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Abstract

Genetic and molecular biological methodologies are being applied to the study of patients
with epilepsy at an ever-increasing pace. Accurate classification of epilepsy within large families
has allowed identification of genes through linkage analysis and then isolation of gene products.
Mutations causing ion channel abnormalities coupled with clinical patterns of focal epilepsy syn-
dromes are beginning to change our thinking about the etiology of recurrent seizures in all patients.
Molecular methodology is beginning to have impact on understanding of the mechanisms of ac-
tions of drugs used to treat epilepsy and will have an impact on how future treatments are designed.
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Genetic and molecular biological methodologies are being applied to the study of patients with
epilepsy at an ever-increasing pace. Accurate classification of epilepsy within large families has
allowed identification of genes through linkage analysis and then isolation of gene products.
Mutations causing ion channel abnormalities coupled with clinical patterns of focal epilepsy syn-
dromes are beginning to change our thinking about the etiology of recurrent seizures in all patients.
Molecular methodology is beginning to have impact on understanding of the mechanisms of actions
of drugs used to treat epilepsy and will have an impact on how future treatments are designed.
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hile seizures are known to complicate structural

and metabolic illnesses, epilepsy results from
alternations in fundamental mechanisms of brain and
membrane function that result in recurrent seizures
without cause other than changes in the nervous system.
Epilepsy is a rubric that collects a diverse yet common
group of disorders that have all manner of etiologic
mechanisms and clinical outcomes.

Defining the genes causing epilepsy requires a clear
defmition of seizure behaviors that are stable, an unremit-
ting clinical course, and abundant clinical material.
Therein lie the challenges for understanding the molecular
biology of epilepsy. Accurate nosological observations
followed by firm classification based upon all aspects of a
patient’s clinical dilemma are critical to the task of defining
the genetics of epilepsy. While understanding the mode of
mnheritance and the etiology of genetic epilepsy syndromes
forms the basis for genetic counseling, knowing the basic
mechanism of epilepsy should lead to development of
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specific therapies.
Genetic methodology

Patterns of molecular and genetic change that result in
epilepsy vary from mutations to triplet repeat disorders,
and include altered mitochondrial function. While the
specific protein effect of altered gene function commonly
is unknown, some genetic abnormalities can result in
channel dysfunction, change in receptor efficiency, altered
production of transporter proteins, or neocortical struc-
tural changes such as migrational abnormalities. As with
most genetic diseases, single-gene disorders causing
epilepsy are difficult to locate. DNA polymorphism with
two or more alleles in close proximity provides a strategy
of use of genetic markers for linkage analysis [1]. If the
polymorphism is located near the gene of interest then
they will be linked during crossovers that occur in
meiosis; they co-segregate. During analysis, the proba-
bility the observed associations are caused by linkage is
calculated and the probability that the observation was by
chance is estimated. A ratio of these two probabilities is
expressed at log;, or a LOD score. A score of >3
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means the odds are 1,000 to 1 of linkage is accepted as
proof. A LOD of — 2 is proof that linkage does not
exist. Genetic linkage identifies the chromosome and
thence the location of the defective gene [1].
Techniques of molecular biological research have been
applied to discern chromosomal locations of altered genes
associated with several specific epilepsy syndromes.
These disorders commonly are organized based upon the
international classification of seizures and the epilepsies
[2, 3]. Some syndromes appear to have simple men-
delian inheritance, while others must result from complex
gene interaction. For example genomic scanning of 91
families with idiopathic generalized epilepsy suggested a
common locus for that form of epilepsy on chromosome
18 [4]. Loci associated with Juvenile Myoclonic Epi-
lepsy (JME) were localized on chromosome 6 while
non-JME types of generalized epilepsy were associated
with chromosome 8. Durner et al. [4] suggest that a
susceptibility locus on 18 may be associated with seizure
expression with associated genomic effects that are
required from other loci. Further, this scanning strategy
is of great interest because of the potential for genetic
classification of the idiopathic generalized epilepsies [4].

Molecular Biology of Epileptogenesis

Clinical phenotypes have been critical to early genetic
studies and will continue to be critical to developments in
the molecular biology of epilepsy. However, laboratory
studies are beginning to suggest that regulation of en-
dogenous seizure abatement systems that are under
genomic control may be operate in the development of
epilepsy. For example, the molecular regulation of
glutamate appears to be important in the process of
epileptogenesis. Three types of cDNAs, encoding high-
affinity sodium-, potassium-dependent glutamate trans-
porters have been cloned, their distribution estimated and
their roles proposed [5]. Most glutamate is cleared from
the extrasynaptic space by the action of high affinity glial
transporters GLAST and GLT-1 [6]. More than 60%
of glutamate transport is provided by these glial proteins.
Preparation of knockdown and knockouts of glutamate
transporter in mice suggest these proteins are important
[6-8]. Amygdaloid kindling causes diminished produc-
tion of glial transporter within the pirifform cortex and
amygdala of rats [9]. Kainic acid-induced seizures cause
modest increase in the expression of glutamate transport-

ers [10].

http://escholarship.lib.okayama-u.ac.jp/amo/vol 56/iss2/1

Acta Med. Okayama Vol. 56, No. 2

Neuronal GABA transporter provides glutamate for
GABA synthesis [11] rather than having a protective
function [12]. GABA synthesis depends on uptake of
glutamate as a metabolic precursor with subsequent
decarboxylation by glutamic acid decarboxylase [11].
Various models of focal epilepsy have shown collapse of
production of glial glutamate transporter proteins [13].
In addition, GABA transporter proteins are up-regulated
in seizing animals in the same regions [14]. GABA
uptake by high-affinity transporters is mediated by Na*
dependent subclasses of proteins located on neurons and
glia that are [15, 16] highly selective and localized to pre-
and postsynaptic neurons and to glial cells.

Idiopathic Generalized Epilepsy (Table 1)

Benign Familial Neonatal Convulsions.
Benign familial neonatal convulsions (EBNI1) is an
autosomal dominant neonatal disorder that typically affects
a child with seizures beginning on day 2 or 3 of life. Most
seizures resolve completely by 6 months of age, but the
pattern is not completely benign, with 10-14%, develop-
ing later epilepsy [17, 18]. Leppert et al. [19] linked
Benign Familial Neonatal Convulsions (BFNC) to CMM6
and RMR6 regions on chromosome 20q. Linkage analy-
sis from a multiplexed family containing 19 people with
BEFNC showed localization at two DNA regions on 20q
[19, 20] but a locus on 8q was found in one family [21].
These markers are variable tandem repeats using a
9-base-pair core sequence of GNNGTGGG. Investiga-
tors observed a four-generation pedigree of 50 members
and 19 affected individuals. LLOD score was 5.77 with
pooled French data.

Positional cloning studies of BENC have shown that
genes for novel voltage-gated potassium channels, called
KCNQ2 and KCNQ3 correspond to 20q and 8q respec-
tively [ 22, 23]. Positional cloning showed EBN1 on 20q
[24, 25] with encoding gene KCNQ2 for this voltage-
gated delayed rectifying potassium channel. Specific
dysfunction associated by mutations of potassium chan-
nels suggests an effect on thresholds of excitability of
neurons [ 26]. Voltage dependent potassium channels are
instrumental in repolarization that follows membrane
depolarization by Na® and Ca?'. Channelopathy from
mutation in KCNQ1 is known to cause cardiac conduction
abnormalities [27, 28].

KCNQS3 also encodes a protein characteristic of a
voltage-gated potassium channel; there is about 50%
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Table | Idiopathic generalized epilepsy
Syndrome Locus Gene Function
Benign familial neonatal convulsions [ 19] Altered voltage-gated
(EBNI) 20q13.3 KCNQ2 potassium channels [22]
(EBN2) [21] 8q24 KCNQ3
Childhood absence epilepsy [46] 8q24
Juvenile absence epilepsy [51] 21q22.1 GRIKI GluR5-kainate receptor
Juvenile myoclonic epilepsy [57, 59] 6p21.2-pl | - a7 subunit of nicotinic
5g14 CHRNA7 acetylcholine receptor
Generalized epilepsy with febrile seizures plus 2q [139]
19q13.1 [26]
Febrile seizures [97] Sodium channel 3 subunit
FEB | 8ql3-21 -
FEB 2 19p13.3 SCNIB
FEB 3 2q24 -
Idiopathic generalized epilepsy [4] 8q24; 18
Familial adult myoclonic epilepsy 8q24 [66]

homology with KCNQ2 [22, 29]. A Ser248Phe muta-
tion appears to alter gating properties [30-32]. Proteins
coded by KCNQ2 and 3 are coexpressed in many brain
regions [24, 25] and result in altered function of the
channels [29].

Benign Epilepsy in Infants.  Benign epilepsy
in infants occurs in 3 patterns [33]. Fukuyama (cited by
Vigevano et al. [33]) reported a benign outcome of
infants with partial seizures. These infants had bland
developmental history and then had onset of partial
seizures from 3 months to 20 months of age [34].
Seizures tend to have a duration of 30-200 sec and are
characterized by arrest of motion and altered responsive-
ness with a blank stare and some mild convulsive move-
ments. Motor patterns include eye deviation, head rota-
tion and mild clonic movements in the context of occa-
sional oral movements. Ictal EEG shows low voltage
patterns with theta or delta frequencies in temporal
regions [33]. Duration of treatment varies from 1 to 3
years with follow up of 3-10 years and most patients are
seizure free and with normal development [33]. Benign
epilepsies of infancy may be generalized in pattern and be
associated with myoclonus as well [33, 35].

Benign infantile familial convulsions are difficult to
define [35], but the pattern of inheritance appears to be
autosomal dominant. Seizures begin between 3 and 7
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months of life. Ictal behavior typically begins with arrest-
ed motion and is followed by a slow deviation of the head
and eyes to one side. Body tone increases, the patient
becomes cyanotic and there is limb myoclonus. Seizures
generally are brief but cluster at 8-10 per day. EEG
interictally is normal, but during the seizures slow waves
and spikes in the occipital-temporal areas are observed.
Almost all of these patients continue to develop normally.
Pyridoxine dependence or deficiency must be excluded.
Since the benign nature requires observation over time to
be discerned, most patients are treated with antiepileptic
medication. Linkages to 20q13.2 and to 19p have been
reported [36]. As with BFNC, altered potassium chan-
nels have been identified [33, 35]. One group of families
did not have an allelic form of the EBN1 gene [37].
Childhood Absence Epilepsy. Childhood
Absence Epilepsy (CAE) is known to be a benign,
age-dependent and age-limited form of epilepsy [38].
Clinical characteristics are an abrupt onset of severe
impairment of consclousness with no verbal or other type
of response to commands [39]. Patients do not recall
events that occurred during the seizure. Clinical onset is
within 3 sec of EEG discharge onset. Mean duration is
12 sec and many occur each day, from tens to hundreds
per day. EEG shows 3 per sec regular spike and slow
wave discharges that are generalized. Forced over breath-
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ing provokes seizures. Although somewhat circular,
including a patient in this syndrome requires a strict
defnition for inclusion. Patients with early onset (4-12
years old, mean of 6 years) have the best prognosis.
Occurrence of mental retardation or altered EEG back-
ground does not fit this syndrome. Patients typically
undergo complete remission 2-6 years after onset.

Absence seizures are likely to continue if myoclonus
occurs during seizures or there is an atonic component.
Photosensitive response on the EEG may be a marker for
poor treatment response. Poor response to treatment, or
development of intractable absence seizures is likely to
occur if generalized tonic-clonic sesizures (GTCS) occur
with the onset or before the onset of absence seizure
manifestation. Patients with the pure syndrome have
GTCS only in 3% of cases [40]. In one series only
65% remitted. Of those without remission, 42% evolved
to typical JME [40]. Prediction was aided by the
occurrence of myoclonus or by GTCS. One series of 53
patients older than 20 years that fit the pure definition
when seizures began had about 10% persistence of
absence seizures while 26 % had mostly isolated GTCS
[40].

Early workers recognized a pattern within families of
probands with CAE that suggested complex autosomal
dominant inheritance [41, 42]. Indeed, not only is CAE
common in families of probands, with 15-44% of
patients having a positive family history for epilepsy, but
monozygotic twins [43] have a 75% concordance [44,
45].

Linkage at 8q24 [46] is suggested if the proband has
CAE with tonic clonic seizures and the less specific EEG
pattern of multispike and slow wave patterns with 3.4 Hz
spike wave patterns. While typically defimed CAE tends
to abate in late adolescence, persistence of seizures with
evolution to juvenile myoclinic epilepsy has been suggest-
ed to link to 1p [47].

Juvenile Absence Epilepsy. Juvenile absence
epilepsy has a later onset, in the teenage years. This
form of absence epilepsy has a less well-defined EEG
pattern when compared to the regular 3 Hz of CAE. A
greater percentage of these patients experience tonic clonic
seizures, reaching 80% [48-50]. Allelic association has
been reported with GRIK1, a GluR5 kainate receptor
gene suggesting localization on 21q22.1 [51].

Juvenile Myoclonic Epilepsy.  Juvenile myo-
clonic epilepsy has patterns of clinical seizures and EEG
alternations within the families of probands that have
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suggested various patterns of genetic transmission, in-
cluding complex inheritance with underlying autosomal
dominant, autosomal recessive or multiple loci [52-56].
One group found support for linkage to 6p with co-
migration linked to BF (properdin factor)-HLA loci [57].
More specific localization to 6¢21.2q11 [58] was suggest-
ed using DNA polymorphic markers. Further support to
6p has been reported [59-61] but some have derived
exclusion of the HLLA region [62] and exclusion of
chromosome 6 as well. Of interest, a candidate gene
strategy applied to thirty-four JEM families revealed
linkage with heterogeneity in 15q14 region that encodes
the alpha 7 subunit of the neuronal acetylcholine receptor
(nAChR-CHRNA?7) [63]. Linkage to 8q24 has been
suggested [64] but not confirmed [65]. This pattern of
observation followed by lack of replication may be related
to the varied phenotypes within families and use of
variation in criteria for either inclusion or exclusion into
multiplexed families.

Familial Adult Myoclonic Epilepsy.
Familial adult myoclonic epilepsy is a benign epilepsy that
occurs in Japanese; it has a pattern of autosomal domi-
nant with later age of onset that JME. Patients experi-
ence limb myoclonus but not upon awakening and with
rare tonic clonic seizures. Neurological examination is
normal and EEG patterns show generalized spike or
polyspike and slow-wave discharges. Four families have
shows mapping to 8q24 [62, 64, 66].

Localization-Related Partial Epilepsies
(Table 2)

Autosomal Dominant Nocturnal Frontal
Lobe Epilepsy. Autosomal dominant nocturnal
frontal lobe epilepsy (ADNFLE) patients have brief
nocturnal motor seizures and may have secondarily gener-
alization. Onset typically is 10-20 years of age. ADN-
FLE has mapped to 20q13.2-q13.3 [67]. Mutations alter
function in CHRNA4, a gene encoding the alpha 4
subunit of the neuronal nicotinic acetylcholine receptor
(nAChR) [68, 69]. These receptors are found in all
layers of frontal cortex [70] and are thought to be
presynaptic in location and function to modulate neuro-
transmitter release; they are hetero-pentameric ligand-
gated ion channels. Two mutations in the M2 transmem-
brane domain reduce the efficacy of the channel by
reducing Ca>" permeability [71, 72]. An additional
family with ADNFLE has mapped to 15q24 [73], a
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Table 2 Idiopathic partial-onset epilepsy

Syndrome Locus Gene Function
Autosomal dominant nocturnal frontal lobe epi- 20q13.2-13.3 CHRNA4 a4 subunit of nicotinic
lepsy [67] 15q24 [73] CHRNA3/5/7 and acetylcholine receptor

CHRNB4

Benign infantile familial convulsions 9ql I-13
Familial temporal lobe epilepsy 10q [86]
Partial epilepsy with variable foci [89] 2
Partial epilepsy with auditory symptoms [88] 10g22-g24
Benign epilepsy with centro-temporal spikes 15q14 [83] CHRNATY (possible) Neuronal nicotinic

acetylcholine receptor

region located near the CHRNA3-5 and CHRNBA4.

This partial epilepsy syndrome was defined in 6 fam-
ilies from 3 different regions of the world [74-76]. One
particularly large multiplexed Australian family showed
autosomal dominant inheritance with 75% penetrance
[67]. Linkage analysis with a LOD score of 9.29
suggested 20q13.2. Positional candidate gene work
produced isolation of the genetic defect to CHRNA4 that
codes for the alpha 4 subunit of the neuronal nicotinic
acetylcholine receptor. This missense mutation has serine
replacing phenylalanine at codon 248 [77]. The altered
nicotinic AchR [78] results in restricted calcium permea-
bility with that is said to cause enhanced desensitization
sensitivity of the alpha 4 beta 2 receptor. Another locus
on 1524 is near control for alpha 3 alpha 5 and beta 4
subunits for the same nAchR [73].

Benign Epilepsy with Central Temporal
Spikes.  Benign epilepsy with central temporal spikes
(BECTS) syndrome has onset between 3-16 years,
considered a window of childhood-older than infancy and
before puberty. Patients experience unilateral motor or
sensory seizures during sleep. Seizures are brief, infre-
quent and rarely generalized. Patients are most common-
ly neurologically normal and do not experience any altered
cognitive function. Remission occurs in the second dec-
ade of life [79]. Genetic effects are suggested given the
occurrence of various types of epilepsy in families of
patients. Clinical patterns include perioral paresthesias
with ipsilateral facial myoclonus. Loss of consciousness
may occur, with patients uttering guttural noises. On
occasion patients may experience a GTCS. Although 10-
13% of patients have just one seizure about 20% become
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intractable, having several seizures each day or even with
clusters of seizures. Seizures are typically 30-120 sec in
duration. About 75% of patients have seizures only
during sleep [79]. Accurate diagnosis is possible with a
careful clinical history and an EEG obtained while the
patient is sleeping since about 30% display the typical
polyphasic dipole that is tangential to the perirolandic
regions [80, 81]. Familial patterns of inheritance [82]
suggested assessment with linkage suggested for 15q14,
in the region coding for the neuronal acetylcholine re-
ceptor [83] and for some families with JME [63].
BECTS maps to CHRNA7 region of nAChR gene [83].
A kindred with rolandic epilepsy has been described, with
speech dyspraxia added and showing anticipation typical
for triplet repeat disorders [84].

Familial Temporal Lobe Epilepsy. Famil-
ial temporal lobe epilepsy was identified in twin studies
[85] with simple partial seizures, occasional complex
partial seizures and only infrequent generalization. Onset
is in late adolescence. Pattern of inheritance appears to be
autosomal dominant with partial penetrance. Linkage
suggested to 10q in one family with auditory complaints in
addition to temporal lobe epilepsy patterns [86].

Autosomal Dominant Partial Epilepsy
with Auditory Features. Autosomal dominant
partial epilepsy with auditory features have seizures that
are complex partial in pattern and may secondarily gener-
alize [87]. These patients are distinguished by auditory
auras [86]. Kindreds with markers linking to chromo-
some 10g22-24 have been reported but a gene product
has not been defmed [87, 88].

Familial Partial Epilepsy with Variable
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Foci. Familial partial epilepsy with variable foci is
associated with a pattern of nocturnal or diurnal partial
seizures that may be complex and of temporal, frontal,
central or parietal origin. Linkage to chromosome 2 has
been reported [89].

Febrile Seizures. Febrile seizures occur
between 6 months and 48 months of life [90]. Fever
appears to precipitate tonic or tonic-clonic seizures in
otherwise normal patients. Some patients with febrile
seizures have recurrent episodes during childhood [90,
91], but subsequent epilepsy is infrequent unless the
events are complex in pattern [92]. Although causation
has spawned speculation, a genetic component has been
recognized because of patterns that occur in families [93,
94] and in greater concordance among monozygotic twins
when compared to dizygotic cohorts [43, 95]. Specula-
tion about the mode of inherence, probably complex in
pattern, is supported by reporting of several loci. One
family has shown autosomal dominant transmission and
linkage on 8q13-21 (FEBI1). Another US family with
many generations available for study suggested linkage to
19p13.3 (FEB2). No consistent pattern has been found,
but some other families link to 19p while others do not
link to 8q [96]. One family has linked to 2p23-24
(FEB3) [97].

Generalized Epilepsy with Febrile Seizures
Plus.  Generalized epilepsy with febrile seizures plus
(GEFS +) was identified in a four-generation Australian
family [98] Patients have many febrile seizures during
infancy and then have afebrile seizures that have an
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adolescence. Linkage to 19p13.1 has been reported [26].
One family with GEFS + appears to show a locus on
2q21-33 [99], and heterogeneity has been reported as
well [100]. A point mutation has been identified in the
regulatory beta 1 subunit of the voltage-gated sodium
channel (SCN1B) [101, 102]. This changes a highly
conserved cysteine to a tryptophan that is thought to
disrupt a disulfide bridge critical for maintaining a fold in
the extracellular domain of a protein. Change in a beta
subunit of the sodium channel could alter the gating
properties of the channel [103, 104]. Xenopus oocyte
studies show the mutated gene reduces sodium channel
expression with slowed inactivation and slowed recovery
from inactivation [26]. Genes coding for several
isoforms of the alpha-subunit of voltage-gated sodium
channels are located in this region, making it of interest
in FEB3 as well [105, 106]. Such changes that reduce
sodium channel expression would result in slower inactiva-
tion, and slowed recovery from inactivation [107, 108].
Dysfunctional sodium channels could cause altered trans-
membrane potential tending toward lowering threshold for
depolarization [23]. Why the clinical problem of fever
triggers seizures remains unknown.

Neuronal migration disorders (Table 3)

Lissencephaly. Lissencephaly is associated with
children who are mentally retarded and have facial
dysmorphic changes along with epilepsy. Clinical patterns
of seizures include myoclonic, tonic, and tonic clonic

absence, myoclonic, or atonic pattern until abatement in  seizures, with infantile spasms occurring commonly.
Table 3 ~ Symptomatic epilepsy
Syndrome Locus Gene Function
Periventricular nodular heterotopia Xq28 Filamin | [118] Actin-binding
phosphoprotein
Subcortical band heterotopia-double cortex Xq21-24 Doublecortin [113]
Isolated lissencephaly [ 109] 17p13.3 PAF Platlet activiating
factor
acetylhydrolase
Progressive myoclonic epilepsy
Unverricht-Lundborg [ 121] 21922.3 CSTB-Cystatin B -
Lafora Body myoclonus [ 126] 6q24 EPM2A-Laforin Protein tyrosine phosphatase

Myoclonic epilepsy with ragged red fibers
(lys) [131]

Mitochondria: tRNA

A to G-8344 tRNA (lys) Respiratory chain enzyme

deficiencies

http://escholarship.lib.okayama-u.ac.jp/amo/vol 56/iss2/1

With permission of BC Decker, Inc.



Willmore and Ueda: Molecular biology and genetics of epilepsy.

April 2002

Arrest of neuronal migration between 9 and 13 weeks
causes reduction in the number of gyri and the phenotype
of a region of smooth surface. Cortex is thickened with
enlarged ventricles and hypoplasia of the corpus callosum.
Cortical layers are poorly organized, displaying 4 cortical
layers and the presence of diffuse neuronal heterotopia
[109]. The Miller-Dieker syndrome and isolated Lissen-
cephaly sequence has a mutation in the LLIS1 gene encod-
ing a non-catalytic subunit of platelet activating factor
(PAF) acetylhydrolase, a heterotrimeric enzyme that
inactivates PAF [110, 111]. How this altered enzyme
causes altered neuronal migration is unknown.

X-linked Lissencephaly and double cortex.
X-linked Lissencephaly and double cortex, classical
Lissencephaly, occurs in hemizygous males with milder
effects in heterozygotic females where some neurons
migrate abnormally to subcortical white matter causing a
subcortical band heterotopia [112]. The mutated gene
codes for DCX or doublecortin [113, 114]. Analysis of
mutations of DCX have shown missense mutations,
frameshift mutations and splice site mutation [110, 114,
115]. DCX is expressed in frontal lobes in adults but
widely expressed in fetal brain [110, 114, 115]. Func-
tion of DCX is unknown at this time.

Periventricular heterotopia are formed of neurons in
regions that fail to migrate and are found as nodules along
the walls of ventricles. This X-linked dominant disorder
is lethal to males while females have seizures and other
systemic signs but with normal IQ [116, 117]. Locus is
mapped to Xq28 with a regional gene FLLN1 that encodes
an actin-binding protein filaminl [118]. Patients have
shown point mutation and a frameshift mutation with
resultant truncation of the FLLN1 protein.

Progressive Myoclonus Epilepsies

This heterogeneous group of debilitating, sometimes
fatal epileptic encephalopathies cause segmental arrhyth-
mic myoclonus, massive myoclonus, GTCS or clonic
seizures with or without absence, dementia, and progres-
sive neurological deficits especially of cerebellar origin.

Unverricht-Lundborg (Baltic-Mediterra-
nean PME). This disorder has been described
worldwide, not just in the Baltic regions [119]. Clinical
patterns tend to be uniform, with debilitating, slowly
progressive, stimulus sensitive myoclonus. Onset is
between 6-18 years. Generalized clonic and GTC sei-
zures may appear on awakening. Valproic acid delays
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progression. Mild ataxia is present, and mild intellectual
deterioration and dementia occur late in disease with
patients becoming incapacitated in about 5 years [120].
Inheritance is autosomal-recessive with variable progres-
sion; 21g22.3 linkage in 12 Finnish families with 68
members and 26 affected. 1.OD was 10.08 [121].

Mapping located several highly polymorphic mi-
crosatellite markers with a critical region of ~175 Kb.
Several ¢cDNA fragments were isolated that encode
cystatin B, a cysteine protease inhibitor. Southern blots
revealed an unstable region of DNA in the noncoding
region upstream of the transcription start site of the
cystatin B. This region contains an expansion of a
polymorphic dodecamer (5”cccgecccgeg-3’). This expan-
sion of a dodecamer is the first example of instability of
a repeat unit other than trinucleotides and accounts for
about 92% of patients. Range of the expansion varies
from 30 copies up to 75 copies [96, 122-125].

Lafora’s Disease. This fatal progressive myo-
clonic syndrome has a pattern of autosomal recessive
inheritance, with seizures beginning in early adolescence
but they may start as late as 18 years. Patients commonly
die within 5-10 years after first symptoms. Symptoms
begin with GTCS, absence or drop attacks with subtle
irregular or asymmetric myoclonus. With progression the
myoclonus becomes almost constant. Photic induced
high-voltage, spike waves and polyspikes interrupt the
slow background of the EEG. Dementia, dyspraxis, and
visual loss lead to vegetative state. Cytoplasmic inclu-
sions in brain, muscle, liver, and skin are periodic
acid-Schiff positive and contain polyglycosans. In 38
families with 16 containing consanguinity, localization was
found to 6q24 [126] where the gene EPM2A codes for
a protein tyrosine phosphatase called Laforin [127-129].

Mitochondrial Disorders.  Mitochondrial dis-
orders commonly present with seizures [130]. Mitochon-
drial encephalopathy is associated with segmental or
generalized myoclonus. MERRF syndrome (Myoclonic
epilepsy and ragged red fiber syndrome) has a clinical
constellation of myopathy, ataxia, deafness and dementia
with progressive myoclonic epilepsy [126]. Most com-
mon pathogenic mutation is A to G transition at position
8344 in tRNA-lys [131]. This heteroplasmic mutation
has varied proportion of mutated DNA in families. This
mutation results in premature termination of translation of
mitrochondrial mRNAs with resultant reduced polypep-
tide synthesis [132-134].
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Molecular Neuropharmacology

Knowledge of fundamentals of the molecular biology
of epilepsy should lead to another level of drug develop-
ment. For example, valproate reduces excitatory synaptic
transmission responsible for synchronization of cell firing
that leads to epileptic bursting [135-137]. Valproate
interferes with excitatory synaptic processes and
suppresses depolarization induced by NMDA. However,
VPA has a molecular effect as well with resulting up-
regulation of glutamate transporter protein production
resulting in the inactivation of the effect of glutamate by
termination of action following enhanced transport from
the synaptic cleft [138]. In addition, Ueda et al. [138]
demonstrated that valproate down-regulates the produc-
tion of GABA transporter proteins, an effect that should
result in prolongation of the inhibitory effect on
intrasynaptic GABA. Future work should raise questions
about the details of ion channelopathy that may be specific
to epilepsy and how drugs can be designed to affect highly
specified seizure disorders.
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