Asymmetric Diels-Alder Reaction of 5,5,5-Trichloro-3-penten-2-one and Its Related Compound

Shogo Nakatsu and Sadao Tsuboi*

(Received December 2, 2003)

Diels-Alder reactions of 5,5,5-trichloro-3-penten-2-one and ethyl 4,4,4-trichloro-2-butenoate with cyclopentadiene in the presence of a chiral Lewis acid gave exo-2-acetyl-endo-3-trichloromethyl-bicyclo[2.2.1]hept-5-ene and exo-2-ethoxycarbonyl-endo-3-trichloromethylbicyclo[2.2.1]hept-5-ene with 40% and 7% e.e., respectively.
key words: asymmetric reaction, Diels-Alder reaction, asymmetric Diels-Alder reaction, chiral Lewis acid, trichloromethyl group

1. INTRODUCTION

Diels-Alder reaction ${ }^{1,2}$ is a most popular [2+4] cycloaddition reaction. Asymmetric Diels-Alder reactions ${ }^{1,2}$ by the use of chiral Lewis acid catalysts ${ }^{3-6}$ containing elements such as boron, ${ }^{7}$ aluminum, ${ }^{8}$ titanium, ${ }^{9}$ and magnesium et al. ${ }^{10}$ are well known.

We reported a convenient synthesis of 5,5,5-trichloro-3-penten-2-one (1) and ethyl 4,4,4-trichloro-2-butenoate (2) by the reaction of 1,3 -dicarbonyl compounds with chloral in the presence of potassium carbonate. ${ }^{11}$ Compounds 1 and 2 are good dienophiles because of the presence of trichloromethyl and carbonyl groups. In 1974, we reported the Diels-Alder reaction of 1 with some dienes. ${ }^{12}$

Here we report asymmetric Diels-Alder reaction of 1 and 2 with cyclopentadiene in the presence of a chiral Lewis acid.

2. RESULTS AND DISCUSSION

The Diels-Alder reaction of 1 with cyclopentadiene afforded exo-2-acetyl-endo-3-trichloromethyl-bicyclo[2.2.1]hept-5-ene (3) with high stereoselectivity. ${ }^{12}$ And the Diels-Alder reaction of ethyl 4,4,4-trichloro-2-butenoate (2) with cyclopentadiene also afforded exo-2-ethoxycarbonyl-endo-3-trichloro-methylbicyclo[2.2.1]hept-5-ene (4) predominantly.
The reaction of 1 with cyclopentadiene in the presence of a chiral Lewis acid: (R)-MS-free BINOL-Ti ${ }^{13}$ gave the cycloaddition product 3 in a good yield with 40% e.e. The reaction of 2 with cyclopentadiene in the presence of (R)-MS-free BINOL-Ti was also tried to give the cycloaddition product 4 with 7.0% e.e.

[^0]

MS: molecular sieves 4A

3. EXPERIMENTAL

All IR spectra were recorded on a JASCO FT/IR-5000 infrared spectrophotometer as films. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$ \& 500 MHz) spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini-200 spectrometer or Varian Gemini-500 spectrometer using $\mathrm{CDCl}_{3}\left(\mathrm{CHCl}_{3}, \delta=7.26\right)$ as a solvent unless otherwise noted and chemical shifts are given in ppm relative to CDCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR). ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 Mz) spectra were recorded on a JEOL AL300 spectrometer. Splitting patterns are designated as $\mathrm{br}, \mathrm{s}, \mathrm{d}, \mathrm{t}$, and m ; these symbols indicate broad, singlet, doublet, triplet, and multiplet, respectively. Elemental analysis were performed on Perkin Elmer 2400 series II CHNS/O analyser . For thin layer chromatography aluminum sheets Merck silica gel coated 60 F254 plates were used and the plates were visualized with UV light and phosphomolybdic acid (5% in $\mathrm{EtOH})$. Merck silica gel 60 N (spherical, neutral) ($40-50 \mu \mathrm{~m}$) was used for the flash chromatography. The progress of the reaction was monitored by GC-MS Shimazu QP 5000 at 70 ev . Some stereoisomers of synthesized olefin were separated by preparative GC (Yanagimoto G-2800): column ($6 / 5 \mathrm{~mm} \mathrm{\phi} \times 2 \mathrm{~m}$) packed with 10% liq. phase Apieson Grease L supported on chromosorb W. Enantiomeric excess was determined by GC analysis: Shimazu GC-18A; column ($0.25 \mathrm{~mm} \phi \times 60 \mathrm{~m}$) packed with CYCLODEXB at $170^{\circ} \mathrm{C}$, carrier gas; $\mathrm{He}(17 \mathrm{ml} / \mathrm{sec})$.

All reactions were carried out in oven-dried, septum-capped flasks under N_{2}. All liquid reagents were transferred via oven dried syringes. Solvents and reagents were dried and distilled before use. THF was distilled from Na-benzophenone ketyl before use.

5,5,5-Trichloro-3-penten-2-one (1). ${ }^{\mathbf{1 1}}$

In a typical experimental procedure, $1.30 \mathrm{~g}(9.38 \mathrm{mmol})$ of anhydrous potassium carbonate and 0.64 mL (6.25 mmol) of 2,4 -pentanedione in 5 mL of anhydrous THF were placed in a 10 mL round bottomed flask. To this mixture, $0.73 \mathrm{~mL}(7.5 \mathrm{mmol})$ of chloral was added at room temperature via syringe under N_{2} atmosphere. After 2 days, the reaction mixture was diluted with $10-15 \mathrm{~mL}$ of water and extracted with ether ($20 \mathrm{~mL} x 3$). After removal of the solvent, the residue was subjected for column chromatography over silica gel using hexane and then hexane-ethyl acetate ($10-12 \%$) as an eluent to furnish the title compound as an yellow oil: the ketone 1 (0.867 g) (74%)
($E / Z=100 / 0$); Rf 0.45 (hexane/EtOAc, 4/1); IR (neat) $v 3044,3012,1709,1682,1630,1427,1363,1305,1267$, $1255,1174,1096,1046,1023,1002,965,911,853,768,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37(\mathrm{~s}, 3 \mathrm{H})$, $6.59(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.79,92.58,128.0,144.3$, 196.5.

Ethyl 4,4,4-Trichloro-2-butenoate (2). ${ }^{11}$
Potassium carbonate ($43.7 \mathrm{~g}, 0.316 \mathrm{~mol}$) was placed in a 300 ml round bottom flask, and dry THF (167 ml) was added. To a stirred mixture was added ethyl benzoylacetate ($36.0 \mathrm{ml}, 40.0 \mathrm{~g}, 0.208 \mathrm{~mol}$) and chloral ($25.0 \mathrm{ml}, 38.0$ $\mathrm{g}, 0.258 \mathrm{~mol}$). The mixture was stirred at room temperature for 6 days, and then poured into water. The organic layer was extracted with ethyl acetate, and dried over MgSO_{4}. After removal of the solvent, the residue was distilled to give a colorless oil ($36.7 \mathrm{~g}, 81.2 \%$) at $85-86^{\circ} \mathrm{C} / 10 \mathrm{mmHg} ; R f 0.60$ (hexane/EtOAc, $4 / 1$); IR (neat) $v 2986$ (C-C), 1729 (ester $\mathrm{C}=\mathrm{O}$), $1657(\mathrm{C}=\mathrm{C}), 1468(\mathrm{C}=\mathrm{C}), 1448(\mathrm{C}=\mathrm{C}), 1396(\mathrm{C}=\mathrm{C}), 1371(\mathrm{C}=\mathrm{C}), 1309,1276,1183,1096,1033$, $965,866,816,774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.27(2 \mathrm{H}, \mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.39\left(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{Cl}_{3} \mathrm{CCH}=\mathrm{CH}\right), 7.22\left(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{Cl}_{3} \mathrm{CCH}=\mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.13,61.54,92.16,121.70,146.01,164.70$.

Diisopropoxytitanium (IV) Dichloride. ${ }^{14}$

To a solution of titanium(IV) isopropoxide ($4.5 \mathrm{ml}, 15.2 \mathrm{mmol}$) in hexane (14 ml) was added titanium(IV) chloride ($1.7 \mathrm{ml}, 15.4 \mathrm{mmol}$) slowly at room temperature. On addition of titanium(IV) chloride, heat was evolved. After stirring for 10 min , the solution was allowed to stand for 6 h at room temperature, and the precipitate was then collected. The precipitate was washed with hexane ($5 \mathrm{ml} \times 2$) and recrystallized from hexane $(5 \mathrm{ml})$. The wet powder $(1.96 \mathrm{~g})$ was dried under reduced pressure to give 1.93 g of white powder, which was dissolved in toluene (27.2 ml) to give a 0.3 M toluene solution.

(R)-MS-free BINOL-Ti. ${ }^{13}$

A 100 ml round-bottomed flask equipped with a magnetic stirring bar and nitrogen inlet was charged with powdered molecular sieves 4A (15.95 g), (R)-(+)-binaphthol ($0.838 \mathrm{~g}, 2.93 \mathrm{mmol}$), and 52 ml of dichloromethane. After the mixture was stirred for 20 min at ambient temperature, the above solution ($0.3 \mathrm{M}, 10 \mathrm{ml}$) of diisopropoxytitanium dichloride in toluene was added into the resulting suspension in one portion. At this point, the reaction mixture became a red-brown suspension. After being stirred for 1.5 h at that temperature, the resultant suspension was transferred with syringe to a centrifugating tube capped with a rubber septum. By centrifugation at 4000 rpm for 20 min , molecular sieves were sedimented. The resultant supernatant was transferred with syringe to a 100 ml round-bottomed flask. The mixture was evaporated at $0^{\circ} \mathrm{C}$ to room temperature under reduced pressure to give a deep reddish residue. The resulting residue was suspended by adding 30 ml of hexane. The suspension was stirred for 20 min , and hexane was then decanted with a syringe. The resulting precipitate was vacuum-dried to give the binaphthol-titanium complex $(0.67 \mathrm{~g}, 56.7 \%$ yield) and used as a catalyst.
exo-2-Acetyl-endo-3-trichloromethylbicyclo[2.2.1]hept-5-ene (3). ${ }^{12}$
To a toluene solution (4 ml) of $5,5,5$-trichloro-3-penten-2-one (1) ($0.396 \mathrm{~g}, 2.11 \mathrm{mmol}$), the (R)-MS-free BINOL-Ti ${ }^{13}$ ($42 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.047 \mathrm{eq}$) was added at room temperature. After 5 min , cyclopentadiene (0.33 ml , 3.98 mmol) was added in the reaction mixture. After being stirred for 38.5 h at room temperature, the resultant mixture was diluted with ether and brine. The organic layer was extracted three times with ether. The extract was dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Separation of the residue by silica gel column chromatography (hexane/EtOAc,10/1) gave $0.456 \mathrm{~g}(85.3 \%)$ of 3 as an yellow oil : IR (neat) 2984, 2361, 1711, 1682, 1630, 1453, 1365, 1265, 1247, $1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{dq}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=1.8$ $\left.\mathrm{Hz}, \mathrm{H}_{8}\right), 1.73\left(\mathrm{dbs}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}\right.$, exo $\left.\mathrm{COCH}_{3}\right), 2.65\left(\mathrm{dd}, J=5.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, \mathrm{H}_{2}\right), 2.95(\mathrm{bs}$,
$\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 3.29\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.02\left(\mathrm{dd}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 6.29\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$ and $\left.\mathrm{H}_{6}, J=13.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.10,47.28,47.69,48.44,56.03,63.35,101.8,135.4,135.7,207.1 ;[\alpha]_{\mathrm{D}}^{21.7}=-38.0(\mathrm{c}$ $=1.0, \mathrm{CHCl}_{3}$; e.e. $=40 \%$.
exo-2-Ethoxycarbonyl-endo-3-trichloromethylbicyclo[2.2.1]hept-5-ene (4).
To a toluene solution (4 ml) of ethyl $4,4,4$-Trichloro-2-butenoate ($0.447 \mathrm{~g}, 2.06 \mathrm{mmol}$), the (R)-MS-free BINOL-Ti ${ }^{13}$ ($39 \mathrm{mg}, 0.097 \mathrm{mmol}, 0.047 \mathrm{eq}$) was added at room temperature. After 5 min , cyclopentadiene (0.33 ml , 3.98 mmol) was added to the reaction mixture. After being stirred for 58 h at room temperature, the resultant mixture was diluted with ether and brine. The organic layer was extracted three times with ether. The extract was dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Separation of the residue by silica gel column chromatography (hexane/EtOAc, 10/1) gave $0.223 \mathrm{~g}(38.1 \%)$ of 4 as a pale yellow oil: IR (neat) 2983, 2360,1731, $1456,1394,1376,1249,1178 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 1.29\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.51(\mathrm{dq}, 1 \mathrm{H}, J=$ $\left.8.7 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{8}\right), 1.89\left(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.44\left(\mathrm{dd}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{2}\right), 3.04\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $3.34\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.93\left(\mathrm{dd}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.21\left(\mathrm{dq}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.27$ and 6.27 (dd, $2 \mathrm{H}, J=15.9 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{5}$ and H_{6}) ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.21,47.38,48.29$, $48.66,49.46,61.10,64.98,101.6,135.1,135.9$, 173.9. $[\alpha]^{22.6}=-20.6\left(\mathrm{c} \mathrm{1.1}, \mathrm{CHCl}_{3}\right)$; e.e. $=7.0 \%$.

ACKNOWLEDGEMENTS: We thank SC-NMR Laboratory of Okayama University for the measurement of NMR spectra.

REFERENCES

1. Cycloaddition Reactions in Organic Synthesis; Kobayashi, S; Jogensen, K. A., Ed.; WILEY-VCH Verlag GmbH Weinheim: Germany, 2002.
2. The DIELS-ALDER REACTION; Fringuelli, F.; Taticchi, A., Ed.; WILEY-VCH Verlag GmbH Weinheim: Germany, 2002.
3. Lewis Acid Reagents -A Practical Approach-; Yamamoto. H., Ed.; Oxford university press: London, 1999
4. Encyclopedia of reagents for organic synthesis; Paquette, L. A., Ed.; John Wiley \& Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1995.
5. Selectivities in Lewis acid promoted reaction, Schinzer, D., Ed.; Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.
6. Lewis acids and selectivity in organic synthesis, Sasntelli, M.; Pons, J.-M., Ed.; CRC press: Boca Raton, New York, London, Tokyo, 1996.
7. (a) Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1996 , 118, 3049. (b) Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto, H. J. Am. Chem. Soc. $1998,120,6920$. 8. (a) Bao, J.; Wulff, W. D.; Rheingold, A. L. J. Am. Chem. Soc. 1993 , 115, 3814. (b) Bao, J.; Wulff, W. D.; Dominy, J. B.; Fumo, M. J.; Grant, E. B.; Rob, A. C.; Whitcomb, M. C.; Yeung, S.-M.; Ostrander, R. L.; Rheingold, A. L. J. Am. Chem. Soc. $1996,118,3392$.
8. Motoyama, Y.; Terada, M.; Mikami, K. Synlett, 1995, 967.
9. (a) Desimoni, G.; Faita, G.; Righetti, P. P. Tetrahedron Lett., $1996,37,3027$. (b) Carbone, P.; Desimoni, G.; Faita, G.; Filippone, S.; Righetti, P. P. Tetrahedron, $1998,54,6099$.
10. (a) Tsuboi, S.; Uno, T.; Takeda, A. Chem. Lett., 1978, 1325. (b) Nakatsu, S.; Tsuboi, S. Tetrahedron, 2004, 60, No. 10 , in press.
11. Tsuboi, S.; Ishiguro, Y.; Takeda, A. Bull. Chem. Soc. Jpn., $1974,47,1673$.
12. Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc. $1994,116,2812$.
13. Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990 , 112, 3949.

[^0]: *Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, Okayama 700-8530, Japan
 e-mail: stsuboi6@cc.okayama-u.ac.jp

