根域容量がシュクコンカスミソウ、カーネーションおよび キクの主枝と側枝の生長に及ぼす影響

後藤丹十郎・景山 詳弘・小西 国義 (作物機能調節学講座)

Effects of Root Zone Volume on the Growth of the Main and Lateral Shoot in Gypsophila paniculata L., Dianthus caryophyllus L. and Dendranthema grandiflora Kitamura.

Tanjuro Goto, Yoshihiro Kageyama and Kuniyoshi Konishi (Department of Eco-physiology for Crop Production)

The effect of root zone volume on the growth of main and lateral shoot were studied for *Gypsophila paniculata* L., *Dianthus caryophyllus* L. and *Dendranthema grandiflora* Kitamura. Cell trays of four cell sizes (cell volume; 6,12,21,63 cm³) were used. One cutting was planted in each cell, and after rooting the experiments were started. At the same time twelve cuttings of each species rooted in 12 cm³ cell were transplanted into wooden containers (38880 cm³) for control. Ten days after the start of the experiments, half of the plants were pinched to investigate the growth of lateral shoots.

CORE

Metadata, citation and similar papers at core.ac.uk

ovided by Okayama University Scientific Achievement Repository

compared with after 20 days in *Dianthus* and *Dendranthema*. The leaf area was highest for plants grown in the wooden container (control). Growing in small cells significantly reduced the shoot and root dry weight. However, the root zone volume had little effect on the root: shoot ratio.

The total number of lateral shoots, node number and total fresh weight were significantly increased with increases in root zone volume. In *Dendranthema* the lateral shoots had a strong tendency to elongate from almost all nodes even in the smallest root zone volume of 6 cm³. In *Gypsophila* and *Dianthus*, the number of lateral shoots increased significantly with increases in the root zone volume. The strongest effect of root zone volume on main and lateral shoot growth was observed in *Gypsophila*. The results showed that in all the species, a root zone volume of 12~21 cm³ was optimal for transplant production using cell trays.

Key words: root zone volume, cell tray, vegetative propagation plant, root: shoot ratio, lateral shoot number

緒 言

根は植物体の固着器官であると同時に水分と養分 の吸収器官,炭水化物の貯蔵器官,ジベレリンやサイトカイニン,アブシジン酸などの植物生長調節物 質の合成器官であり,植物全体の生長の維持とバラ ンスに大きな役割を持っている.

植物の生育は根域容量に強く影響される。根域制限により一般に草丈,節数,葉面積,側枝の大きさと数,乾物重が減少する。葉のN,P,K含有率は根

Received October 1, 1996

域容量が異なっても変化しない種類^{2,4)},根域容量が小さいと増加するもの⁸⁾,減少するもの^{9,10)}がある. また root: shoot 比については根域容量が減少しても,それが変化しなかったとする報告^{5,10)},高くなったとするもの^{3,11)},低くなったとするもの¹²⁾がある. このような違いが生じる理由はわかっていない.

根域を制限されたインゲンマメ 2,3 とコムギ 8 を養水分が十分に供給されている条件で栽培しても,植物はわい化した。地上部生長の停滞は水分,養分不足によるものではなかった 2,3,4,8,9 . ジベレリン 2 , BA 9 , STS,aminovinylglycine および 6 -benzylamino 9 -(tetrahydro-pyran- 2 -yl)-adenine 12 の散布により,根域制限された植物の地上部生長が一部回復することから,植物生長調節物質がわい化に関与しているとも考えられている。

植物の繁殖方法には種子繁殖と栄養繁殖とがある。 種子繁殖系(種子系)植物を用い根域制限を行った 実験は多いが、栄養繁殖系(栄養系)植物の根域制 限の影響について報告したものはほとんどみられな い 最近、セル成型トレイを用いた栄養系花卉の苗 生産が行われ始めている。セル成型トレイ苗(セル 苗) はセル成型トレイあたりの苗数が多いほど,つ まり根域容量が小さいほど経済的である。しかし、 根域容量が小さくなりすぎると苗の生育は悪くなる. 苗生産者は経験と勘により根域容量を決定しており, 植物の生長に対する植物の種類や季節ごとの根域容 量の影響についてはまだ明らかにされていない。ま た, セル成型トレイ苗の段階で摘心をし, 側枝を伸 長させてから出荷することが行われているが、植物 の種類や季節によって側枝の伸長する節位や伸長速 度が異なることも考えられる.

本研究では栄養系花卉のなかで、今後セル成型トレイ苗の生産量が多くなると思われる、シュクコンカスミソウ、カーネーションおよびキクを用いて、根域容量が主枝ならびに摘心後の側枝の生長にどのような影響を及ぼすかを検討した.

材料および方法

シュクコンカスミソウ

'ブリストル・フェアリー'を供試した. 根域容量を変えるためにセル容量の異なるセル成型トレイ (以下セルトレイと略す)を用いた. セルトレイは72(セル容量63cm²), 128 (21cm²), 220 (12cm²), 448 (6 cm²)

セルのものを用いた。各セルの概要は Table 1 に示 した。挿し芽および栽培の培地はピートモスとパー ライトを主体とした市販の鉢物用培地(商品名:プ ロミックスライト)と、粘質壌土に有機物を加えた 岡大培養土を1:1(v/v)に混合して用いた。1995年 3月27日に各セルトレイに挿し芽し、4月15日に間 欠ミストから搬出して1日順化後,4月16日から実験 を開始した。448,220セル区では間引きして、裁植 密度をほぼ一定となるようにした。同日、岡大培養 土をつめた木箱(60cm×36cm×深さ18cm, 容量38880 cm)に220セルの苗を12株ずつ定植して対照区とした。 伸長した側枝を順次除去し主枝1本仕立てとする無 摘心処理と、実験開始10日後(4月19日)に5節を 残して摘心する摘心処理を行った。 乾燥ストレスが 生じないように植物がしおれる前に灌水した。 灌水 のたびに N75ppm とした液肥 (OKF-1;15-8-17) を与えた。日最低気温を10℃以上に維持したビニル ハウス内で栽培した。10日ごとに、無摘心処理では 茎長, 節数, 葉面積(縦径×横径×0.86)を, 摘心 処理では側枝伸長節位、側枝数、側枝長(基部から 最大葉の先端まで)と節数を調査した,無摘心処理 では挿し芽70日後, 摘心処理では挿し芽60日後(摘心 30日後)に収穫し、地上部、地下部(対照区は地上部 のみ)の生体重, 乾物重を測定した。

カーネーション

'ノラ'を供試した.特に記述しない限りセルトレイならびに耕種概要はシュクコンカスミソウと同様とした。1995年5月26日に挿し芽し、6月14日に間欠ミスト下から搬出、15日から実験を開始した。6月15日に摘心した。栽培は無加温のビニルハウス内で行った。10日ごとに無摘心処理では茎長、節数を、摘心処理では側枝伸長節位、側枝数、側枝長と節数を調査した。無摘心、摘心処理とも挿し芽70日後(摘

Table 1 Characteristics of cell trays used for all experiments

Number of cells	Cell size			Cross-
	Upper area (cm²)	Depth (cm)	Volume (cm³)	sectional shape
448	3.1	2.4	6	round
220	4.5	3.5	12	round
128	9.0	4.8	21	square
72	16.0	5.5	63	square
control	2160.0	18.0	38880	rectanglar

心40日後) に収穫し, 地上部, 地下部 (対照区は地 上部のみ) の生体重, 乾物重を測定した.

キ ク

'精雲'を供試した.特に記述しない限りセルならびに耕種概要はシュクコンカスミソウの栽培法と同様とした. 挿し芽および栽培の培地はパーライトとピートモスを4:1(v/v)に混合して用いた. 1996年3月27日に挿し芽し,4月9日に間欠ミスト下から搬出し,4月10日から実験を開始した.4月19日に摘心した.実験期間中22:00~2:00まで螢光灯による暗期中断を行った.10日ごとに摘心処理では茎長,節数,葉面積(縦径×横径×0.80)を,無摘心処理では側枝伸長節位,側枝数,側枝長と節数を調査した.無摘心,摘心処理とも挿し芽56日後(摘心30日後)に収穫し,地上部,地下部(対照区は地上部のみ)の生体重,乾物重を測定した.

結 果

シュクコンカスミソウ

茎長は実験開始10日(挿し芽30日)を過ぎると差がみられはじめ、根域容量が小さいほど短くなった(Fig.1). 節数は挿し芽40日目まで処理区間に差がなかったが、その後は根域容量が増加するにつれ多くなった. 発蕾日は対照区だけが10日程度遅れたが、開花日には処理区間の差はみられなかった. 開花節位は対照区だけが高く,他の区はほぼ同じであった. 葉面積は実験開始直後から顕著な差が認められ、対照区の葉面積の増加が著しかった(Fig.2). 挿し芽

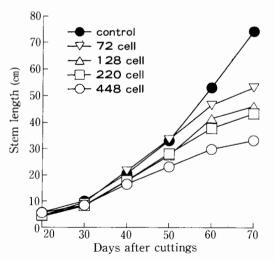


Fig. 1 Effect of root zone volume on the stem length of Gypsophila paniculata L.

70日後の対照区の植物体には細根の他に太い多肉根が数本発生したが、それ以外の区の植物体には細い 多肉根が1本だけみられるか、まったくみられない

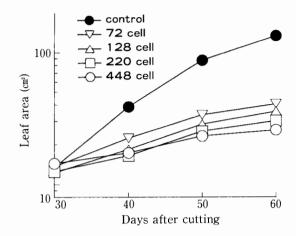


Fig. 2 Effect of root zone volume on the leaf area of Gypsophila paniculata L.

Table 2 Effect of root zone volume on the shoot and root dry weights and the root: shoot ratio at harvest time in Gypsophila paniculata L., Dianthus caryophyllus L. and Dendranthema grandiflora Kitamura^{a)}

Number of cells	Shoot dry weight (g)	Root dry weight (g)	Root : shoot ratio		
	Gyp	sophila panici	ulata		
448	0.31c ^{b)}	0.033c	0.105a		
220	0.61bc	0.047c	0.077a		
128	0.64bc	0.076b	0.118a		
72	0.90b	0.118a	0.131a		
control	3.80a	c)			
	Dianthus caryophyllus				
448	1.15b	0.025c	0.040a		
220	1.40b	0.037bc	0.028a		
128	1.76b	0.045b	0.026a		
72	2.44b	0.088a	0.036a		
control	7.92a				
	Dendranthema grandiflora				
448	0.43d	0.074c	0.172b		
220	0.71cd	0.124bc	0.174b		
128	1.08c	0.189b	0.175b		
72	1.85b	0.410a	0.222a		
control	4.21a				

- a) *Dendranthema* and, *Gypsophila* and *Dianthus* were harvested on days 56 and 70 after planting, respectively
- b) Mean separation within columns by Duncan's multiple range test, P < 0.05
- c) Not determined

状態であった. 挿し芽70日後の地上部重, 地下部重には根域容量によって有意な差がみられ, 根域容量が大きいほど重くなった. root: shoot 比はほぼ一定の値を示した(Table 2).

摘心30日後の側枝数は根域容量が大きいほど有意 に増加し、対照区では448セル区の約4倍であった (Table 3)。側枝長、節数は根域容量が大きいほど 値が大きくなる傾向がみられた。総側枝重は対照区 で著しく重かった(Table 3)。側枝が伸長した節位 は根域容量が小さいほど上位節に偏る傾向がみられ た、対照区では下位節からの伸長率も高かった。

カーネーション

茎長は挿し芽70日後まで128セル,72セル,対照区に差はほとんど認められなかった。挿し芽40日をすぎると220,448セル区の茎長が他の区に比べ劣りはじめ,その差は次第に大きくなった(Fig.3)。節数は128セル,72セル,対照区でほとんど差がみられなかった。挿し芽70日後の根の形態的状態に根域容量による差はみられなかった。根域容量が増加するにつれ地上部重,地下部重が増加する傾向がみられたが,448,220,128,72セル区の処理区間に有意な差はみられなかった。root:shoot 比はほぼ一定の値

を示した(Table 2).

摘心40日後の側枝数は根域容量が大きいほど増加 した.対照区と72セル区では側枝数に差がなかった。 側枝長,総側枝重は対照区で他の区に比べ著しく大 きかった (Table 3). 側枝が伸長した節位は根域容 量が小さいほど上位節に偏る傾向がみられた. 対照 区では下位節からの側枝が伸長する割合も高かった.

キ ク

茎長は挿し芽36日目から処理区間に差がみられは

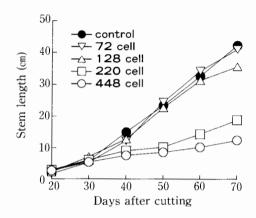
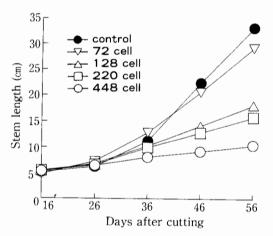


Fig. 3 Effect of root zone volume on the stem length of Dianthus caryophyllus L.

Table 3 Effect of root zone volume on the lateral shoot growth at harvest time in Gypsophila paniculata L., Dianthus caryophyllus L. and Dendranthema grandiflora Kitamura^{a)}


Number of cells	Lateral shoot number	Lateral shoot length (cm)	Node number	Total lateral shoot fresh weight (g /plant)
	Gy	psophila paniculate	7	
448	2.2db)	7.4c	4.9a	0.65c
220	3.5c	10.5bc	6.5b	1.70bc
128	4.0c	9.8bc	4.8c	1.96bc
72	6.1b	12.5b	5.9bc	4.35b
control	8.0a	18.6a	8.4a	30.52a
	Di	anthus caryophyllu	S	
448	2.0d	3.0c	1.1c	0.23e
220	2.6cd	6.3b	2.3bc	1.25 d
128	3.5bc	6.9b	1.8bc	2.78c
72	4.5a	8.6b	2.6b	5.53b
control	4.2ab	16.5a	4.4a	11.94a
	De	ndranthema grand	liflora	
448	4.1b	2.0d	3.7c	0.55 d
220	4.8a	2.8d	4.8b	1.32cd
128	4.9a	4.6c	5.1b	3.21bc
72	5.0a	7.4b	5.7b	5.10b
control	5.0a	15.4a	9.1a	17.75a

a) *Gypsophila and Dendranthema*, and *Dianthus* were harvested on days 30 and 40 after planting, respectively.

b) Mean separation within columns by Duncan's multiple range test, P<0.05

じめ、次第にその差が大きくなり、挿し芽56日後に は根域容量が増加するほど大きかった(Fig.4). 節 数にも同様の傾向がみられた。葉面積は挿し芽36日 目から対照区で著しく大きくなった。根域容量が大 きいほど葉面積も大きかった (Fig. 5). 挿し芽56日 後の根の形態的状態は処理区間で変わらなかった. また、地上部重、地下部重には有意な差がみられ、 根域容量が増加するにつれ重くなった。root:shoot 比は、448、220、128セル区でほぼ同じであったが、 72セル区のみにおいて高い値を示した(Table 2).

摘心30日後の側枝数は220, 128, 72セル, 対照区 ではほとんどの節から側枝が伸長した。一方,448セ ル区のみ発生数が少なく4.1本/株であり、他の区に 比べ有意に少なかったが、上位4節の側枝がよく伸長 した(Table 3). しかし、側枝長、節数には根域容

Effect of root zone volume on the stem length of Dendranthema grandiflora Kitamura.

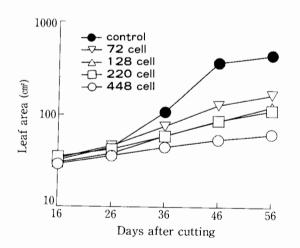


Fig. 5 Effect of root zone volume on the leaf area of Dendranthema grandiflora Kitamura.

量による有意な差がみられ、根域容量が増加するに つれ大きくなった。また、側枝総重量は特に対照区 で重くなった(Table 3).

考 察

根域容量は植物の生育に大きく影響する。この原 因として培地の養分,水分,酸素,根の物理的スト レス、植物生長調節物質の影響が考えられる。シュ クコンカスミソウ,カーネーション,キクの根域容 量が減少すると、茎長、節数、葉面積、地上部、地 下部重、側枝の大きさと側枝数が減少した。これら の結果は今までの報告とほぼ一致する1,2,3,4,6,9,11,13) 今 回の実験ではシュクコンカスミソウ, カーネーショ ンでは root: shoot 比は根域容量によって影響を受 なかったが、キクでは根域容量63cm³で高くなった (Table 2). root: shoot 比は根域容量が減少して も変化しなかったとする報告5,10),高くなったとする もの3,11), 低くなったとするもの12)がある. この理由 として水耕や土耕の栽培方式の違い, 根域容量の違 い, 栽培期間, 植物種の反応の違いが考えられる.

主枝の生長について、供試した3種の中ではシュ クコンカスミソウが根域容量の影響をもっともつよ く受け、ついでキク、カーネーションの順であった (Table 2). 側枝の伸長について、キクではほとん どの節から側枝が伸長したことから、キクが根域容 量の影響をいちばん受けにくかった。シュクコンカ スミソウ,カーネーションとも根域容量の影響をつ よく受けた(Table 3).

キンギョソウでは、培地に養水分が十分に存在し ても根域容量によって、発芽直後のごく初期から生 育に差がみられ,その後の生育も低下したことを先 に報告した7. この報告の中で、生育に差がみられる のはセル壁に根が接触した直後であることから、根 が伸長してセル壁に接触することで根で何らかの抑 制物質が生成されるのではないかと推論した. 今回 の実験では、栄養繁殖植物をセルに直接挿し、発根 させた後、実験を開始したので、3種とも実験開始 時にはセルの底から根がでており、この時点ですで に根域容量の影響を受けていたかもしれない。根域 容量による影響は、養水分条件によるのか、あるい は根の物理的ストレスであるのかを明らかにするた めには、根域に十分に養水分が供給できるように設 計した水耕栽培法によって, 発根直後から根域制限 をした実験を行う必要があろう.

シュクコンカスミソウでは対照区より根域制限区 で早く発蕾したが、開花時期はかわらなかった。発 蕾が遅れたのは対照区で他の区に比べ節数が2節多 かったためである。カーネーションでは根域容量6. 12㎝図で他の区に比べ発蕾が遅れた(データ非掲載). キクでは夏秋ギク型品種を用いたために根域容量が 少ないと電照による花芽分化の抑制ができなくなり, 挿し芽70日をすぎると電照下でも発蕾し、頂芽が柳 芽となった、また、いずれの区でも電照を打ち切れ ば,正常に花芽分化し、開花した。根域容量が大き いほど開花は早かった。Carmi¹⁾や Carmi と Shalhevet⁴⁾はワタで根域容量が少ないほど開花が早 まったのは、同化産物が栄養生長より生殖生長して いる部位に多く分配された結果であると報告してい る. これに反して Carmi と Heuer²⁾はインゲンマメ で根域制限により花の発達が遅れたのは、サイトカ イニンの減少によるものであろうと推論している. トマトでも根域容量が少ないと開花は3日遅れたと する報告がある11)。このように発蕾や開花の時期に対 する根域容量の影響の仕方は植物の種類によって異 なるものと思われる.

シュクコンカスミソウは今回の実験ではすべての 処理区で発蕾したが、別の実験で、5月下旬に根域 容量12㎝のコンテナに挿し芽した個体では1年を経 過しても発蕾しなかった。今回の実験では冬の低温 を受けた親株から3月下旬に採穂したため、挿し穂 の生長活性が非常に高かったのに対し、5月下旬挿 し芽の実験では親株および挿し芽株がある程度高温 に遭遇して生長活性が低下していたために発蕾しな かったのではないかと考えられる。 開花に対する根 域容量の影響をみるためには、 挿し芽時期と根域容 量の相互関係を調べる必要があろう。カーネーショ ンでは、養水分が十分に供給されれば、開花までの 日数に差はあるが、根域容量6㎝でも季節に関係な く開花し、開花時の茎長は50cm程度にまで達するの で、少量の培地による超密植栽培が可能であると思 われる.

同じ大きさのセルにおける根鉢形成に要する日数はキク,カーネーション,シュクコンカスミソウの順で短かった。3種の根の形態を比較すると,シュクコンカスミソウではカーネーション,キクと違って数本の多肉根を形成する。根域制限によりシュク

コンカスミソウでは多肉根の形成が悪くなり、根域容量6cmではほとんど形成されていなかった。根の形態は根域制限により変化する。小さいコンテナで栽培された植物では大きいコンテナで栽培されたものより短く細密な根系を発達させる9,11)。根域制限により根系の形態が変わったため植物の生長に影響を及ぼしたとする報告がある9、今回の実験でシュクコンカスミソウの生長が根域容量の影響を最も強く受けたのは根系の変化も関与しているものと思われる。

本実験では灌水のたびに液肥を十分に与えたうえに、できるだけ乾燥ストレスが生じないように注意を払って灌水を行ったが、結果的に3種ともわい化した。根域制限されたインゲンマメとコムギは養水分が十分に供給されている条件で栽培してもわい化したという報告がある^{2,3,8)}.根は植物生長調節物質の合成の場と考えられている。ジベレリンやBAを含む数種のサイトカイニンの散布により根域制限された植物の地上部の生長が一部回復することから、根で合成されるジベレリンやサイトカイニンの減少がわい化を引き起こすとも考えられている^{2,9,12)}.キンギョソウで根がセル壁に接触したとたんに生育の低下がみられた⁷⁾. 我々はこの原因を、根でエチレンやアブシジン酸が合成され、それらによって根や地上部の生長が抑制されたのではないかと考えている.

今回の結果とセル成型トレイを用いる場合の経済性、挿し芽の作業性などを考慮に入れると、3種とも根域容量は12~21㎝程度が望ましいものと考えられた.しかし、適切な育苗期間についてはさらに詳細な実験を行う必要がある.植物によって影響を受ける根域容量は季節によって異なるものと思われる.これらを明らかにすることにより、実際の苗生産の現場に応用できるものと考えられる.

要 約

根域容量がシュクコンカスミソウ、カーネーションおよびキクの主枝と摘心後の側枝の生長に及ぼす影響を調査するために、挿し穂を根域容量 6,12,21,63cmのセル成型トレイに挿し、発根後実験を開始した。同時に根域容量12cmの挿し芽苗を根域容量38880cmのコンテナ(対照区)に12株ずつ定植した。実験開始10日後に半数の個体を 5 節で摘心し、その後の側枝の伸長は調べた。

茎長は3種とも実験終了時に根域容量により有意

な差がみられ、根域容量が大きいほど長かった。カ ーネーションおよびキクでは実験開始20日後まで処 理区間にほとんど差がみられなかったが、シュクコ ンカスミソウでは実験開始10日後に根域容量が小さ い区で茎長が小さかった。 葉面積はシュクコンカス ミソウおよびキクで根域容量が増加するほど有意に 大きくなり、対照区で著しく大きかった、実験終了 時の地上部, 地下部重は、根域容量が増加するにつ れ重くなった. root: shoot 比は根域容量に関わら ずほとんど一定であった。 摘心後、キクではどの根 域容量でも各節の側枝が伸長した. シュクコンカス ミソウ、カーネーションでは根域容量の増加につれ 側枝数が増加した. 根域容量が小さいほど側枝が伸 長する節位は上位節に偏る傾向があった。 側枝長, 節数、総側枝重は根域容量の増加につれ有意に増加 した. カーネーション、キクに比べシュクコンカス ミソウは根域容量の影響を受けやすかった。3種と もセル成型トレイ苗生産には12~21㎝の根域容量が 適当であると思われた.

文 献

- 1) Carmi, A.: Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Research, 13, 25-32 (1986)
- 2) Carmi, A. and B. Heuer: The role of roots in control of bean shoot growth. Ann. Bot., 48, 519-527 (1981)
- Carmi, A. and J. D. Hesketh, W. T. Enos and D. B. Peters: Interrelationships between shoot growth and photosynthesis, as affected by root growth restriction. Photosynthetica, 17, 240-245 (1983)
- 4) Carmi, A. and J. Shalhevet: Root effects on cotton growth and yield. Crop Sci., 23, 875-878 (1983)
- 5) Cooper, A. J.: The influence of container volume, solution concentration, pH and aeration on dry mat-

- ter partition by tomato plants in water culture. J. Hort. Sci., **47**, 341-347 (1972)
- 6) Krizek, D. T., A. Carmi, R. M. Mirecki, F. W. Snyder and J. A. Bunce: Comparative effects of soil moisture stress and restricted root zone volume on morphogenetic and physiological responses of soybean [Glycine max (L.) Merr.]. J. of Exp. Bot., 36, 25-38 (1985)
- 7)後藤丹十郎・景山詳弘・小西国義:根域容量がキンギョソウの初期生育に及ぼす影響、園芸学会雑誌、65別2、 658-659 (1996)
- Peterson, C. M., B. Klepper, F. V. Pumphrey and R. W. Rickman: Restricted rooting decreases tillering and growth of winter wheat. Agron. J., 76, 861-863 (1984)
- Richard, D. and R. N. Row: Effects of root restriction, root pruning and 6-Benzylamino-purine on the growth of peach seedlings. Ann. Bot., 41, 729-740 (1977)
- 10) Robbins, N. S. and D. M. Pharr: Effect of restricted root growth on carbohydrate metabolism and whole plant growth of *Cucumis sativus* L. Plant Phisiol. 87, 409-413 (1988)
- 11) Ruff, M. S., D. T. Krizek, R. M. Mirecki and D. W. Inouye: Restricted root zone volume: Influence on growth and development of tomato. J. Amer. Soc. Hort. Sci., 112, 763-769 (1987)
- 12) Thomas, T. H.: Effects of root restriction and growth regulator treatment on the growth of carrot (*Daucus carota* L.) seedlings. Plant Growth Regulation, 13, 95 -101 (1993)
- 13) Tschaplinski, T. J. and T. J. Blake: Effects of root restriction on growth corelation, water relations and senescence of alder seedlings. Physiol. Plant., **64**, 167 –176 (1985)