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We have investigated the linear cryptanalysis of AES cipher in this article. As the previous encryption

standard DES could be broken by the linear cryptanalysis, NIST decided a new encryption standard

AES in 2000. We try to analyze one and two rounds AES cipher by the method of the linear

cryptanalysis and learn the limits of this method. AES cipher provides a conspicuous difficulty in

breaking its keys because of small bias of its S-box. We report the experimental results of success rate

and are led to conclusion that this method would not work well on more than 3 rounds to break keys.
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1 INTRODUCTION

We have investigated the linear cryptanalysis of AES

cipher in this article. The National Institute of Standard

and Technology (NIST) made a formal call for Advanced

Encryption Standard (AES) in 1997 and selected

Rijndael block cipher as AES (FIPS 197) in 2000 (NIST,

2001), because Data Encryption Standard (DES), which

was the previous encryption standard in US since 1977

(NIST, 1977), could be broken by the linear

cryptanalysis, a kind of the chosen plain text attack

(Matsui, 1994) and was anxious for a lowering of

security. AES cipher uses 128-bit as a block length and

allows a variable key length among 128, 192 and 256-bit.

It iterates a round 10, 12 or 14 times depending key

length that is composed four different transformations,

ByteSub, ShiftRow, MixColumn and AddRoundkey.

Lucks (2000) improved the block cipher square attack

proposed by Daemen et al. (1997) on 7-rounds from

6-rounds and Ferguson et aI. (2001), 8 rounds.

We try to analyze one and two rounds AES cipher by

the method of the linear cryptanalysis proposed by
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Matsui (1994) and learn the limits of this method. The

cryptanalysis is based on a bias of S-box. As the absolute

value of maximum or minimum bias obtained from AES

S-box is much smaller than that from DES S-boxes, AES

cipher provides a conspicuous difficulty in breaking its

keys. We report the experimental results of success rate.

In due consideration of these results with bias, it seems

that this method would not work well on more than 3

rounds to break keys.

2 MATERIALS AND METHODS

2.1 Analysis of ByteSub

In this section, we describe a feature of ByteSub, a

constituent element of a round in AES cipher, which is

defined by S-box (SA)' SA has 8 input and 8 output bits.

For AES S-box (SA)' the number NSA(a,!3) of input (x)

satisfYing the linear relation for all XOR values of input

(x) and output (SA (x)) bits masked by a and !3 is defined

as follows:

NSA(a, P) =#{x lOs x < 255,
8 8

(EEl (x[s]. a[sD)= (EEl (S(x)[t]. p[tm}
s=O 1=0

(I)
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Fig. 1. The histogram of NSA(a,p) for AES S-box. The axes of abscissas and ordinates indicate the

value ofNSA(a,p), the number of pairs (a,p), respectively.

where a and P stand for mask of input bits and output

bits(l~a,p:::;255), the symbols #, (B,., the number of x

meeting the requirement, a bitwise XOR and AND. A

bias is defined as (NSA(a,p)-128)/256. The eight

different S-boxes are used for each 8 blocks in DES

cipher, while the only one common S-box is used for all

16 blocks in AES cipher. The maximum absolute value

of the biases for AES S-box is smaller than that for DES

S-boxes. The maximal bias realized in the fifth S-box

(Sos) in DES, that is, 20/64=0.31 and NSos(16,15)=12

(Matsui,1994). On the other hand, we found that for AES

S-box, the maximum absolute value of the bias was

16/256=0.0625 (NSA(a,p) being 112 or 144). We showed

the distribution of NSA(a,p) in Fig. I, and also the

number of pairs (a,p) for the maximum and minimum

biases in Table I. AES S-box has remarkable features

that the distribution ofNSA(a,p) is symmetrical about the

center (128) (Fig. I), and that there exist just five linear

approximations realizing the maximum or minimum bias

(±0.0625) for any input mask a(1~a:::;255), and for any

output mask P(1 ~P:::;255) too. Table 2 shows sets of

above five linear approximations for 1 bit output and

input cases.

2.2 Analysis of MixColumn

In this section, we describe a feature of MixColumn, a

constituent element of a round in AES cipher. This

MixColumn operation is carried out independently in

each word (32bits), where a state (128bits) dividing into

4 words. On considering a word as 4 byte vector, this

operation can be written by matrix multiplication on

GF(28
), where the field structure of GF(28

) was defined

by Daemen and Rijmen (2002).

bo 02 03 01 01 ao
bl 01 02 03 01 al=
b2 01 01 02 03 a2

b3 03 01 01 02 a3

a: input, b: output

The above expression is rewritten by the following

formula:

bi ='02'ea i (B'03'e a(i+l)mod 4(B'01'ea (i+2)mod 4

(B'01'e a(i+3) mod 4

(;=0,1,2,3) (2)
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Table 1. The numbers oflinear approximations for three maximum and minimum biases.

NSA(a,p)
112 114 116 140 142 144

Bias -0.0625 -0.05469 -0.04688 0.046875 0.054688 0.0625
Number 640 2040 4592 4588 2040 635

There is a perfect linear approximation for any output or

input mask in the operation (2). The formulae (3)

illustrate these perfect relations for I-bit output.

bi[O] = a i [7] EB a(i+l)mod4[7] EB a(i+l)mod4[0] EB a(i+2)mod4 [0] EB a(i+3)mod4[0]

bi [l] = a i [7]EEl ai[O] EEl a(i+l)mod4[7] EB a(i+l)mod4[1] EB a(i+l)mod4[0] EB a(i+2)mod4[1] EB a(i+3)mod4[1]

bi [2] = a i [1 ] EEl a(i+l)mod4[2] EB a(i+l)mod4[1] EB a(i+2)mod4 [2] EB a(i+3)mod4 [2]

bi [3] = a;[7] EEl a;[2] EEl a(i+l)mod4 [7] EB a(i+l)mod4 [3] EB a(i+l)mod4[2] EB a(i+2)mod4 [3] EB a(i+3)mod4 [3]
bi [4] = a i [7]EEl a i [3] EB a(i+l)mod4[7] EB a(i+l)mod4[4] EB a(i+l)mod4[3] EB a(i+2)mod4 [4] EB a(i+3)mod4 [4]
bi [5] = a i [4] EB a(i+l)mod4 [5] EB a(i+l)mod4 [4] EB a(i+2)mod4[S] EB a (i+3)mod4 [5]
bi [6] = ai[S] EB a(i+l)mod4[6] EB a(i+l)mod4[5] EB a(i+2)mod4[6] EB a(i+3)mod4[6]

bi [7] = a i [6] EB a(i+l)mod4 [7] EB a(i+l)mod4 [6] EB a(i+2)mod4[7] EB a(i+3)mod4[7]

(i=O, 1,2,3) (3)

Table 2. The linear approximations of the maximal bias (±O.06) for AES S-box having I bit output or input only.

Output(P) Bit Input(a)

1 0 45 103 142 163 196
2 1 77 106 151 176 253
4 2 106 + 128 + 176 + 218 + 234 +
8 3 53 + 64 + 117 + 216 + 237 +
16 4 34 + 70 + 100 + 170 + 206 +
32 5 4 185 189 224 228
64 6' 2 112 114 220 222
128 7 57 + 110 + 129 + 184 + 239 +

Input(a) Bit Output(P)

1 0 72 80 192 136 + 144 +
2 1 56 64 207 120 + 143 +
4 2 32 60 149 28 + 181 +
8 3 15 + 53 + 82 + 93 + 103 +
16 4 51 63 101 105 86 +
32 5 121 153 180 205 + 224 +
64 6 204 230 238 8 + 34 +
128 7 17 52 4 + 33 + 37 +

The symbol (+,-) after figure showing the signature of bias.
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2.3 Linear Analysis (I-Step)

Now we investigate attacking the AES code of 1 round.

We can ignore ShiftRow operation because it is easy to

break through this operation in attacking the AES code.

Thus, the attack process can deal with each word (32bit)

separately which makes up a state (l28bit).

Firstly, we introduce several notations using in this

article. The symbols P, C and K are used as plaintext,

ciphertext and key (32bit word). For a word A, Ai stands

for a byte part (8bit) ofA the position of which locates in

[8i, 8i+7] (i=0,1,2,3). For a byte B, BU] denotesj-th bit

of B, and BUI. 12, ... , jd, the bitwise XOR summation

BUd EB BU2] EB ... EB BUk]. The formula (4) illustrates I

round ofAES code.

'02'eS(p; )ffi'03'eS(l(i+l) mod 4)ffi'01'eS(l(i+2) mod 4)

ffi'O l'eS(1(1+3) mod 4) ffi K i = Ci

(i=0, 1,2,3) (4)

We can get the formula (5) when we pick up the linear

relation of the O-th bit key (Ko[Ol) in (4).

S(Po)[7] ffi SUmO,7] ffi S(P2 )[0]

ffi S(P3 )[0] ffi Co [0] = Ko[O]

(5)

Combining the formula (5) with the maximum and

minimum bias' linear approximations of I-bit output

modified by MixColumn operation (Table 2 and (3», we

find an effective linear approximation formula among the

Oth-bit of key and ciphertext and several bits of plaintext:

Po [0,3,4,5] ffi ~ [2,4,5] ffi P2 [0,2,3,5] ffi P3[0,2,3,5]

ffi I ffi Co [0] = Ko[O]

(6)

The reason why '1' appears in the left hand side is that

the number of approximations used in (6) which have

negative bias is odd. Using the above approximation,

Ko[O] is predictable by chosen plaintext attack. We

illustrated the flow of this linear approximation in Fig. 2.

By the same way as above, we can obtain linear

approximation formulae for Ko[I]- Ko[7], and estimate

all bits of Ko. We can obtain 5 effective linear

approximations for each Pi (i=0, 1, 2, 3) because there

are just 5 linear approximations of the maximum or

minimum bias for the demanded output mask. Therefore,

we can use such 54=625 linear approximations to

estimate a key, which produces good results; the more

linear approximations one uses, the less chosen

plaintexts one needs to estimate a cipher key.

2.4 Linear Analysis (2-Step)

We assigned a position number i (i=0, I, 2, 3) to the

operation multiplied by '02', '03', '01', '01' in

MixColumn. To deal with the round operation which

consists of ByteSub (S-box) and MixColumn, we

introduce two functions, Upstream and Downstream as

follows.

For an output mask (x), an input mask (y), a

MixColumn position number i and h (h=O, 1, 2, 3, 4),

Upstream(x,i,h), Downstream(y,i,h) denote an input

mask, an output mask which derive from h-th maximum

or minimum bias' linear approximation of output mask

(x), input mask (y) modified by multiplicative operation

of number i, respectively.

1, 2-round keys stand for KI, K2. AES cipher of

2-round is expressed by:

Po
1[0,3,4,5]

~
li7l

[0]

P1 P2 P3

1[2,4,5] 1[0,2,3,5] 1[0,2,3,5]

S-box ~~
[0,7]~~

MixColumn

Fig. 2. I-round AES cryptanalysis (see text).
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MixColumn (S(MixColumn (S(P)) EB KI))

EBK2==C

(7)

We can construct a linear approximation formula using

Upstream or Downstream in the way of Kl-pivot or

K2-pivot, respectively.

Case 1. KI -pivot.

The linear approximation involving KI[O] was given by

Po[Upstream(O,O,ho)J) EB lj[Upstream(O,I,~)]

EB ColDownstream(O,O, h2 )]

== Klo[O] EB K2o[Downstream(0,0,h2 )]

(O~ho, hlJ h2~4) (8)

When we choose opportune ho, hlJ h2of Upstream and

Downstream in (8), we get approximation formula:

Po [0,3,4,5] EB P,[2,4,5] EB Co[l,2,3,7]

== KIo[O] EB K2 o[I,2,3,7]

(9)

We illustrated the flow of the above linear approximation

in Fig. 3.

Case 2. K2 -pivot.

The linear approximation involving K2 [0] was given by

Po [Upstream(Upstream(O,O, h2 ),0, ho)J)
EB lj[Upstream(Upstream(O,O,~),I,~)] EB ColO]

== K2o[O] EB Kl o[Upstream(0,0,h2 )]

(10)

When we also choose opportune ho, hI. h2of Upstream in

(10), we get approximation formula:

Po[2,3,6] EB lj[0,I,2,4,5] EB Co [0]

== K2o[O] EB Kl o[0,3,4,5]

(11)

By the same way as (9), (11), the linear approximation

that involves only one bit of KI or K2 can be constructed.

Since there are each five combinations of masks of Po

and PI of (9) in §2.3, the key can be estimated accurately

by using many combinations.

By the chosen plaintext attack against the linear

approximations, a system of linear equations whose

unknown quantities are all bits of keys Ki o and K20 is

obtained. The keys can be forecasted by solving a system

of linear equations on GF(2). Their coefficients are

derived from Upstream and Downstream in Case 1 and 2.

As there are 16 unknown quantities in the equations, the

system is in need of more than 16 linearly independent

Po
1[0,3,4,5]

P2
1[0,2,3,5]

P3

1[0,2,3,5]

9 S-box 99
[7] [0,7] [0] [0]

MixColumn

10 ----J [0] K11 ----J K12 ------; K13 ------'
~

I s-jox II s-jox 19S-box

[3,6]

MixColumn

o----J K21 ----J K22 ------; K23 ------;

1,2,3,7]

K

K2

Fig. 3. 2-rounds AES cipher analysis (see text)
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equations. We prepare 32 linear equations for an

assurance of linear independence. These 32 equations are

arranged in order: Klo[O] , ... ,Klo[7]- pivot for

Downstream( , ,h), K2o[0], "', K2o[7] - pivot for

Upstream( , ,h'), Klo[O] , ,Klo[7]- pivot for

Downstream( , ,h"), K2o[0], , K2o[7]- pivot for

Upstream( , ,h"'). The system of linear equations is

formulated by a coefficient matrix B = (bi), a vector of

unknown quantities x = (x;) and a constant vector c = (Ci)'

that is, Bx=c. The bits of keys are arranged as follows:

X = (Klo[O], ... , Kl o[7], K2o[0], ... , K2o[7])

The element of vector is determined by:

[

0", if j - th linear approximation holds

Cj = in the majority of chosen plain texts
I· .. otherwise

The elements ofB are determined as follows.

(1) bi,i = bi+s,i+s = bi+16,i =bi+z4,i+s =1(0::; i::; 7)

(2) If Downstream (2 i ,0, '?)U mod8] = I,

then bi) =1(0 ::; i ::; 7)

(3) If Downstream(i mods ,0,h'z)Umod8] = I,

then bi) = I (16 ::; i ::; 23)

(4) IfUpstream (2i modS,O,h"z)U] = I,

then bi) = I (8::; i ::; 15)

imodS '"(5) IfUpwnstream(2 ,0, h z)U] = I,

then bi} = I (24 ::; i ::; 31)

(6) Otherwise bi} =0

3 RESULTS

3.1 Cryptanalysis for I-step

We conducted a computer experiment in the linear

cryptanalysis for two cases: (A) 2 -byte plaintexts (Po,

PI) attack, (B) 4-byte plaintexts (Po, PI> P2, P3) attack. A

set that is composed of two or four linear approximations

for (Po, PI) (A) or (Po, PI> P2, P3) (B) which are chosen

from 5 candidates (§2.3) is utilized for attack of I-round

AES. The experiments of (A) were made under the

condition of I, 5 and 25 sets served with attack, while the

experiments of (B) were made under the condition of I, 5

and 625 sets served. 25-sets (A) and 625-sets (B)

consisted of all 52, 54 combinations, while 5-sets (A , B)

were selected to have no common candidates. We

summarized these results in Tables 3 and 4.

3.2 Cryptanalysis for 2-step

We carried out a computer experiment in the linear

cryptanalysis attack against the incomplete 2-rounds

AES that MixColumn of second round was omitted from,

due to a technical reason. The above limitation made 2

bytes plaintext attack effective, so the whole 2562

plaintexts were used in the attack. We could not increase

the number of chosen plaintexts because the whole texts

were already used, therefore we adopted the majority

rule among the combination of systems of the linear

equations that were derived from the selections of (h',

h"') (§2.4) to estimate the keys of 2 rounds correctly,

which was named as multi-system in contrast with the

former as single-system. The experimental results were

shown in Table 5.

Table 3. Success rates of the linear cryptanalysis by 2-byte chosen texts (A).

Number of chosen Number of linear approximations sets served with attack

plain texts
5 25

N'r SRb N'r SRb N'r SRb

1,000 800 5.10 800 32.63 800 79.13

3,000 800 17.75 800 81.00 800 98.50

5,000 800 33.50 800 94.38 800 99.75

10,000 800 60.50 800 100.00 800 100.00

15,000 800 80.25 800 100.00 800 100.00

20,000 800 89.88 800 100.00 800 100.00

a Number of trials, b Success Rate (%)
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Table 4. Success rates ofthe linear cryptanalysis by 4-byte chosen texts (B).

Number of chosen Number of linear approximations sets served with attack

plain texts
5 625

NT" SRb NT" SRb NT" SRb

1,000 800 1.63

10,000 800 0.38 800 0.50 800 5.50

50,000 800 0.52 800 0.73 800 48.00

100,000 800 0.75 800 1.12 800 78.00

500,000 800 1.00 800 3.25 800 85.38

1,000,000 800 1.88 800 7.13

5,000,000 800 6.00 800 37.50

10,000,000 800 14.25 800 70.13

20,000,000 800 29.13 800 95.13

"Number of trials, b Success Rate (%)

Table 5. Success rates in the incomplete 2 rounds

AES. The number of trials being 1000.

Table 6. The substantial biases of 2-byte chosen texts attack

(A).

Firstly, for the attack against I-round AES we compared

the success rates obtained from the computer experiment

with the theoretical ones based on Lemma 2 in (Matsui,

Number of linear approximations set

served with attack

1.22E-03

1.66E-03

5 625

8.35E-05

1.86E-04

Substantial bias

100,000

500,000

10,000,000

20,000,000

plaintexts

Number of Number of linear approximations set

chosen served with attack

1994). The bias that was derived from XOR sum of two

linear approximations the biases of which were equally

at 2-4 was computed at 2 1(2-4)2=2"7 on the basis of

Piling-up Lemma (Matsui, 1994). While the success

rate on the attack of i 2 (1/4 (2"7r2) chosen plaintexts

would be theoretically expected to be at 84.1%, the

attainment of this rate was in need of about 16,000

chosen plaintexts in the experiment (Table3). In this case,

the substantial bias would be estimated at 3.6xIO·3• In

Table 6, we listed the substantial biases corresponding to

the success rates in Table 3. Actually, the substantial bias

for 5 sets served with attack was nearly equal to the

theoretical bias, and such bias for 25sets was about

double as much as the theoretical bias. As the theoretical

bias for XOR sum of four linear approximations was

computed at 23(2-4)4=2-13
, 224 chosen plaintexts attack

Table 7. The substantial biases of 4-byte chosen texts attack

(B).

25

1.28E-02

1.98E-02

1.99E-02

91.8

97.7

5

8.02E-03

1.12E-02

Success rate (%)

Substantial bias

1.34E-03

3.48E-03

4.5 IE-03

Method

Single-system

Multi-system

1,000

3,000

5,000

10,000

15,000

20,000

Number of

chosen

plaintexts

4 DISCUSSION
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would expect the success rate at 84.1%. However, we

needed about 3 billion in number to attain this rate in the

experiment. In Table 7, we also listed the substantial

biases corresponding to the success rates in Table 4.

Similarly, the substantial bias for 5, and 625 sets served

with attack were about one and ten times as much as the

theoretical bias in this situation (B).

Secondly, we analyzed the experimental results in the

incomplete 2 rounds AES attack. It is impossible for one

set of linear approximations the bias of which would be

estimated at 2-10 to attack 2 round keys with success rate

at 84.1 %, because it would require 218 plaintexts, which

exceed the whole number 2 16 of plaintexts. Therefore, we

carried out 25 sets attack (§3.2). In this situation, the

substantial bias was computed at 2-1.98xl0,2 _2,4=2.48x

10'3 that can realize the success rate at 89.8 % with the

whole plaintext (2 16) attack, which agrees with the rate at

91.8% in the experiment. The adoption of the majority

rule, the multi-system attack, also contributed to an

improvement of the success rate (Table 5). For the

complete 2-rounds AES attack involving MixColumn of

the second round, the substantial bias is estimated at

2-1.66xlO'3 _2-4=2.08x 10-4, when 625 sets attack (§3.1)

are used. About 5.8 million plaintext attack can attain the

success rate at 84.1 %.

Finally, we study the limitation of this method. For 3 or

4 rounds AES attack, the substantial bias would be

reduced to about 2"155 or 2,18.5, even if 625-sets attack

would be used. Therefore, the necessary number of plain

texts would increase to 229 or 237
, respectively. In due

consideration of the whole number of plaintexts (232), we

come to the conclusion that this method would not work

well on more than 3 rounds.
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