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In this paper the theoretical procedure to analyze the.dynamic behavior of highly

saturated sand bed around a cylindrical block under the cyclic loading of water

pressure is developed. The fundamental equations were derived for the axially

symmetric coordinates. Then, the finite element equations were developed to solve

these fundamental equations numerically. Finally, the numerical method was verified

by experiments.

1. INTRODUCTION

Many types of collapse of coastal structures occurs under stormy waves. One of them is

the settlement of armour blocks used for the protection of coastal structures such as breakwater.

To understand the mechanism of this settlement phenomenon we have investigated the settlement

of a rectangular parallelepiped block on the sand bed under the cyclic loading of water pressure

both experimentally and theoreticallyl),2). The settlement of concrete block and the

characteristics of the sand movement around the block were made clear by the experiment. And

it is also clarified that the cyclic seepage force which occurs around the block under water

pressure variation plays an important role to the settlement phenomenon. To get pore water

pressure distribution around the block in detail, we derived the fundamental equations to analyze

the dynamic behavior of the sand bed and carried out the vertical two-dimensional finite element

analysis3),4). The validity of numerical analysis was verified by comparing with the experimental

results. For the analysis the plain strain state was assumed in consideration of the experimental

conditions.

Photo 1 shows one of the experimental results. The colored sand and the standard sand

next to the front side wall of the container get mixed. It can be noticed that the effect of the front

and the back side walls of the container appears. As long as assuming the plane strain state and

using a rectangular parallelepiped block as a sinking object for the experiment, the wall effect can
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minCASE1 :11
Photo 1 Experiments for rectangular block

Photo 2 Experiments for cylindrical block

not be neglected. To reduce this effect, we used a cylindrical block as a sinking object for the

experiment as shown in Photo 2. Very little effect of the side walls of the container is seen in this

photo. To get more information about the dynamic behavior of the sand bed around a cylindrical

block under the cyclic loading of water pressure, it is necessary to develop a mathematical model

to explain the phenomenon.

In this study, from the above point of view, we first derived the fundamental equations to

analyze the dynamic behavior of the sand bed around the block for the axially symmetric

coordinates. Then, the finite element equations were derived to solve the fundamental equations

numerically. Finally, the validity of this numerical method was verified by the experiment.
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2. FUNDAMENTAL EQUATIONS

2.1 Fundamental Equations for Cartesian Coordinates

In the theoretical treatment, following fundamental assumptions are adopted.

(1) The sand layer and the water are compressible.

(2) The pore water moves in accordance with Darcy's law.

(3) The skeleton ofthe sand layer deforms in accordance with Hooke's law.

(4) The sand layer is composed ofthree phases; sand, water and air. Then, the porosity A

is the sum ofthe part for the water Aw and the part of the air Aa . That is,

A=Aw+Aa (1)

Under these assumptions we derived fundamental equations in Cartesian coordinates as

follows3),5). Taking into account the pore water pressure p, equilibrium conditions are expressed

by the following equations.

aox dty.x: dtn: ap
--+--+--=-

ax ay az ax
d'txy aoy d'tzy ap
--+--+--=-

ax ay az ay
d'txz dtyz aoz ap
--+--+--=-

ax ay az iJz

where, ox, 0y, Oz are incremental normal stresses (deviations from the initial stress state), and

1:xy, 1:yz, 1:n: are incremental shear stresses. These stress components are expressed by the

following stress-strain relationship.
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Ox = 2GEx + A'e,

o y = 2GEY + A'e,

Oz = 2GEz + A'e,

1:xy = 1:y.x: = Gy xy

1:yz = 1:zy = Gy yz

1:n: = 1:xz = Gy~
} (3)

where, A' is Lame's constant.

relation.

A/ = vE
(1 +v)(1-2v),

G is the shear modulus.

G= E
2(1 + v)

They are given by the following

(4)

(v: Poisson's ratio, E : Young's modulus)

Ex, EY' Ez and yxy' yyz' y~ re components of incremental strains. e is the incremental

volumetric strain according to the following relation.

e=Ex+Ey+Ez (5)

The strains are related to the displacements by the following expreSSIons In case of small

deformation.
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Ex = dux / aX,
Ey = duy / ay,
Ez = duz / az,

Yxy = dux / ay + duy / ax
YJa = duy / az + auz / ay
Yzx = duz / ax + dux / az } (6)

where, ux , uy , Uz are displacement components in x, y, z directions respectively.

On the other hand, the continuity equation for pore water is3)

(~Aw + Aa ) ap + ae = (~)V2P
P at at Pwg

(7)

(8)

where, k :permeability coefficient, Pw: density of the pore water, g : acceleration due to gravity,

t: time, ~ : compressibility of the water, P : absolute pressure, V2 is vector operation defined by

2 a2 a2 a2
V =-+-+-

ax2 ay2 az2

r

Fig. 1 Stress components in
cylindrical coordinates

Or, 0e, 0z are stresses in r, e, z directions respec­

tively. 'tre, 'tez, 'tzr are shear stresses. The stress

components are expressed by the following stress­

strain relationship.

2.2 Fundamental Equations for Axially Symmetric Coordinates

In Fig. 1 an cylindrical element is drawn

together with stress components acting on the surface

of the element. Performing coordinates transforma­

tion of equilibrium equations (2) for Cartesian

coordinates, following equilibrium equations for

cylindrical coordinates are obtained5),6).

aOr 1 d'ter d'tzr or - 0e ap--+---+--+ =-ar r ae az r ar
d'tre +! aOe + d'tze + 2'tre =! ap (9)
ar r ae az r r ae
d'trz 1 d'tez aoz 'trz ap--+---+--+-=-ar rae az r az

Or = 2GEr + A'e, 'tre = 'ter = Gyre}

0e = 2GEe + A'e, 'tez = 'tze = Gyez

0z = 2GEz + A'e, 'tzr = 'trz = Gy zr

(10)

(11)
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These equations are equivalent to Eqs. (3) and (5). The strain components are defined as follows.
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(Jur
£ =-

r ar'
1 aUe ur£e=--+-,
r as r
(Juz

£ =-
z az'

1 aUr aUe ue
Yre=--+---

r as ar r
aUe 1 auzYez=-+--
az r as

auz aUrYzr=-+-
ar az

(12)

where, Ur , ue, Uz are displacement components in r, S, z directions respectively.

In cylindrical coordinates system, the vector operation in Eq. (8) becomes

2 1 a a 1 ii a2

v =--(r-)+---+-
r ar ar r2 as2 az2 (13)

As shown in Photo 2, the dynamic behavior of the sand bed around the cylindrical block

under the cyclic loading of water pressure can be treated as an axially symmetric problem. In

case ofaxially symmetric problem, following conditions exist.

Ue = 0, (Jur / as = 0, auz / as = 0, ap / as = 0

Using these conditions, relationship (9) is reduced to

!~(ror)+ ittzr _ 0e = ap }
rar az r ar

!~(rtrz)+ aoz = ap
r ar az az

Eqs. (10), (11) and (12) are reduced to

or = 2G£r + A'e, "tre = "ter = 0 }

0e = 2GEe + A'e, "tez = "tze = 0

Oz = 2GEz + A'e, "tzr = "trz = Gy zr

e = aUr / ar +Ur / r + (Juz / az
(Jur

£r = ar' Yre = 0

ur£e = -, Yez = 0
r
(Juz auz (Jur

£z = az' Yzr = ar + az

And the vector operation (13) is reduced to

2 1 a a a2

v =--(r-)+-
r ar ar az2

Then the continuity equation expressed as

(14)

(15)

(16)

(17)

(18)

(19)
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(20)

(21-a)

(21-c)

(21-b)

Eq. (15) and Eq. (20) are the fundamental system of equations to analyze the dynamic

behavior of sand bed around the cylindrical block. There are three unknown quantities in these

equations. Two of them are incremental displacements ur and Uz . Another one is incremental

pore water pressure p. Consequently the governing equations are written as follows.

.!~(ror)+ i1T:zr _ 0e = ap
r ar az r ar

.!~(n1Z)+ aoz = ap
r ar az az

(13Aw + Aa ) ap + ae =(~)V2p
P at at Pwg

It is very difficult to solve above obtained partial differential equations analytically. Here,

we adopt the finite element method which has already been verified by authors of its applicability

for plane strain state problem. In the following section the governing equations for axially

symmetric problem are transformed into finite element equations.

3. FINITE ELEMENT FORMULAnON

The Galerkin method3),4),7) which is one ofthe weighted residual methods is used to derive a

finite element equations of the system of Eqs. (21). Now we put Eqs. (21) into following

equations.

1 a i1T:zr 0e ap
LI(u u p)=--(ro )+-----=0r, z, r ar r az r ar

1 a aoz ap
T_(U u p)=--(n )+--- =0LJZ r, z, :l 1Z a :l

r ur ~ uZ

Aa · ap ae k 2
~(ur' uz , p) = (13Aw +-)- + - - (-)V P = 0

P at at Pwg

(22-a)

(22-b)

(22-c)

In the finite element method the analytical region is divided into a set of sub-domains called

element. The continuous functions ur , Uz and p are approximated by following interpolation

formulation over each sub-domain.

n

Ur = ~aj(t)<I>/r,z)
j=I

(23-a)
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n

Uz = ~ b/t)cI>/r,z)
j=l

(23-b)
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(23-c)
n

p = ~c/t)cI>/r,z)
j=l

where, n is the number of node in each element. aj, bj and cj are the nodal values of

un Uz and p respectively. cI> j is the shape functions dependent only on coordinates. Applying

Galerkin method to Eqs. (22),

f L1(ur , uz , p) cI>/iV = 0

f ~(un uz , p) cI>jdV = 0

f ~(un uz , p) cI> jdV = 0

where, dV = 2Jrrdrdz .
Substituting Eqs. (22) into Eqs. (24).

(j = I,2,···,n)

(j = I,2,···,n)

(j = 1,2,···, n)

(24-a)

(24-b)

(24-c)

I
IiJ IiJ- - (ror )cI>i 2wdrdz + - (1:zr )cI>i2wdrdz
r iJr iJz

I os I iJp- --;- cl>i 2wdrdz - iJr cl>i 2wdrdz = 0

I I iJ I iJ IiJP- - (nn )cI>i2wdrdz + - (a z )cI>i 2wdrdz - ~i2wdrdz = 0
r iJr iJz iJz

A I iJp I iJe«(:lAw +~) - cl>i 2wdrdz + ~i2wdrdz
P iJt iJt

kJ{IiJ(iJP) iJ
2p

}-- -- r- +- cl>i2wdrdz =0
pg r iJr iJr iJz2

(25-a)

(25-b)

(25-c)

Applying Green's theorem to the terms involving second order derivatives in rand z direction.

(26-a)

(26-b)
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Aa f ap f ae k {f ap(AA +-) -A.·2wdrdz+ ~·2wdrdz-- n r-A.·2rrdz
P W P at 't'l at't'l pg r ar 't'l

f ap aep; J ap f ap aep; }- r - --2rrdrdz + nz - ep; 2wdr - - --2rrrdrdz = 0
ar ar az az az .

(26-c)

where, nx and nz are direction cosines in x and z direction respectively. Substituting the stress­

strain relationships (16), (17), (18) and interpolation formulations (23) into volumetric integration

terms of above equations, following equations are obtained.

(27-a)

(27-b)

(27-c)

~ [{f ~;dV +f! ep;ep .dV} aaj +{f aep j ep;dV} abj
~1 ar r J at az at
J=

+{~(f aepj aep; dV +f aepj aep; dV)L. + {(I3Aw + Aa)fep .ep;dV}acj
pg ar ar az az rJ p J at

=~f(nr ap +nz ap)ep;dS
pg ar az

A finite difference method is applied for the terms with respect to time. In general the finite

difference formulations are as follows.

afj (fJ+M - f})
-=
at I1t

(28)

where, 8=0 represents an explicit scheme, 8=1/2 represents a centered difference scheme (Crank

Nicholson scheme) and 8=1 represents a fully implicit scheme in time. Using above relationship

and introducing the matrix notation, Eqs. (27) become as follows.
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8Aij

8Dij
1
-H··
/)J lJ

8Bij

8Eij
1

-[1;.
/)J lJ

8pgCij

8pgFij

pg ~Aw + Aa / P Q.. + 8kR..
/)J lJ lJ

t+M

(8 -l)Aij

(8 -l)Dij
1-H..

/)J lJ

where,

(8 -l)Bij

(8 -l)Eij
1

-[1;.
/)J lJ

(8 -l)pgCij

(8 -l)pgFjj

pg ~Aw ~a / P Qij + (8 -l)kRij {

a j} {Fj(1) }b. + F(2)
J I

c. p.(3)
J I

(29)

Ai' = (A' +2G)J a</> j a</>; dV +A'f!</> . a</>; dV +GJ a</>; a</> j dV
f) ar ar r J ar az az

+(1....' +2G)I _1 </> ·</>;dV +A'f! a</> j </>;dV
r 2 J r ar

Bi' = A'J a</>j a</>; dV +GJ a</> j a</>; dV +A'f! a</> j </>;dV
f) az ar ar az r az

f
a</> .c..= ~·dV

lJ ar 'fl

Di' = GJ a</> j a</>; dV +A'f!</> . o</>; dV +A'J a</> j a</>; dV
f) az ar r J az ar az

Ei' = GI a</> j a</>; dV + (A' +2G)J a</> j a</>; dV
f) ar ar az az

J
0<1> .

F;.= ~·dV
lJ az 'fl

Ja</>· f 1Hij = ~aJ ;dV + -</>;</> jdV
r r

J
O</>·

[1;. = _J "'.dV
lJ az 'fl

Qij = f</>j</>;dV

R;. =Ja</> j a</>; dV +Ja</> j a</>; dV
f) ar ar az az

Fj(1) =f(nrOr + nz'tzr )</>;dS'

Fj(2) = f(nr'trz + nzoz )<P;dS'

F;(3) = f (n ap +n ap)",.dS'
I r ar z az 'fl

(29-a)

(29-b)

(29-c)

(29-d)

(29-e)

(29-f)

(29-g)

(29-h)

(29-i)

(29-j)

(29-k)

(29-1)

(29-m)
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Eq.(28) is the element stiffness matrix for each sub-domain element. It is necessary to superpose

the element stiffness matrices to create a global system of stiffness matrix. After that, we can

solve a system of linear equations for each time step. In this study, we adopt e= 112

considering its stability in the calculation.

4. OUTLINE OF NUMERICAL ANALYSIS AND EXPERIMENT

Fig. 2 Sand bed model in analysis

4.1 Numerical Procedure

For the analysis, a simplified sand bed model as

shown in Fig. 2 is treated. Considering the experi­

mental conditions, we adopted following boundary

conditions and numerical conditions.

Boundary conditions :

(a) h = hs(t) at CD

(b) iJhl an = 0 at AB, BC, EA

(c) nror + nz"tzr = 0, nr"trz + nzoz = 0

at CD

(d) load due to the pressure h = hs(t) acting

the block at DE

where, hit) is the oscillating water pressure

acting on the sand surface and the block.

z

-........-
block_--.....

r

_.....-- .....
\

B

c

Numerical conditions :

Aa =0.005, Aw =0.4, k=0.015(cm/s), 13 = 4.3 xl0-1O (m 2 IN),

G=3.5xl07(N/m 2
), v=0.45

In this study we adopted triangular elements to divide the domain. Fig. 3 shows the finite

element mesh. Its node number is 345 and element number is 623. In the calculation, at first,

the initial stress state without the cyclic loading of water pressure is obtained by taking into

account the individual weight of the block and the sand. After that, the incremental value due to

cyclic loading ofwater pressure is added to the initial one.

4.2 Experimental Procedure

For the experiment the rectangular parallelepiped container shown in Fig. 4 was used. The

width of the container is 40 cm. It is filled with highly saturated standard sand (Toyoura standard

sand d50 $5 0.25 mm). The water depth from the sand surface is about 110 cm. The oscillating
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unit : cm

tOscillating air pressure

n---

I I
20

0 IE "I
Pt.l 00 block

o
N

o
on

r--------,
o ,
o 0
o ,, ,
o ,
o ,

Fig. 3 Finite element mesh Fig. 4 Experimental apparatus

air pressure acts on the water surface. The amplitude of the cyclic water pressure acting on the

sand surface is about 40 cm. Its frequency is about 1 Hz. A cylindrical block was placed at the

center of the sand surface. Its diameter is 20 cm and its specific weight is 3.65. The

incremental pore water pressure were measured at measuring points shown in Fig. 4.

5. RESULTS AND DISCUSSIONS

Fig. 5 (a) and (b) shows the numerical and experimental results of the pore water pressure

variation at each measuring points. Experimental results show that the water pressure on the

sand surface propagates into the sand bed accompanied by the damping in amplitude and the phase

lag. This tendency is very similar to the results for the rectangular blockl ),2). From the

numerical analysis, the characteristics of the damping and the phase lag of the pore pressure

around the block are in good agreement with experimental results. That is, the validity of the

mathematical model and the numerical method developed in this paper can be verified.

Fig. 6. shows the distribution of the pore water pressure and the seepage force. Fig. 6 (a)

is for the state that the water pressure on the sand surface is high (t/T=0.25), and Fig. 6 (b) is for

the low pressure state(tlT=0.75). In this figure, solid lines show the equipotential lines and

arrows show the seepage force vector. The pore water pressure propagates into the sand bed
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around the block with the damping in amplitude and the phase lag cyclically. This pore water

pressure variation around the block causes the cyclic seepage force around the block. This cyclic

seepage force at the low water pressure state plays an very important role in the settlement of the

block under the cyclic loading ofwater pressure2).

h(cm)

50. 0

O. 0

- 50. 0
(a) numerical result

h(cm)

50. 0

t(sec)
O. 0

- 50. 0
(b) experimental result

t(sec)

Fig. 5 Pore water pressure variation with time
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(a) high water pressure (t/T=O.25) (b) low water pressure (t/T=O.75)

Fig. 6 Pore water pressure and seepage force
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6. CONCLUSIONS

In this paper, we derived the fundamental equations to analyze the dynamic behavior of the

sand bed around the cylindrical block under the cyclic loading of water pressure and evaluated the

applicability of numerical method based on the derived mathematical model through the

experiment. The numerical results by the finite element method showed the good agreement with

experimental results. It can be concluded that the validity of the mathematical model and

numerical method presented in this paper is verified.
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