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Abstract

We investigated the impact of olmesartan and temocapril on pancreatic islet beta-cells during
the development of diabetes mellitus using Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats.
Four-week-old male OLETF rats were fed standard chow (untreated:n5), or chow containing ei-
ther 0.005% olmesartan(n5) or 0.01% temocapril (n5) until being sacrificed at 35 weeks of age.
Pancreas sections were double-stained with anti-insulin and anti-glucagon antibodies. The per-
cent areas of beta-cells, alpha-cells and non-alpha-non-beta-cells were compared among groups.
In untreated OLETF rats, the fasting plasma glucose (FPG) level was elevated at the 18th week
and remained elevated until the 35th week. On the other hand, no significant elevation in FPG
levels was observed in olmesartan- or temocapril-treated rats. Pancreatic islets from olmesartan-
treated rats were significantly smaller in size as compared with those from untreated OLETF rats.
Furthermore, the average area occupied by beta-cells as a fraction of the total area of an individ-
ual islet was significantly higher in olmesartan- or temocapril-treated rats than that in untreated
OLETF rats. Olmesartan and temocapril both prevented the development of hyperglycemia, pos-
sibly through the prevention of islet beta-cell loss in spontaneously diabetic OLETF rats.

KEYWORDS: angiotensin II type-1 receptor blocker, angiotensin converting enzyme inhibitor,
pancreas, insulin secretion, Type 2 diabetes mellitus
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We investigated the impact of olmesartan and temocapril on pancreatic islet ｹ-cells during the devel-
opment of diabetes mellitus using Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats. Four-week-old 
male OLETF rats were fed standard chow (untreated: n＝5),  or chow containing either 0.005ｵ olm-
esartan (n＝5) or 0.01ｵ temocapril (n＝5) until being sacrificed at 35 weeks of age.  Pancreas sections 
were double-stained with anti-insulin and anti-glucagon antibodies.  The percent areas of ｹ-cells,  
ｸ-cells and non-ｸ-non-ｹ-cells were compared among groups.  In untreated OLETF rats,  the fasting 
plasma glucose (FPG) level was elevated at the 18th week and remained elevated until the 35th week.  
On the other hand,  no significant elevation in FPG levels was observed in olmesartan- or temocapril-
treated rats.  Pancreatic islets from olmesartan-treated rats were significantly smaller in size as com-
pared with those from untreated OLETF rats.  Furthermore,  the average area occupied by ｹ-cells as 
a fraction of the total area of an individual islet was significantly higher in olmesartan- or temocapril-
treated rats than that in untreated OLETF rats.  Olmesartan and temocapril both prevented the devel-
opment of hyperglycemia,  possibly through the prevention of islet ｹ-cell loss in spontaneously diabetic 
OLETF rats.

Key words: angiotensin II type-1 receptor blocker,  angiotensin converting enzyme inhibitor,  pancreas,  insulin 
secretion,  Type 2 diabetes mellitus

n 1999,  an angiotensin-converting-enzyme 
inhibitor (ACEI),  captopril,  was for the first 

time reported in a large scale clinical trial to poten-
tially decrease the incidence of new-onset Type 2 
diabetes mellitus (T2DM) as compared with conven-
tional antihypertensive therapy in patients with dia-
stolic hypertension [1].  Other ACEIs including 
ramipril,  enalapril and lisinopril,  as well as angio-
tensin II type-1 receptor (AT1) blockers (ARBs) such 

as losartan,  candesartan,  and valsartan,  have shown 
similar reductions of new-onset T2DM independent of 
their blood-pressure-lowering effect in non-diabetic 
patients with hypertension or with heart failure in 
randomized clinical trials [2,  3].  Hence,  it is sug-
gested that the renin-angiotensin system (RAS) block-
ade with whichever ACEIs or ARBs could delay or 
prevent the onset of T2DM [4,  5].
　 The mechanisms by which ACEIs and/or ARBs 
attenuate the onset of T2DM remain to be elucidated,  
but they may involve both insulin secretion from pan-
creatic islet β-cells and insulin sensitivity at the 
peripheral tissues including skeletal muscles and adi-
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pocytes [2,  6,  7].  Initially,  much attention was paid 
to the improvement of insulin sensitivity by RAS 
blockade,  which is often seen in diabetic patients;  
however,  conflicting reports have mounted,  thus rais-
ing controversy over whether it counts as the preven-
tion of diabetes onset [4].  Recently,  local RAS in the 
pancreas has been discovered [8,  9],  and has been 
postulated to play crucial roles in the pathogenesis of 
diabetes in animal models [10ﾝ13].
　 OLETF rats are an established model of T2DM,  
characterized by obesity and insulin resistance [14,  
15].  The morphological changes in the OLETF ratsʼ 
pancreatic tissues during the course of the develop-
ment of diabetes have been documented in detail [14ﾝ
17].  In brief,  the islets show a typical appearance of 
“peripheral α-cells and central β-cells” at the 10th 
week [16],  and some islets start to enlarge and 
develop new blood vessels and ducts in the periphery 
of the islet at the 20th week,  followed by the destruc-
tion of the “peripheral α-cells and central β-cells” 
appearance by fibrous tissues at the 40th week.  Such 
changes in pancreatic histology were not observed in 
non-diabetic LETO rats until 40 weeks,  and hence are 
considered to be alterations specific to diabetic ani-
mals [17].  Recently,  Ko et al.  reported that ramipril 
suppressed islet fibrosis in OLETF rats [10].
　 Olmesartan and temocapril,  similarly to other 
ARBs and ACEIs,  respectively,  have been shown to 
possess actions beneficial for the improvement of glu-
cose intolerance [18ﾝ21].  Therefore,  it is expected 
that these agents could also reduce the incidence of the 
new onset of T2DM in future clinical trials.  In the 
present study,  we examined the impact of olmesartan 
and temocapril on the pathogenesis of diabetes in 
OLETF rats,  focusing on the diabetogenic alterations 
of pancreas morphology.

Materials and Methods

　 Antibodies and chemicals. Guinea pig poly-
clonal antibody against porcine insulin antibody was 
purchased from Thermo Shandon (Pittsburgh,  PA,  
USA),  and rabbit polyclonal antibody against porcine 
glucagon was purchased from Zymed Laboratory 
(South San Francisco,  CA,  USA).  Rabbit polyclonal 
anti-AT1 receptor antibody was kindly provided by 
Prof.  Rakugi (Osaka University) [22].  Olmesartan 
and temocapril were provided by Sankyo Pharma-

ceutical Company.
　 Animals and experimental design. Animals 
were cared for and treated in accordance with the 
guidelines of the Animal Use and Care Committee at 
Okayama University and the Guide for the Care and 
Use of Laboratory Animals published by the US 
National Institutes of Health (NIH publication No.  85
ﾝ23,  revised 1985).  OLETF rats were kindly pro-
vided by the Tokushima Research Institute (Otsuka 
Pharmaceutical,  Tokushima,  Japan).  Fifteen male,  4 
week-old OLETF rats were housed singly with food 
and water ad libitum; specifically,  they were fed 
standard rat chow containing 5ｵ fat (Oriental Yeast,  
Tokyo,  Japan).  When the rats were 8 weeks of age,  
they were randomly assigned to one of 3 groups that 
were fed one of the following: standard chow 
(untreated,  n＝5),  or chow containing either 0.005ｵ 
olmesartan (olmesartan-treated,  n＝5) or 0.01ｵ 
temocapril (temocapril-treated,  n＝5).  The doses of 
these agents were the same as those used by Kim et al.  
[23] in order to generate compatible suppressor 
effects.
　 The following clinical parameters were determined 
at weeks 5,  9,  13,  18,  22,  26,  30,  and 35 in all 
animals: body weight,  blood pressure,  fasting plasma 
glucose (FPG),  fasting plasma insulin,  serum fruc-
tosamine,  24-h collected urine volume,  and 24-h uri-
nary excretion of C-peptide.  The pancreases were 
dissected out at the 35th week.  Each pancreas was 
fixed in 10ｵ formalin and embedded in paraffin.  For 
histopathological examination,  4μm sections were 
stained with Masson-Trichrome and subjected to the 
immunostaining procedures described below.
　 Insulin-glucagon immunostaining. Sections 
were first incubated with polyclonal anti-insulin anti-
body followed by anti-glucagon antibody at room tem-
perature for 2h each.  Secondary antibodies,  namely 
biotin-conjugated goat anti-guinea-pig IgG and biotin-
conjugated goat anti-rabbit IgG (Vector Labs,  
Burlingame,  CA,  USA),  were used as the anti-insu-
lin and anti-glucagon antibodies,  respectively.  The 
sections were labeled with avidin-biotin-complex 
(Vectastain Elite ABC kit,  Vector Labs) for glucagon,  
or with ABC-alkaline phosphatase (ABC-AP) proce-
dures (Vectastain Elite ABC-AP kit,  Vector Labs) 
for insulin.  Sections were visualized with Vector Red 
(Vectastain) and diaminobenzidine (DAB) and counter-
stained with Mayerʼs hematoxylin.
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　 AT1 receptor immunostaining. The section 
serial to that used for insulin-glucagon double staining 
was subjected to AT1 receptor immunostaining.  Poly-
clonal anti-AT1 antibodies were labeled with the ABC 
procedure and visualized with DAB.  Sections were 
microwaved at 500W for 10min to activate the epitope 
immunogenicity.
　 Morphological measurement. Using the 
image analysis software OPTIMAS 6.5 (Medi-
acybernetics,  Silver Spring,  MD,  USA),  the isletʼs 
total area,  anti-glucagon antibody-stained (α-cell) area 
and anti-insulin antibody-stained (β-cell) area were 
outlined.  In the present study,  we defined the sub-
traction of the α-cell area and the β-cell area from the 
total islet area as the non-α-non-β-cell area.  The area 
occupied by the β-cells,  α-cells and non-α-non-β-cells 
in an individual islet was calculated.
　 Statistical analysis. Values are expressed as 
the means ± SE.  Statistical analyses were performed 
using Stat View 5.0 (ABACUS Concepts,  Berkeley,  
CA,  USA).  Differences between untreated OLETF 
rats and olmesartan-treated or temocapril-treated 
animals were analyzed using an unpaired Studentʼs 
t-test.  A p＜0.05 was considered to be significant.

Results

　 Clinical features. The time courses of body 
weight,  systolic blood pressure,  and FPG values are 
shown in Fig.  1.  There were no significant differ-
ences in body weight among the groups,  though 
temocapril-treated rats tended to gain less weight than 
animals in the other groups (Fig.  1A,  at 35th week,  
temocapril; 556±25g, untreated; 651±9g, p＝0.0518). 
Systolic blood pressures in olmesartan-treated and in 
temocapril-treated rats were significantly lower than 
in untreated OLETF rats (Fig.  1B,  at 13th week,  
olmesartan; 122±2mmHg,  temocapril; 123±2mmHg,  
untreated; 139±2mmHg,  p＜0.05 for both vs.  
untreated).  FPG levels in untreated OLETF rats 
gradually increased to over 140mg/dl at the 18th 
week and stayed above that level until the animals 
were sacrificed.  Contrarily,  the FPG levels in either 
treatment group never exceeded 140mg/dl (Fig.  1C).  
FPG values in temocapril-treated rats stayed at sig-
nificantly lower levels than those in untreated OLETF 
rats throughout the study period,  while the decrease 
in levels in olmesartan-treated rats reached statistical 

significance solely at the 26th week.  There were no 
significant differences between olmesartan- and temo-
capril-treated rats in either systolic blood pressures 
or FPG values throughout the experiment (Figs.  1B,  
1C).
　 Serum fructosamine, fasting plasma insulin 
and 24-h urinary C-peptide. Levels of serum 
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Fig. 1　 Changes of body weight (A),  systolic blood pressure (B),  
and fasting plasma glucose levels (C) in untreated (open circle),  
olmesartan-treated (closed circle),  and temocapril-treated (closed 
box) OLETF rats.
#p＜0.05 notes olmesartan-treated versus untreated.  ＊p＜0.05 
notes temocapril-treated versus untreated.
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fructosamine,  fasting plasma insulin,  and 24-h col-
lected urinary C-peptide at the time of sacrifice are 
shown in Table 1.  Both insulin and C-peptide levels in 
olmesartan- or temocapril-treated rats tended to be 
higher than those in untreated OLETF rats; however,  
statistically significant differences were not observed 
among the groups.

　 Pathohistological alterations in pancreatic 
islets at 35th week. In Fig.  2A,  the pancreas of 
a non-diabetic LETO rat at 35 weeks of age is shown 
as a reference for the typical appearance of “periph-
eral α-cells and central β-cells”.  In the present study,  
we observed various alterations in the appearance of 
islets (representatives are shown in Figs.  2Bﾝ2D),  as 
well as in their size and number (summarized in Fig.  
2F).  The islet size was distributed widely,  ranging 
from small (2,500ﾝ10,000μm2) to huge (＞70,000μm2).  
Huge islets were occasionally found only in untreated 
OLETF rats,  and there was a significant difference in 
average islet size between untreated and olmesartan-
treated rats.  Small islets were seen in all groups.  
There were many tiny islets (＜2,500μm2) in all 
groups,  although we have ignored them in the current 
study for technical reasons.  It is notable that small 
islets and tiny islets were found most frequently in 
untreated islets,  suggesting islet generation (data not 
shown).
　 Huge islets contained noticeable areas of non-α
-non-β-cells with disrupted arrangements of “periph-
eral α-cells” (Figs.  2B,  2F).  Mid-range-sized islets 
(10,000ﾝ70,000μm2) were found in the pancreas in all 
groups with a similar incidence (Fig.  2F); however,  
their appearances differed markedly between the 
untreated and treated groups.  Namely,  the islets from 
untreated OLETF rats appeared to be down-sized 

copies of huge islets,  while those from olmesartan- or 
temocapril-treated rats showed the “peripheral α-cells 
and central β-cells” appearance (Figs.  2C,  2D).  The 
average areas occupied by β-cells,  α-cells and non-α
-non-β-cells in individual islets are shown in Fig.  2F.  
The occupancy rates of β-cells and α-cells in either 
olmesartan- or temocapril-treated rats were signifi-
cantly higher than those in untreated OLETF rats 
(Fig.  2F).  The area occupied by non-α-non-β-cells 
consisted mainly of connective tissues and microves-
sels under Masson-Trichrome stain (data not shown).
　 AT1 receptor localization in islets. In the 
serial section analysis,  AT1 receptors were recog-
nized in the rat pancreas,  predominantly in acinar 
cells and to a lesser extent in islets (Fig.  3B).  There 
were no differences in the cellular distribution and 
intensity of AT1 receptor immunostaining among 
experimental groups (data not shown).  Figs.  3C and 
3D demonstrated relatively strong AT1 receptor 
staining in areas occupied by β-cells and non-α-non-β
-cells in islets but not in areas occupied by α-cells.

Discussion

　 Male OLETF rats are a useful model of T2DM,  
characterized by obesity and insulin resistance start-
ing around 16 weeks of age [17].  Simultaneously,  
hyperinsulinemia develops in order to cope with 
peripheral insulin resistance,  accompanied by morpho-
logical changes in the pancreas including islet enlarge-
ment and an increase in the number of islets and β
-cells.  FPG starts to rise at around 18 to 24 weeks,  
reflecting the limitation of β-cellsʼ compensation.  
Meanwhile,  connective tissues emerge and proliferate 
in islets,  separating them in clusters to develop a 
“nodular” appearance.  By the age of 40 weeks,  severe 
hyperglycemia is seen as a consequence of deterio-
rated insulin secretion and the fibrotic destruction of 
islets [14ﾝ17].
　 Pancreases from untreated animals in the present 
study showed the above-mentioned diabetogenic mor-
phology at the 35th week (Figs.  2B,  2F).  Olmesar tan 
or temocapril treatment clearly attenuated the mor-
phological alterations both in islet size and islet num-
ber (Figs.  2C,  2D,  2E).  Since islet enlargement 
requires an increase in the β-cell number,  there may 
be β-cell generation,  duplication or differentiation.  
Furthermore,  the decreasing trend in the number of 
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Table 1　 Levels of fructosamine,  fasting plasma insulin and 
24-h urine C-peptide of untreated,  olmesartan-treated,  or temo-
capril-treated OLETF rats at 35 weeks

untreated olmesartan temocapril

Fructosamine (μmol/l) 217±88 223±9 192±4　
Plasma insulin (ng/ml) 1.2±0.2 2.0±0.1 1.8±0.1
24-h urine C-peptide
(ng/mgCr) 2.3±0.05 2.8±0.1 3.8±0.23

Values are means±SE.  No significant differences were observed 
among groups.
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Fig. 2　 Immunohistological visualization of β-cells (red) and α-cells (brown) in pancreatic islets and morphological analysis in untreated,  
olmesartan-treated and temocapril-treated OLETF rats at 35 weeks.
A,  Typical appearance of pancreas at 35 weeks  of age from a non-diabetic LETO rat displaying peripheral α-cells (brown) regularly sur-
rounding the central cluster of β-cells (red) (served as reference).  B-D,  Representative appearances of huge islets from an untreated 
OLETF rat (B),  a moderately enlarged islet from an olmesartan-treated OLETF rat (C),  and a moderately enlarged islet from a temocapril-
treated OLETF rat (D).  E,  Islet size in untreated OLETF rats was distributed widely from tiny (less than 2,500µm2) to huge (larger than 
70,000µm2),  whereas that in olmesartan-treated OLETF rats never exceeded 40,000µm2.  ＊ denotes significant (p＜0.05) difference in aver-
age islet size between untreated and olmesartan-treated rats.  F,  Averaged area occupied by β-cells (closed),  alpha-cells (stripe),  and 
non-α-non-β-cellsʼ area (open),  ＊ p＜0.05 vs.  untreated,  ＊＊ p＜0.01 vs.  untreated,  ## p＜0.01 vs.  untreated OLETF rats.  scale 
bar: 100µm
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islets (Fig.  2E),  in particular the number of tiny 
islets (data not shown),  in treated rats,  prompted us 
to speculate that islet generation occurring in 
untreated OLETF rats might have been prevented by 
RAS inhibitors.
　 FPG levels in animals treated with RAS inhibitors 
were significantly lower than those in untreated ani-
mals from the 18th week to the 35th week (Fig.  1C).  
Since no significant differences were observed in lev-
els of serum fructosamine,  fasting plasma insulin,  or 
urinary C-peptide among groups,  post-fed plasma 
glucose levels might not have differed greatly between 
treated rats and untreated rats.  Indeed,  urinary 
C-peptide levels were within normal range in all 
groups (Table 1).  Thus,  we have demonstrated the 
prevention of the very early steps of diabetogenesis in 

OLETF rats.
　 It is apparent that olmesartan and/or temocapril 
inhibited connective tissue growth in pancreatic islets 
(Fig.  2F).  Both agents have been shown to mediate 
antifibrotic actions in animal models of cardiovascular 
and kidney diseases where local RAS plays important 
roles [23ﾝ25].  Recently,  Ko et al.  suggested that 
ramipril potentially prevented the islet destruction by 
fibrosis in OLETF rats.  Here,  we have demonstrated 
that both olmesartan and temocapril also prevented 
islet destruction,  supporting the emerging concept 
that pancreas RAS might play a crucial role in the 
diabetogenic process in T2DM [4,  6].  The precise 
mechanisms remain to be elucidated; however,  they 
may include the blockade of angiotensin II action on 
cellular proliferation,  apoptosis,  TGF-β activation 
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Fig. 3　 AT1 receptor localization in rat pancreatic islets.
A and C,  Double staining with anti-insulin (red) and anti-glucagon (brown) antibodies.  B and D,  AT1 receptors (brown) were immunohis-
tologically recognized in the pancreas,  predominantly in the acinar cells,  to a less extent in islet β-cells (black arrow head),  and not at all 
in α-cells (white arrow head).  A and B are serial sections,  and C and D are magnified images of A and B.  Scale bar: 100µm (A,  
B); 10µm (C,  D)
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[10],  and reactive oxygen generation [26].  In addi-
tion,  a direct action of zofenoprilat and enalaprilat,  
ACEIs,  on pancreatic β-cell protection has been sug-
gested [27].  We have demonstrated the predominant 
distribution of AT1 receptors on β-cells in islets.  
Further studies are needed to elucidate whether these 
AT1 receptors play a role in β-cell duplication,  which 
is possibly involved in islet enlargement.
　 In conclusion,  both olmesartan and temocapril 
protected pancreatic islets,  and β-cells in particular,  
from the morphological deterioration of diabetogene-
sis.  AT1 receptors expressed on β-cells may be 
involved in the mechanism underlying such favorable 
actions of RAS inhibitors.

Acknowledgments.　We thank Prof.  Rakugi for providing anti-AT1 
receptor antibody.  We thank Otsuka Pharmaceutical Company and 
Sankyo Pharmaceutical Company for providing OLETF rats and olme-
sartan/temocapril,  respectively.  Special thanks to Ms. Kameshima for 
technical assistance.  Part of this work was supported by grants from the 
Sankyo Pharmaceutical Company.

References

 1. Hansson L,  Lindholm LH,  Niskanen L,  Lanke J,  Hedner T,  
Niklason A,  Luomanmaki K,  Dahlof B,  de Faire U,  Morlin C,  
Karlberg BE,  Wester PO and Bjorc JE: Effect of angiotensin-con-
verting-enzyme inhibition compared with conventional therapy on 
cardiovascular morbidity and mortality in hypertension: the 
Captopril Prevention Project (CAPPP) randomised trial.  Lancet 
(1999) 353: 611ﾝ616.

 2. Jandeleit-Dahm KA,  Tikellis C,  Reid CM,  Johnston CI and Cooper 
ME: Why blockade of the renin-angiotensin system reduces the 
incidence of new-onset diabetes.  J Hypertens (2005) 23: 463ﾝ473.

 3. Scheen AJ: Renin-angiotensin system inhibition prevents type 2 
diabetes mellitus.  Part 1.  A meta-analysis of randomised clinical 
trials.  Diabetes Metab (2004) 30: 487ﾝ496.

 4. Scheen AJ: Prevention of type 2 diabetes mellitus through inhibi-
tion of the Renin-Angiotensin system.  Drugs (2004) 64: 2537ﾝ
2565.

 5. Cooper ME,  Tikellis C and Thomas MC: Preventing diabetes in 
patients with hypertension: one more reason to block the renin-
angiotensin system.  J Hypertens Suppl (2006) 24: S57ﾝS63.

 6. Scheen AJ: Renin-angiotensin system inhibition prevents type 2 
diabetes mellitus.  Part 2.  Overview of physiological and biochemi-
cal mechanisms.  Diabetes Metab (2004) 30: 498ﾝ505.

 7. Leung PS: Mechanisms of protective effects induced by blockade 
of the renin-angiotensin system: novel role of the pancreatic islet 
angiotensin-generating system in Type 2 diabetes.  Diabet Med 
(2007) 24: 110ﾝ116.

 8. Leung PS and Carlsson PO: Tissue renin-angiotensin system: its 
expression,  localization,  regulation and potential role in the pan-
creas.  J Mol Endocrinol (2001) 26: 155ﾝ164.

 9. Leung PS: The physiology of a local renin-angiotensin system in 
the pancreas.  J Physiol (2007) 580: 31ﾝ37.

10. Ko SH,  Kwon HS,  Kim SR,  Moon SD,  Ahn YB,  Song KH,  Son 

HS,  Cha BY,  Lee KW,  Son HY,  Kang SK,  Park CG,  Lee IK and 
Yoon KH: Ramipril treatment suppresses islet fibrosis in Otsuka 
Long-Evans Tokushima fatty rats.  Biochem Biophys Res Commun 
(2004) 316: 114ﾝ122.

11. Tikellis C,  Wookey PJ,  Candido R,  Andrikopoulos S,  Thomas MC 
and Cooper ME: Improved islet morphology after blockade of the 
renin- angiotensin system in the ZDF rat.  Diabetes (2004) 53: 989
ﾝ997.

12. Chu KY,  Lau T,  Carlsson PO and Leung PS: Angiotensin II type 1 
receptor blockade improves beta-cell function and glucose toler-
ance in a mouse model of type 2 diabetes.  Diabetes (2006) 
55: 367ﾝ374.

13. Shao J,  Iwashita N,  Ikeda F,  Ogihara T,  Uchida T,  Shimizu T,  
Uchino H,  Hirose T,  Kawamori R and Watada H: Beneficial 
effects of candesartan,  an angiotensin II type 1 receptor blocker,  
on beta-cell function and morphology in db/db mice.  Biochem 
Biophys Res Commun (2006) 344: 1224ﾝ1233.

14. Kawano K,  Hirashima T,  Mori S,  Saitoh Y,  Kurosumi M and 
Natori T: Spontaneous long-term hyperglycemic rat with diabetic 
complications.  Otsuka Long-Evans Tokushima Fatty (OLETF) 
strain.  Diabetes (1992) 41: 1422ﾝ1428.

15. Kawano K,  Hirashima T,  Mori S and Natori T: OLETF (Otsuka 
Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain.  
Diabetes Res Clin Pract (1994) 24 Suppl: S317ﾝS320.

16. Hong EG,  Noh HL,  Lee SK,  Chung YS,  Lee KW and Kim 
HM: Insulin and glucagon secretions,  and morphological change 
of pancreatic islets in OLETF rats,  a model of type 2 diabetes 
mellitus.  J Korean Med Sci (2002) 17: 34ﾝ40.

17. Ishida K,  Mizuno A,  Min Z,  Sano T and Shima K: Which is the 
primary etiologic event in Otsuka Long-Evans Tokushima Fatty 
rats,  a model of spontaneous non-insulin-dependent diabetes mel-
litus,  insulin resistance,  or impaired insulin secretion? Metabolism 
(1995) 44: 940ﾝ945.

18. Harada N,  Takishita E,  Ishimura N,  Minami A,  Sakamoto S and 
Nakaya Y: Combined effect of ACE inhibitor and exercise training 
on insulin resistance in type 2 diabetic rats.  Life Sci (2002) 
70: 1811ﾝ1820.

19. de Vinuesa SG,  Goicoechea M,  Kanter J,  Puerta M,  Cachofeiro V,  
Lahera V,  Gomez-Campdera F and Luno J: Insulin resistance,  
inflammatory biomarkers,  and adipokines in patients with chronic 
kidney disease: effects of angiotensin II blockade.  J Am Soc 
Nephrol (2006) 17: S206ﾝS212.

20. Iwai M,  Li HS,  Chen R,  Shiuchi T,  Wu L,  Min LJ,  Li JM,  Tsuda M,  
Suzuki J,  Tomono Y,  Tomochika H,  Mogi M and Horiuchi 
M: Calcium channel blocker azelnidipine reduces glucose intoler-
ance in diabetic mice via different mechanism than angiotensin 
receptor blocker olmesartan.  J Pharmacol Exp Ther (2006) 
319: 1081ﾝ1087.

21. Ran J,  Hirano T,  Fukui T,  Saito K,  Kageyama H,  Okada K and 
Adachi M: Angiotensin II infusion decreases plasma adiponectin 
level via its type 1 receptor in rats: an implication for hypertension-
related insulin resistance.  Metabolism (2006) 55: 478ﾝ488.

22. Rakugi H,  Okamura A,  Kamide K,  Ohishi M,  Sasamura H,  
Morishita R,  Higaki J and Ogihara T: Recognition of tissue- and 
subtype-specific modulation of angiotensin II receptors using anti-
bodies against AT1 and AT2 receptors.  Hypertens Res (1997) 
20: 51ﾝ55.

23. Kim S,  Izumi Y,  Izumiya Y,  Zhan Y,  Taniguchi M and Iwao 
H: Beneficial effects of combined blockade of ACE and AT1 
receptor on intimal hyperplasia in balloon-injured rat artery.  
Arterioscler Thromb Vasc Biol (2002) 22: 1299ﾝ1304.

41Olmesartan Prevents Islet DeteriorationFebruary 2009

7

Kaihara et al.: Olmesartan and temocapril prevented the development of hyperglyce

Produced by The Berkeley Electronic Press, 2009



24. Nakamura Y,  Yoshiyama M,  Omura T,  Yoshida K,  Izumi Y,  
Takeuchi K,  Kim S,  Iwao H and Yoshikawa J: Beneficial effects 
of combination of ACE inhibitor and angiotensin II type 1 receptor 
blocker on cardiac remodeling in rat myocardial infarction. 
Cardiovasc Res (2003) 57: 48ﾝ54.

25. Koga K,  Yamagishi S,  Takeuchi M,  Inagaki Y,  Amano S,  
Okamoto T,  Saga T,  Makita Z and Yoshizuka M: CS-886,  a new 
angiotensin II type 1 receptor antagonist,  ameliorates glomerular 
anionic site loss and prevents progression of diabetic nephropathy 
in Otsuka Long-Evans Tokushima fatty rats.  Mol Med (2002) 
8: 591ﾝ599.

26. Nakayama M,  Inoguchi T,  Sonta T,  Maeda Y,  Sasaki S,  Sawada F,  
Tsubouchi H,  Sonoda N,  Kobayashi K,  Sumimoto H and Nawata 
H: Increased expression of NAD(P)H oxidase in islets of animal 
models of Type 2 diabetes and its improvement by an AT1 receptor 
antagonist.  Biochem Biophys Res Commun (2005) 332: 927ﾝ933.

27. Lupi R,  Del Guerra S,  Bugliani M,  Boggi U,  Mosca F,  Torri S,  
Del Prato S and Marchetti P: The direct effects of the angiotensin-
converting enzyme inhibitors,  zofenoprilat and enalaprilat,  on iso-
lated human pancreatic islets.  Eur J Endocrinol (2006) 154: 355ﾝ
361.

42 Acta Med.  Okayama　Vol.  63,  No.  1Kaihara et al.

8

Acta Medica Okayama, Vol. 63 [2009], Iss. 1, Art. 5

http://escholarship.lib.okayama-u.ac.jp/amo/vol63/iss1/5


