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The order of elliptic curves over finite fields of characteristic two
using the Schoof algorithm
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The elliptic curve cryptosystem is a popular cryptosystem. Its safety depends on the

difficulty of the elliptic curve discrete logarithm problem (ECDLP). From the viewpoint of

ECDLP, it is very interesting to determine the order of elliptic curves. We tabulate the order

of elliptic curves on the finite field of characteristic two using the Schoof algorithm, which

is an efficient algorithm to decide orders. The Schoof algorithm is carried out by O(log 8q).

Because the calculation of yq2 occupies most of the time used to execute the Schoof algorithm,

it is necessary to reduce the amount of yq2 calculations.
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two

1. INTRODUCTION

This paper is intended to tabulate the order of

elliptic curves on a large finite field of

characteristic two.

The elliptic curve cryptosystem was invented in

1985 as a public key cryptosystem by Koblitz and

Miller (Koblitz, 1987; Miller, 1986). The elliptic

curve cryptosystem is a popular cryptosystem for

the reasons that the key length of elliptic curve

cryptosystem is shorter than that of the RSA

cryptosystem and that the number of calculations

for encoding and decoding of the elliptic curve
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cryptosystem is less than that in the RSA

cryptosystems (Don & Alfred, 1999). The safety

of the elliptic curve cryptosystem depends on the

difficulty of the elliptic curve discrete logarithm

problem (ECDLP). It is difficult to solve the

ECDLP ifthe order of an elliptic curve involves a

large prime. Generally, an elliptic curve that is

used in the cryptosystem is obtained using the

following procedures. First, we randomly

generate an elliptic curve; then, we verify whether

its order involves a large prime. If not, we repeat

these operations until we obtain a suitable elliptic

curve. From the viewpoint of ECDLP, it is very

interesting to determine the order of elliptic

curves. The simplest method, counting up all

points (x, y) over the elliptic curve, refers to the
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DEFINITION 1 Frobenius trace

For an elliptic curve over Fq , the Frobenius trace

t is defined as

THEOREM 2 The number of points in E(Fq)

When E: /+xy=x 3+ax2+b, #E(Fq) satisfies the

congruence formulae.

THEOREM 1 Hasse's theorem (Hasse, 1933)

The Frobenius trace (1) of an elliptic curve over

F q satisfies the inequality:

(2)

(1)

if Tr(a) = 0
(3)

if Tr(a) = 1

#E(Fq)=q-l+t

Theorem 1 holds in all elliptic curves over any

finite field. For an elliptic curve over the finite

field Fq of characteristic two, the congruence

formulae modulo 4 for the number of Fq-rational

points are followed by the condition that there

exist solutions of the quadratic equation in Fq •

(Blake et al., 1999)

{
o (mod 4)

#E F =
( q) - 2 (mod 4)

number of solutions (y-coordinate) satisfying the

elliptic curve equation for a given x-coordinate (x

EFq). This method is carried out by O(ql+E)(t:>

0). Shanks (1969) proposed the Shanks-Mestre

method based on the Baby-step Giant-step method

and Hasse's theorem, which is performed using

O(q(1/4)+E) for an elliptic curve over Fq . This

method is more efficient than the simplest one for

the elliptic curve on a field, the order of which is

greater than 457 (Cohen, 1993). Schoof (1985)

proposed a more efficient algorithm without

calculation of actual points using division

polynomials. The division polynomial that is

easily obtained by recurrence gives the (x,y)

coordinates of m-times point of an elliptic curve.

The number of calculations in the Schoof

algorithm decreases to O(log8q) (Schoof, 1995).

The use of the field of characteristic two in the

cryptosystem has the advantage of bit-string

representation. From the viewpoint of the Schoof

algorithm, the division polynomial of elliptic

curves on the finite field of characteristic two can

be represented by only one variable that is

different from the finite field of characteristic

greater than two.

2. PREPARATIONS

Therein, Tr(a) denotes the trace of the coefficient

(a) of E in Fq over F2 •

We use the n-degree algebraic extension field of

characteristic two with 2n elements. We denote

the number of elements (2 n
) by q. A non-singular

elliptic curve E over Fq is given by the following

equation.

/+xy=x 3+ax2+b or /+cy=x 3+ax+b (a, b, cEFq)

We prepare several definitions and theorems that

are used in the Schoof algorithm.

2.1.2. The definition of the Frobenius map

over an elliptic curve

DEFINITION 2 The Frobenius endomorphism

map (Tate, 1974)

The Frobenius endomorphism map of E(~) is

defined as

2.1. Definitions and theorems

2.1.1. Hasse's theorem
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(

E(Fq) ~ E(~)

ep: (x,y)~(xq,yq).

e~e

The Frobenius endomorphism cp satisfies eq. (4)

for any point P in E(~ ).

ep2 (P) _ lep(P) + qP =e (4)

For a prime I, when P belongs to I-torsion group

E[l] ofE(~), eq. (4) can be transformed to eq. (5):

2.1.3. Theorem of the supersingular curves

We limit ourselves to the equation

/+xy=x3+ax2+b as an elliptic curve in this paper

because the elliptic curve /+cy=x3+ax+b is

supersingular.

THEOREM 3

The necessary and sufficient condition that an

elliptic curve (Fq) is supersingular is that the

Frobenius trace (I) divides the characteristic (P)

of F q •

Consequently, the non-supersingular curve

satisfies t ;c O(mod p), especially for the case

q=2 n
, (= I mod 2.

2.1.4. Division polynomials

To calculate m-times point (mP) of the elliptic

curve, the division polynomials were devised in

the 19th century. Division polynomials can

increase the efficiency of calculations of the

m-times point over the elliptic curve.

DEFINITION 3 m-division polynomial of the

elliptic curve over F q (Cassels, 1966)

For the finite field of characteristic two, the

division polynomial can be reduced to one

variable polynomial Im(x) of x. The division

polynomials are defined by the following

recursive formulae.

10 =0
I' -I)1 -

12 =x

13 =X
4

+X
3

+b

14 =X
6

+bx
2

12m+1 = Im+2f;' + Im-J;'+I (m ~ 2)

12m = (fm+zJ;'-1 + Im-zJ;'+1 )Im /X (m ~ 3)

For m~2 andp=(x,Y)EE(~)\E[m](E[m]being

the m-torsion group of E(~ )), mP is represented

by eq. (6).

2.2. Outline of the Schoof algorithm

The Schoof algorithm (Schoof, 1985) comprises

two steps. First, the Frobenius trace mod I (1') is

computed for the prime I according to eq. (5).

Secondly, the set of 1"s for I is computed as 1~/max

in inequality (7) because the absolute value of the

Frobenius trace is limited to 4..fj by Theorem I.

#/max:= IT I > 4.jq (7)
I; prime
2$,/~/max.

Next, the Frobenius trace (t) is determined

according to the Chinese remainder theorem. In

the first step of the calculation, cp2(p)+q,P= 1'CP(P),

we use the division polynomial without

determining an explicit point of the elliptic

curve E(~). Value t, which is obtained using the

Chinese remainder theorem, is the absolute value

of the Frobenius trace. Therefore, we decide the

sign of t following Theorem 2.
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3. MATERIAL AND METHODS

3.1. Determination of finite field

There are two kind of bases over a finite field of

characteristic two: a normal basis representation

and a polynomial basis representation (ANSI

X9,62, 1998). We adopt a polynomial basis in this

paper because we can easily perform a

multiplication operation on that basis. For the

field Fq , as a reduction polynomial of degree n,

which provides a polynomial basis of Fq , we

choose a trinomial or pentanomial irreducible

polynomial on F 2 following the method of

Seroussi (1998).

3.2. Representation of an element in F q

An element of F q , which is represented by a

polynomial of degree n-l on F 2 can be expressed

for computer calculations as an n-array of

coefficients in its polynomial.

3.3. Calculations on F q

Calculations such as multiplication, division,

inversion and power are carried out on the basis of

ANSI X9.62.

3.4. Determination of elliptic curves

A nonsingular and non-supersingular elliptic

curve, l+xy=x3+ax2+b, satisfies the conditions as

Tr(a)=l or a=O, bEFq* (8)

The two curves, which have the same constant

term band x2-coefficient (a) 0 and Tr(a)=l, are

called twist curves. The sum of the orders of the

twist curves becomes the constant 2q+2.

# EO,b(Fq)+# ETr(a)~I,b(Fq) =2q + 2 (9)

Therefore, the x2-coefficient a is limited to 0 in

this paper.

3.5. Division polynomials

3.5.1. Record of division polynomials

Division polynomials are recorded in files A and

B to save memory. We classify coefficients of

division polynomials into 0 and 1 and others, e.g.

the type of coefficients. For all necessary division

polynomials, the type of coefficients and the

location of the figure in file B for other type

coefficients are recorded in a two-dimensional

array file A, although an exact figure of other type

coefficients is recorded in a one-dimensional

array file B.

3.5.2. Calculation of division polynomials

The flow chart of the calculation from.fO toftmax is

shown in Fig. 1.

3.6. Execution of the Schoof alogrithm

3.6.1. Definition of the data structure for

Fq-polynomials

We introduce two data structures. A polynomial

ofx over F q is represented by structure a, whereas

a polynomial r(x,y) of two variables (x,y) with a

linear form for variable y, that is, a set of two

polynomials of x, (P(x), q(x)), rex, y)=p(x)+q(x)y,

is represented by structure fl.

3.6.2. Calculation of Fq-polynomials

In the process for the decision of T for the fixed

prime I, all the polynomial calculations are

carried out under modulo fi (fi being the I-th

division polynomial).

Here, r(x,y) is reduced to the linear form of y by

replacement of a high y-term with a linear form of

y through the equation ofthe elliptic curve when a

two-variable polynomial r(x,y) with two or more

y-degree appears in the calculation.
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I) Setting the initial conditions:

data from 10 to 14 and k=5.

2) Reading the division polynomials

calculated previously for calculation ofIk

3) Computation by recurrence

formula for even k

3) Computation by recurrence

formula for odd k

No

4) Recording the calculated!k to files

End

Fig. 1 Flow chart of the calculations for division polynomials

3.6.3. Calculation of yq and yq2

It is necessary to express the principal terms yq

and yq2 in the Schoof algorithm in the form of

structure {3. Under the equation of the elliptic

curve, the explicit formula of yq is given as the

following.

[rz}J i It) Hi It1}>'=1 =r l(if +~X_I if if' +~x'" J 10)

Moreover, yq2 can be expressed by the form of

which satisfies

[qJ2(P)+q,Ph =[±rqJ(p)1 ('r=O,''', (/-1)/2)

on account of the correspondence between

x-coordinates of + Tlp(P) and - TqJ(P).

(1) The case in which q/(P) =±q,P

The equation q/(P) =-q,P leads to T=O (mod I).

On the other hand, the equation q/(P) =q,P leads

to q/(P) =±OJP, where OJ represents a square root of

q, in Fq , which indicates that r=±2 OJ

structure f3 by replacing n with 2n in (10).

3.6.4. Procedures of the Schoof algorithm

For a fixed prime /, we search T (0, "', (/-1 )/2),

(2) The case in which q/(P)#±q,P (T#O)

For this case, we verify the equation:

(/(P)+q,P=± TqJ(P) for T (I ~ T~ (/-1 )/2). As the
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x-coordinate of both the left-hand and right-hand

side of the equation, q,z(P)+q/p and ± TCp(P) are

expressed as fractions. The equation is

transformed into a jJ-type structure by

multiplying the common denominator form of

structure a-type polynomials. We then transform

it into the y-linear form of p(x)+q(x)y=O or

y=p(x)/q(x). When we substitute p(x)/q(x) for yin

the elliptic curve equation, we can obtain the

polynomial h(x) of x satisfying

h(x)=p2(X)+xp(x)q(x)+l(x)x3+l(x)b=O.

If P E E[l] satisfies (l(p)+q/P=± rqJ{P), gcd(h(x),

ft) -::I: I. Thereafter, we determine the sign of r

through y-coodinate in (l(p)+q/P= rqJ{P) in the

same manner. We can obtain r:: t (mod I) or - r:: t

(mod I) by satisfying the equation or not

satisfying it.

When we find r :: t (mod I) for all primes I (l:£

lmax), t can be determined using the Chinese

remainder theorem, which leads to determination

of the order of the elliptic curve using Hasse's

theorem.

r=-2w
No

No

No

Go to (2)

C: qJ2(p)-::I:±q/P)

Go to search r that

satisfies 2q/P= rqJ(P).

( ... q>2(p)=q/P)

Yes

Fig. 2 Flow chart for the case qJ2(p)=±q/p
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Initial setting r= 1

Calculating(q/(P)+q,P)x=(± TqJ(P»x

13

Yes

No
r=r+l

Yes

,=1 (mod I)

Fig. 3 Flowchart for the case in which qJ2(p):;t:±q,CP)

No ,-------------------,
-,=1 (mod I)

4. RESULT

We calculated the order of elliptic curves with

the constant terms b= 1, F(16) over

F", F 40 F .• F 60 and FRO (Table 1). The
2'2'2"""2 2

distribution of the Frobenius trace for 2 12 constant

terms (b=l, ···,1000(16) over F I7 is shown in Fig.
2

4. We tabulated the orders and the residues

modulo 1(/=2, ... , 43) of the Frobenius trace over

F 100 (Table 2). The irreducible polynomial on F2
2

used in the results is shown in Table 3.

the Frobenius trace 1 mod I deterministically

(Schoof, 1985). The calculation of yq2 occupies

most of the computation time in the Schoof

algorithm. For example, in the elliptic curve over

F
224

, we spend 178 s computing y.', whereas we

spent about 290 s for the entire computation ofthe

Frobenius trace modulo I. The yq2 -calculation

requires about 60% in the calculation of the

Schoof algorithm irrespective of the difference of

the search path. Therefore, it is important to

reduce of y.' -calculation. Most computation time

in y2· is spent in the second term of the left hand

side in (10):

5. DISCUSSION (11 )

The utilization of division polynomials provides

the key to the Schoof algorithm for a search of the

Frobenius trace without the determination of

I-torsion point in E(PJ Consequently, we obtain

where 'l(x) stands for x 3+b, the right hand side the

equation of the elliptic curve. We introduce the

reserve calculation to reduce the amount of the

calculation in (11). First, for the division d (1 <d
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<m12) that is sufficiently large, but adequate to

support computer memory, the interval [O,m] is

divided into d+1 interval [0, ml-I], [m(, 2ml-I],

"',[dm(, m], where m) stands for L.!JJ Secondly,

we compute d couples of (xzm" ,1J(X)2
m
" ) (O:a i:a d)

and save them. Finally, we calculate each term

x 2°"+} (or (1J(X)2
0 "+))) in [mI· i, mI· (i-I)] on the

basis of the saved term x 2m" (or (1J(X)2
m
,,)) •

Next, we evaluate the calculation amounts in (11).

We respectively denote the number of

calculations in square, product and division as S,

P and M. The number of calculations in (II)

without reserve calculations is counted as

m(m+l)S+2mP+(m+l)2M (12)

whereas that with the reserve calculation is

reduced to

«m-2)ml)S+(m-2)P+(m-2)(ml+ I)M (13)

Because P is nearly M and S is negligible, the

formulae (12) and (13) are simplified as the

following.

m(m+I)S+2mP+(m+I)2M ~(m2+4m+I)P (14)

«m-2)ml)S+(m-2)P+(m-2)(ml+ I)M

~ (m-2)(m)+2)P (15)

The experimental calculation-time in eq. (II) for

d=5 is shown in Table 4. For d=5, the number of

calculations in (11) can be reduced to about 60%

because of the improvement. For /=23 and d=5,

yq' -calculation over F
2
", with and without

reserve calculation spent 2,787 seconds and

11,434 seconds. The ratio of the time in

yql -calculation with the reserve calculation with

5-division points to the time without it was

estimated as 0.24, while as the ratio of the number

was shown as 0.21 in Table 4. Therefore, the

actual time in the refinement method was reduced

according to the reduction in the number of

calculation. The execution time of the

determination of the Frobenius trace using a

Pentium4 processor and 512 MB computer

memory is shown in Table 5, with the Schoof

algorithm programmed by C++ based on Visual

Studio™ software (Microsoft Corp.)

The Schoof algorithm has been improved by

Elkies (1998) and Schoof (1995), to produce the

so-called Schoof-Elkies-Atkin algorithm.
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Table 1. Orders of the elliptic curves

Finite Fields
b

15

01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF

1073751912
10737 00864
10737 15048
1073700864
10737 15048
10737 17760
10737 11400
10737 75872
1073729832
10737 10848
10737 16008
1073700864
10737 15048
10737 73056
1073695080

1099511007596
1099512343724
1099512985496
1099512088936
109 95098 35596
1099510976644
1099512080328
1099512053140
1099511230880
1099511865520
1099511477564
1099512832276
1099512475464
109 951 01 51600
10995112 16356

1 1258998591 90680
1 125899903295340
11258998852 17196
1 125899903295340
1125899885217196
1 125899923748440
1 125899928264512
1 12589 98701 60984
1 1258999411 97632
1 1258999281 73164
1 125899926096812
1 1258999115 82700
1 125899919527084
1 125899953457792
1125899909631768

1152 92150 25611 51248
1152 92150 50017 83296
11529215055450 12752
1152 92150 50017 83296
1152921505845012752
1152921504123720704
1152921503474776592
1152 92150 36724 09600
1152 92150 45773 13936
1152921506336053760
1152921505392373520
1152921505769577472
1152 92150 56279 20784
1152921504704961152
1152 92150 26268 57232

Table 1. (continued)

b

01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF

Finite Fields

1208925819612858850322624
1208925819616277628988780
12089 25819 61564 04045 90068
1208925819616277628988780
1208925819615640404590068
1208925819616346287639000
1208925819616143118838440
1208925819613067320500312
1208925819615025761602600
1208925819614289083397484
12089 25819 61583 32578 67252
1208925819613182332106220
1208925819614996925559924
1208925819616568360549760
120892581961371 6558433344
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60

50

40
en....
Q)

.D
E 30
::s
Z

20

10

o
-725 -625 -525 -425 -325 -225 -125 -25 75 175 275 375 475 575 675

Frobenius trace

Fig. 4 Histogram of the distribution of the Frobenius traces for elliptic curves over F217 • The

abscissas and ordinates respectively indicate the Frobenius traces and the number of curves.

Table 2-1. Frobenius traces of the elliptic curve on F2100

b Trace t mod I
3 5 7 II 13 17 19 23 29 31 37 41 43

01 20751530866 27109 1 1 1 2 6 5 7 22 14 8 35 33 19
02 - 64983 49082 86975 2 0 2 7 5 12 3 21 7 30 11 24 40
03 525785478432113 2 3 4 9 3 3 12 13 11 27 2 34 4
04 - 64983 49082 86975 2 0 2 7 5 12 3 21 7 30 11 24 40
05 525785478432113 2 3 4 9 3 3 12 13 11 27 2 34 4

B66595680
6A7792B862 - 1088 95900 25219 2 3 6 10 7 16 13 18 27 28 26 21 42

915FO

Table 2-2. Orders of the elliptic curves

b

01
02
03
04
05

B665 95680 6A779 2B862 915FO

Finite Field F2100

1 26765 06002 28231 476649789832484
1 26765 06002 28228 75166 17949 18400
1 267650600228229927282181637488
1 26765 06002 28228 75166 17949 18400
1 267650600228229927282181637488
I 26765 06002 28229 39060 71131 80156
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Table 3. The irreducible polynomials on F 2

17

n

17
30
40
50
60
80
100

Irreducible polynomial

X
17

+x
3
+1

x 30+x+ 1
X40+X39+X38+X5+ 1
X50+X49+X48+X4+ 1

x 60+x+ 1
X80+X79+X78+X26+ 1

XIOO+X15+ 1

Table 4. Comparison of numbers of the calculation with and without reserve calculation

Number of calculations in Number of calculations in
22n

without reserve calculation 22n

(B)/(A)n y y with reserve calculation

(A) (B)

10 141 32 0.196
20 481 108 0.227
30 1021 224 0.227
40 1761 380 0.216
50 2701 576 0.213
60 3841 812 0.211
70 5181 1088 0.210
80 6721 1404 0.209
90 8461 1760 0.208
100 10401 2156 0.207

Table 5. Computation time in the Schoof algorithm

q

2 17

240

260

280

2100
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