded as the limit of {x (t j)} as
the sampling interval tends to zero and the dimen­
sion of the vectors tends to infinity. Here we focus
our attention to the principal component analy­
sis (PCA) in functional context. The purpose of
this study is to see how the functional (or multi­
variate) PCA works in actual data analysis. After

"Graduate School of Natural Science and Technology,
Okayama University, Tsushima, Okayama 700-8530, Japan.

tDepartment of Environmental and Mathematical Sci­
ence, Okayama University, Tsushima, Okayama 700-8530,
Japan.

25

confirming the behavior, we try to investigate the
relationship between multivariate PCA and func­
tional PCA.

2 FUNCTIONAL DATA

In practice we usually obtain sampled data. So at
the first stage of functional data analysis we must
transform the data into functional form. That is,
we have to estimate a fl.\nction on the basis of sam­
pled observations with noise by using an appropri­
ate smoothing method.

2.1 Roughness penalty smoothing
method

Here we introduce the idea of roughness penalty
in estimating a function x from observations Yj =
x(tj) + fj. We use the roughness penalty method
to smooth a function x which has a considerable
roughness. A popular measure of the roughness'
of a function is defined as its integrated squared
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second derivative, i.e.,

This measure assesses the total curvature in x, or
in other words, the degree to which x departs from
a straight line. Then we can define the penalized
residual sum of squares as

3 FUNCTIONAL PRINCIPAL

COMPONENT ANALYSIS

3.1 Ordinary functional principal
component analysis

Suppose we have a set of functional data x(s).
Weight function ~ (s) is chosen in such a way that
it maximizes the variance

where v(s, t) indicates a variance-covariance func­
tion based on the functional data set. The maxi­
mization of PCASV under the constraints

J~k(t)2dt = 1 , J~k(t)~m(t)dt = 0 (k < m)

(8)

j

(2)

The smooth function is estimated by minimizing
PENSSE over the space of function x for which
PEN is defined. The parameter>. is a smoothing
parameter that represents the rate of exchange be­
tween the fit to the data, which is measured by the
residual sum of squares, and the roughness of the
function x, which is quantified by PEN.

2.2 Basic statistics In functional
context

PCASV = JJv(s, t)~(s)~(t)dsdt,

leads to an integral eigenequation as follows:

Jv(s, t)~(t)dt = p~(t).

(7)

(9)

Suppose we have N data functions, which are de­
noted by xdt),X2(t),·.· ,XN(t). In the similar
manner as in ordinary statistical theory, the ba­
sic statistics in functional context are defined as
follows:

Mean function:

N

x(t) = N- 1 L x;(t)
;=1

Variance function:

N

Var(x(t)) = N- 1 L[x;(t) - x(tW
;=1

(3)

(4)

3.2 Penalized functional principal
component analysis

Here penalty function is introduced to incorpo­
rate smoothing into the principal components
(PCs). Suppose the function ~ has square­
integrable derivatives up to degree four, and also
that ~ satisfies one of the following conditions: 1)
either D2~ and D3~ are zero at the ends of the in­
terval T, or 2) the second and third derivatives of
~ satisfy periodic boundary conditions on T. Then
the most popular form of the penalty for ~ is given
by

In this case the penalized variance can be ex­
pressed by

where>. is a smoothing parameter. This expres­
sion means that the trade-off between maximizing
the sample variance and smoothing ~ is controlled

Covariance function:

N

v(s,t) = N- 1 L(x;(s) - x(s))(x;(t) - x(t)) (5)
;=1

Inner product of two functions:

(6)

PCASV
PCAPSV = II ~ 11 2 +>. X PEN2(~)' (11)



Y. YAMANISHI et ai. / Principal Component Analysis for Functional Data 27

Let M be the number of PCs, and define the cross- ~

validation score as

3.3 Choice of the smoothing param­
eter ,\ by cross-validation

by parameter A. The solution e is obtained as
the eigenfunction associated with the largest eigen­
value of the following penalized eigenequation

Temperature functions

(12)/ v(s,t)e(t)dt = p{I + AD4 )e(s).

100 200 300

days

CV(A) = 2:{:1 II Xi(S)-

t t(G- 1)ml (/ e~(t)Xi(t)dt)dil(s) 11 2
,

m=11=1
(13)

where G is the M x M matrix whose (m,l) ele­
ment is the inner product f em (t)el (t)dt and the
subscript [i) means the omission of the i-th ob­
servation. Choose A which minimizes CV(A).

3.4 Numerical algorithm

Suppose we use a set of basis functions ¢(s) =
(¢1(S),'" ,¢K(s)f. Then a functional observa­
tion x(s) and a weight function ~(s) can be ex­
panded as

Va:rtanc:.e-covariance function

Figure 1: Daily temperature data and their
variance-covariance function

K

x(s) = L Ck¢k(S) = cT¢(s),
k=1

(14) 4 NUMERICAL EXAMPLE

K

e(s) = LYk¢k(S) = yT¢(s), (15)
k=1

where x(s) is a centered function and ]{ is the
number of basis functions. Define V as the co­
variance matrix of Cj and let J = f ¢¢T, K =
f(D 2¢)(D2¢)T,LLT = J + AK, and S = L- 1 .

Then the functional eigenequation (9) is trans­
formed to an eigenvalue problem of a symmetric
matrix defined as

We shall apply the penalized functional PCA to
the mean daily temperature data of the 20 weather
stations in Japan in 1999. We use Fourier series
as basis functions. Figure 1 shows the observed
temperature curves and their variance-covariance
function, where the number of basis functions is
set as 30. The stations include Hokkaido, Tokyo,
Kyoto, Osaka and so on.

4.1 Regularization by the number
of basis functions

(16)
Consider to use the basis expansion algorithm dis­
cussed in Section 3.4. If we use the whole basis
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4.3 Cross-validation
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Figure 3: Weight functions for PCl (solid) and
PC2 (dashed) obtained by penalized functional
PCA for four A values (A = 0,10,100 and 1000)•. ;1
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functions whose number is equal to the total num­
ber of observation points (e.g., time points), the
corresponding function has a lot of roughness and
results in over-fitting. Not only to remove consid­
erable roughness but also to avoid extraordinary
computational burden, it is important to use the
appropriate number of basis functions, where it
is denoted by J{. Here we investigate the effect
of the number of basis functions on the obtained
PCs by applying ordinary functional PCA with
four different J{ to the temperature data. Figure
2 shows the weight functions for PCl and PC2,
where J{ = 365,50,30, and 10, respectively. From
these figures it is found that the effect of regular­
ization becomes stronger as J{ decreases.

K-30

~..... , +..... . !' .
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Figure 2: Weight functions for PCl (solid) and
PC2 (dashed) obtained by ordinary functional
PCA for four J{ values (J{ = 365,50,30 and 10)

4.2 Regularization by a smoothing
parameter A

Here we study the performance of smoothing with
roughness penalty. By applying penalized func­
tional PCA discussed in Section 3.2 to the same
data set, where the number of basis functions is
fixed as J{ = 365. Figure 3 shows the penal­
ized weight functions for PCl and PC2, where
A = 0,10,100 and 1000, respectively. From these
figures it is found that we can remove the con­
siderable roughness from the weight function as A
mcreases.

So far, we have confirmed that we can regularize
the weight function by using a smoothing param­
eter A. To determine the value of smoothing pa­
rameter A automatically, we apply cross-validation
method discussed in Section 3.3. Figure 4 shows
the cross-validation scores CV(A) computed by
varying the value of >. with step 10. This figure
shows that the optimum>. is given by >. = 250.
Figure 5 shows the corresponding weight functions
for PCl and PC2 using the optimum>. value deter­
mined by cross-validation. Looking at these weight
functions, we can interpret the PCs as follows: The
PCl is a measure of overall temperatures through­
out the year, while the PC2 represents the contrast
between the temperatures in summer and in win­
ter.

5 RELATIONSHIP BETWEEN

MULTIVARIATE PCA AND

FUNCTIONAL PCA

In practice, we usually obtain sampled data that
takes the form of the vector. To apply functional
data analysis, we must transform the original sam­
pled data into functional form. In the process of
transformation, we can get the coefficient vector
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Cross-validation PC1 weight function
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Figure 5: Weight functions for PCl and PC2 de­
termined by cross-validation
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Figure 4: Cross-validation score (>.
0,10,20, ... ,500)

of the functional data. We are interested in the
relationship among the three forms of the data,
i.e., the original data, the coefficient data and the
functional data. Moreover, we may consider the
discrete functional data that is obtained by sam­
pling from the functional data in appropriate time
points. Now we shall apply PCA to the above four
different forms of data and investigate numerically
their mutual relationships and finally compare to
the result of penalized functional PCA.

5.1 Theoretical comparIson

Before making comparison of those PCA numeri­
cally, we shall discuss their relationships theoret­
ically. The functional PCA is formulated as the
integral eigenequation (9). If we perform sam­
pling with interval h, then it is transformed to an
eigenequation

L v(tj, tk)e(tk) = (p/h)e(tj), (17)
k

of a symmetric matrix V = (v(tj, tk)). Comparing
the two eigenequations (9) and (17), it is obvious
that the eigenvalues are equal with each other up
to a multiplying constant, and the eigenvectors of
(17) are equal to the sampled values of the eigen­
function of (9) if an appropriate normaling con­
stant is multiplied. Next, as discussed in Ramsay

and Silverman (1997, P.l01), eq.(9) can be trans­
formed to

(18)

where C is an N x f{ coefficient matrix of the data
functions and y is a f{ x 1 coefficient vector of the
eigenfunction. As J = J¢¢T reduces to an iden­
tity matrix for Fourier series expansion, eq.(18)
is just equal to the eigenequation of multivariate
PCA of the coefficients for basis functions. The
integral eigenequation for the penalized functional
PCA is expressed as

Jv(s, t)e(t)dt = p(l + >.D4 )e(s). (19)
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Figure 6: Comparison of PC weights (Multivariate
PCA and Functional PCA)

If we perform sampling with interval h, we obtain

Lv(ij,ik)e(tk) =p(l+>'6.4 )e(ij), (20)
k

where 6.4 indicates the fourth order difference op­
erator. Obviously eq.(20) gives somewhat different
eigenvalues and eigenvectors (eigenfunctions) from
the other cases.

5.2 Multivariate PCA and ordinary
functional PCA

Table 1 through 8 show the eigenvalues, the eigen­
vectors, PCl scores and PC2 scores obtained as
the results of PCA of the different data forms.

Figure 7: Comparison of PC weights (Multivariate
PCA and Penalized Functional PCA)

Figure 6 shows the weight vectors in multivari­
ate PCA and the weight functions in functional
PCA (K = 365) for PCl and PC2, respectively.
From these results, it is found that if we use the
whole basis functions whose number is equal to
that of the observation points, the results of func­
tional PCA coincides with those of multivariate
PCA, where it is analyzed by regarding the obser­
vation points as variables. It is also found that
when we apply PCA to the original data matrix,
the coefficient matrix, the sampled functional data
matrix, and the functional data, their eigenvalues
and PC scores one-to-one correspond one another.
And Table 3 and 4 show that the eigenvectors of
the coefficient matrix is different from the others,
because the view of the calculation is different. By
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Eigenvalue
PC Original Discrete Coefficient
1 6.53E+03 6.53E+03 6.53E+03
2 1.98E+02 1.98E+02 1.98E+02
3 1.25E+02 1.25E+02 1.25E+02
4 8.99E+01 8.99E+01 8.99E+01
5 7.l8E+01 7.18E+01 7.l8E+01
6 4.60E+01 4.60E+01 4.60E+01
7 4.04E+01 4.04E+01 4.04E+01
8 2.75E+01 2.75E+01 2.75E+01
9 2.40E+01 2.40E+Ol 2.40E+01
10 2.23E+01 2.23E+01 2.23E+01
11 1.76E+01 1.76E+01 1.76E+01
12 1.36E+01 1.36E+01 1.36E+01
13 1.24E+Ol 1.24E+01 1.24E+01
14 9.63E+00 9.63E+00 9.63E+00
15 9.04E+00 9.04E+00 9.04E+00
16 6.81E+00 6.81E+00 6.81E+00
17 6.68E+00 6.68E+00 6.68E+00
18 6.27E+00 6.27E+00 6.27E+00
19 4.01E+00 4.00E+00 4.00E+00
20 3.47E-12 2.92E-12 1.00E-11

Table 1: Eigenvalues (Multivariate PCA for orig­
inal data, discrete functional data and coefficient
data)

combining the coefficient-type eigenvectors with
basis functions, eventually it will be transformed
into the corresponding eigenfunctions in ordinary
functional PCA.

5.3 Multivariate PCA and penal­
ized functional PCA

Here we try to investigate the relationship be­
tween multivariate PCA and penalized functional
PCA. Figure 7 shows the weight vectors in ordi­
nary PCA and the weight functions in penalized
functional PCA for PC1 and PC2, respectively.
From Table 2, the eigenvalues in penalized func­
tional PCA are smaller compared to those in un­
penalized functional PCA. It is quite natural con­
sidering that the results are different between the
cases when the penalty is taken into account and
not taken into account. Comparing the result of
functional PCA to that of ordinary PCA, it seems
that the eigenfunctions obtained by the penalized

Eigenvalue
PC Functional Penalized Func
1 6.53E+03 6.35E+03
2 1.98E+02 1.16E+02
3 1.25E+02 4.94E+01
4 8.99E+01 3.44E+01
5 7.18E+01 1.31E+01
6 4.60E+01 1.04E+Ol
7 4.04E+Ol 8.53E+00
8 2.75E+01 5.78E+00
9 2.40E+Ol 4.05E+00
10 2.23E+Ol 3.07E+00
11 1.76E+01 1.50E+00
12 1.36E+01 1.36E+00
13 1.24E+01 9.76E-01
14 9.63E+00 7.71E-Ol
15 9.04E+OO 6.34E-Ol
16 6.81E+OO 5.03E-01
17 6.68E+OO 3.51E-01
18 6.27E+00 3.12E-01
19 4.00E+OO 2.32E-Ol
20 l.08E-11 1.51E-13

Table 2: Eigenvalues (Functional PCA and Penal­
ized Functional PCA)

functional PCA interpolate the eigenvectors ob­
tained by the multivariate PCA. Looking at these
figures, we can find that it is easier to interpret
the result in functional PCA than ordinary PCA.

6 CONCLUDING REMARKS

In this study, we have seen how the functional
PCA works in actual data analysis and investi­
gated the relationship between ordinary PCA and
functional PCA numerically. It is observed that,
when we use the basis functions whose number is
equal to the observation points, then functional
PCA provides the same result with ordinary PCA
applied by regarding the observation points as
variables. Also it is found that it is easier to in­
terpret functional PCs than ordinary PCs if an
appropriate smoothing parameter is chosen. In
order to obtain easy-to-interpret result, we need
to choose an appropriate number of basis func­
tions and an appropriate smoothing parameter ,\
carefully. In particular, the regularization should
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1st Eigenvector
vector Ordinary Discrete Coefficient
1 0.06908894 0.06909035 -9.29E-Ol
2 0.08220368 0.08220291 -1.21E-Ol
3 0.0830903 0.0830905 -2.89E-Ol
4 0.07143334 0.07143336 -7.62E-05
5 0.06660804 0.0666083 4.19E-03
6 0.07230082 0.07230075 -2.62E-02
7 0.07656424 0.07656425 3.45E-02
8 0.07199331 0.0719933 4.86E-02
9 0.06820271 0.0682031 -3.56E-02
10 0.06624269 0.06624217 1.46E-02
11 0.05409188 0.05409244 1.61E-02
12 0.05187629 0.05187588 -1.06E-02
13 0.06233494 0.06233593 -3.40E-04
14 0.08146241 0.08146106 1.99E-02
15 0.06740007 0.06740126 3.01E-02
16 0.06689532 0.0668947 6.95E-03
17 0.06869738 0.06869796 -1.79E-02
18 0.07315014 0.07314972 1.66E-03
19 0.06269469 0.06269476 3.91E-03
20 0.05471905 0.05471962 5.55E-03
21 0.06505238 0.06505179 1.32E-02
22 0.06552827 0.06552874 -1.06E-02
23 0.07291382 0.07291386 -8.26E-03
24 0.0762496 0.07624936 -2.16E-02
25 0.05810713 0.05810712 -3.80E-06
26 0.04445394 0.04445451 -3.76E-02
27 0.05440026 0.0543997 1.33E-02
28 0.0703998 0.07040071 -1.84E-02
29 0.09334416 0.09334303 -2.27E-02
30 0.08765165 0.08765271 1.89E-02
31 0.09270653 0.09270611 7.78E-03
32 0.08690243 0.08690234 -7.24E-03
33 0.07599393 0.07599467 -3.05E-03
34 0.07464695 0.074646 -3.32E-02
35 0.05779601 0.05779706 -1.25E-02
36 0.05563449 0.05563355 -7.99E-03
37 0.05454821 0.05454936 -7.75E-03
38 0.07483257 0.0748317 -4.31E-03
39 0.07944731 0.07944779 1.50E-02
40 0.07872682 0.07872664 -2.20E-02
.. . .. . .. . ...
364 0.07508048 0.07508061 4.65E-04
365 0.08520142 0.08520043 5.30E-03

Table 3: 1st Eigenvectors (Multivariate PCA for orig­
inal data, discrete functional data and coefficient
data)

2nd Eigenvector
vector Ordinary Discrete Coefficient
1 0.043199562 0.043199167 -0.089238522
2 0.016455531 0.016454938 -0.107488772
3 -0.009046545 -0.009047895 0.58971268
4 0.03280157 0.032803885 0.00061051
5 0.127856922 0.127857836 0.165430202
6 0.10085961 0.100856568 -0.060575386
7 -0.039990744 -0.039985966 -0.098192826
8 -0.004721639 -0.004722962 0.125822062
9 0.025283388 0.025284231 -0.073961629
10 0.015405123 0.015407403 0.146646522
11 0.055766007 0.055767627 0.027207939
12 0.084849822 0.084852418 -0.119619921
13 0.042438587 0.042438075 0.065775966
14 0.010947198 0.010950926 0.008538453
15 0.054807513 0.054802859 0.057954734
16 0.013782898 0.013786466 0.044968133
17 0.042614463 0.042613954 -0.01055868
18 0.118058545 0.118063341 0.061992911
19 0.143535206 0.143532891 0.058941871
20 0.02363203 0.023638222 0.021080449
21 0.015977336 0.015978956 0.059359616
22 0.089993578 0.08999377 -0.067373909
23 0.059615585 0.059613361 -0.04566901
21 -0.00018376 -0.000180223 -0.126412032
25 0.060144852 0.060139713 0.018277551
26 0.06144119 0.061447954 -0.037243109
27 0.090464361 0.090463397 0.047468979
28 0.018949233 0.018950308 -0.074569412
29 -0.055483831 -0.055481166 -0.107881107
30 -0.004629095 -0.004632668 0.059414533
31 0.015658168 0.015660978 0.046704768
32 0.024711102 0.024707702 0.011914233
33 -0.038691817 -0.038690256 0.078940405
34 -0.015936751 -0.015935535 -0.158612387
35 0.086243635 0.08624431 0.047859055
36 0.092353797 0.092354233 -0.059995492
37 0.068678478 0.068685907 0.029130229
38 0.083631883 0.083625048 0.001109382
39 -0.015664878 -0.01565621 0.037187486
40 0.020996717 0.020988732 -0.079843979
.. . .. . . .. . ..

364 0.029869332 0.029868798 0.035745595
365 0.032270868 0.032272753 -0.013045464

Table 4: 2nd Eigenvectors (Multivariate PCA for
original data, discrete functional data and coefficient
data)
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PCl score
No. Original Discrete Coefficient
1 -171.255921 -171.255669 -12.484194
2 -174.465445 -174.465229 -9.274634
3 -50.572018 -50.572008 -133.167853
4 -77.148632 -77.148611 -106.59125
5 -7.463038 -7.463015 -176.276845
6 36.902086 36.902103 -220.641962
7 -44.464158 -44.464222 -139.275639
8 41.294525 41.294535 -225.034394
9 -49.763224 -49.763263 -133.976598
10 4.942057 4.942025 -188.681884
11 49.216598 49.216547 -232.956405
12 12.457784 12.457715 -196.197574
13 34.129237 34.129192 -217.86905
14 -25.913217 -25.913282 -157.826579
15 29.862519 29.86245 -213.602309
16 22.838984 22.838964 -206.578823
17 34.563043 34.563022 -218.302881
18 54.468554 54.468527 -238.208386
19 87.658528 87.658465 -271.398322
20 192.711738 192.711754 -376.451609

Table 5: PC1 scores (Multivariate PCA for original
data, coefficient data and discrete functional data)

PCl score
No. Functional Penalized Functional
1 -171.255666 -167.095349
2 -174.465225 -170.252668
3 -50.572007 -49.85052
4 -77.148609 -76.536393
5 -7.463015 -8.001284
6 36.902102 37.273276
7 -44.464221 -45.198728
8 41.294534 40.777838
9 -49.763262 -51.219215
10 4.942024 5.511518
11 49.216546 49.156567
12 12.457714 11.409134
13 34.129191 33.317169
14 -25.913281 -27.365068
15 29.862449 29.507093
16 22.838963 21.997128
17 34.563021 33.701597
18 54.468526 53.62796
19 87.658463 86.871977
20 192.71175 192.367967

Table 6: PC1 scores (Functional PCA and Penalized
Functional PCA)

PC2 score
No. Original Discrete Coefficient
1 16.60160571 16.60173691 -81.0193
2 3.27670984 3.27669324 -94.34434
3 30.25315204 30.2526252 -67.36841
4 8.34173234 8.34152632 -89.27951
5 -7.30532293 -7.30435282 -104.92539
6 -11.77505884 -11.77418222 -109.39522
7 -12.01393822 -12.01392783 -109.63496
8 -17.55555143 -17.555028 -115.17606
9 -16.29298649 -16.29270723 -113.91374
10 14.23676318 14.23593641 -83.3851
11 5.25584785 5.25542638 -92.36561
12 -16.19487262 -16.19456685 -113.8156
13 -15.14694071 -15.14639549 -112.76743
14 -9.34915908 -9.349376 -106.97041
15 9.87313244 9.87235317 -87.74868
16 -11.5528681 -11.55240177 -109.17344
17 0.07459628 0.07411778 -97.54692
18 -2.25411507 -2.25449731 -99.87553
19 4.67161286 4.67130154 -92.94973
20 26.85566095 26.85571859 -70.76532

Table 7: PC2 scores (Multivariate PCA for original
data, coefficient data and discrete functional data)

PC2 score
No. Functional Penalized Functional
1 16.60173695 11.398121
2 3.27669332 -7.602013
3 30.25262516 27.67187
4 8.3415263 11.390834
5 -7.30435284 2.711583
6 -11.77418219 -10.3425
7 -12.01392783 -6.888396
8 -17.55502797 -17.478505
9 -16.29270725 -6.361094
10 14.23593642 8.529827
11 5.25542639 -1.260089
12 -16.19456685 -13.230451
13 -15.14639548 -12.106017
14 -9.34937604 -1.939452
15 9.87235315 7.153681
16 -11.55240178 -7.277027
17 0.07411776 2.538924
18 -2.25449732 -3.719148
19 4.67130154 -1.101829
20 26.85571857 17.911681

Table 8: PC2 scores (Functional PCA and Penalized
Functional PCA)
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be primarily controlled by the smoothing parame­
ter A, and truncating basis function should purely
reduce computation without substantially alter­
ing the actual result. In this study, we have ap­
plied cross-validation in determining a smoothing
parameter A, although there is still room for im­
proving the definition of cross-validation score and
developing the efficient method to reduce the con­
siderable computational burden. Moreover, func­
tional data analysis has a lot of advantage. First it
can be applied to the data set in which observation
is made at different points (e .g., time points) for
each individual. In addition, this method makes
it possible to apply differential analysis easily as
long as we use basis expansion method because all
we have to do is to calculate the corresponding
derivative of the basis functions. But there re­
mains a problem of the lack of the theory to treat
infinite dimensional data.
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