

Acta Medica Okayama

Volume 5, Issue 4

1936

Article 9

OKTOBER 1938

Uber den Einflu β der Gallensaure auf die Glykogenie aus verschiedenen Zuckerderivaten.

T. Ishihara* T. Kimura † S. Miyazi ‡ T. Shintaku** G. Sugiyama ††

Copyright ©1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved.

^{*}Okayama University,

[†]Okayama University,

[‡]Okayama University,

^{**}Okayama University,

^{††}Okayama University,

Aus dem Biochemischen Institut Okayama (Vorstand: Prof. Dr. T. Shimizu).

Über den Einfluß der Gallensäure auf die Glykogenie aus verschiedenen Zuckerderivaten.

Von

T. Ishihara, T. Kimura, S. Miyazi, T. Shintaku u. G. Sugiyama.

Eingegangen am 25. Januar 1938.

Der Organismus ist imstande, aus zahlreichen Kohlehydraten nicht zuckerartiger Natur Glykogen in der Leber aufzubauen. Er vermag also aus anderen Reihen von Kohlehydraten wie Inosit und Pentosen Glykogen in der Leber zu bilden, was von Satoh¹⁾ und Sakiyama²⁾ bewiesen wurde. Was die Alkohole und Säuren, die aus Hexosen bereitet wurden, bei der Glykogenie in der Leber betrifft, so ist, soweit sich aus der Literatur ersehen läßt, noch nicht bekannt, ob sie als Glykogenbildner im Organismus verwertet werden können. Nur einige Autoren, wie Jaffe³⁾ und Frommherz⁴⁾ schrieben über die Verwertbarkeit der Glukonsäure, Galaktonsäure, Mannit und Dulzit.

Nach ihnen sollen diese Säuren und Alkohole wieder ziemlich reichlich im Harn ausgeschieden werden, wenn sie verfüttert werden.

Salkowski⁵⁾ hat bereits gezeigt, daß Kaninchen 7 g per os verabreichte Glukonsäure vollkommen verbrennen und keine Pentose im Harn ausscheiden. Bringt man aber dem Tiere größere Mengen Glukonsäure subkutan bei, so entgeht ein Teil der Säure der totalen Oxydation und wird zu d-Zuckersäure oxydiert.

Nach Embden und Griesbach⁶⁾ ist d-Mannit nicht imstande, in der isolierten Leber Zucker oder Milchsäure zu bilden, und auch Dulzit ist auf die Kurve der Zuckerbildung in der künstlich durchströmten Phloridzinleber ohne Einfluß.

In einer kürzlich erschienenen Arbeit von Carr, Müsser, Schmidt und Krantz⁷⁾ wurde mitgeteilt, daß das Leberglykogen bei Ratten, die mit Kakaobutter und Dulzit oder Mannit gefüttert worden waren, sich im Gegensatz zu den Kontrolltieren vermehrte und zwar bei Mannit viel stärker als bei Dulzit.

T. Ishihara, T. Kimura, S. Miyazi, T. Shintaku u. G. Sugiyama:

Untersuchungen von Fuzita⁸⁾ bestätigten, daß bei Zufuhr von Hexosen die Gallensäure auf die Glykogenbildung in der Kaninchenleber fördernd wirkt.

Im oben erwähnten Sinne haben wir den Einfluß der Gallensäure auf die Glykogenbildung aus den Alkoholen und den Säuren, die aus Hexosen bereitet wurden, in der Leber von Ratten sowohl mit als auch ohne Zufuhr von Cholsäure untersucht.

Es wurde dabei gefunden (Fig. 1), daß der Glykogengehalt der Leber bei Zufuhr von Kohlehydratsäuren in der Reihe: Glukonsäure, Mannonsäure und Galaktonsäure sich aufsteigend vermehrt und daß diese Glykogenie der Leber durch Mitzufuhr von Cholsäure in der Reihe: Galaktonsäure, Glukonsäure und Mannonsäure aufsteigend weiter stark gefördert wird, während die Glykogenie aus Dulzit fast nicht eintritt, wohl aber bei Anwesenheit von Cholsäure. Aus dem Mannit wird Glykogen gebildet und diese Glykogenbildung aus Mannit durch Mitzufuhr von Cholsäure weiter gesteigert. Diese die Glykogenie fördernde Wirkung der Cholsäure tritt bei Mannit viel stärker auf als bei Dulzit, welch Unterschied auf der Verschiedenheit der Konfiguration des Zuckeralkohols beruhen dürfte.

Die Kohlehydratsäuren sowie Zuckeralkohole werden also unter Bildung von Glykogen im Rattenorganismus verwertet und diese Verwertbarkeit durch Zufuhr der Gallensäure gesteigert. Die durch Zufuhr der Cholsäure bedingte Vermehrung des Glykogengehalts in der Leber beruht wohl auf der den Glykogenaufbau fördernden Wirkung der Gallensäure.

Experimenteller Teil.

Es ist bereits allgemein anerkannt, daß der Glykogengehalt der Leber individuell verschieden und in erster Linie vom Ernährungszustand des betreffenden Tieres abhängig ist und daß Arbeit und Außentemperatur ebenfalls den Glykogengehalt der Leber beeinflußen können. Zum Experiment wurden männliche weiße Ratten verwendet, die wenigstens eine Woche lang unter möglichst gleichen Bedingungen mit Kogome gezüchtet worden waren.

Vor dem Versuch ließen wir die Ratten 24 Stunden lang hungern. Am Morgen des Versuchstages wurden den Ratten 0.05 g Substanzen per os, mit oder ohne subkutane Injektion von 0.3 cc einer 1 %igen Natriumcholatlösung pro 100 g Körpergewicht verabreicht. Nach Ablauf von 3 Stunden wurden die Ratten stets durch Nackenschlag rasch getötet, unter Carotisdurchschneidung völlig verbluten lassen und dann die Leber sobald als möglich herausgeschnitten und vom Blute befreit.

Ub. d. Einfluß d. Gallensäure auf d. Glykogenie aus verschiedenen usw. 547

Ihr Glykogengehalt wurde nach Iwasaki u. Moori in Zucker verwandelt, der nach Bertrand bestimmt und als Glykogen in Rechnung gebracht wurde. Die Versuchsergebnisse sind in den folgenden Tabellen 1-7 zusammengestellt.

Ergebnisse.

1. Kontrolle.

Zur Kontrolle haben wir unter den genau gleichen Bedingungen den Glykogengehalt der Leber von 24 Stunden hungernden Tieren bestimmt. Aus der Tabelle 1 ist ersichtlich, daß der Glykogengehalt der Leber der Kontrolltiere durchschnittlich 0.144% beträgt. Es wurde dabei gefunden, daß der Glykogengehalt der Leber bei Zufuhr von Cholsäure durchschnittlich 0.215% beträgt (Tabelle 2).

Die Glykogenie der Leber während des Hungerns wird also durch Zufuhr von Cholsäure um 49.3 % gefördert, was schon Fuzita⁹⁾ in seinem Versuch beobachtet hat.

Tabelle 1

Körperg (§	gewicht g)	Lebergewicht	Leberglykogen	Leberglykogen
Vor Hun	Nach gern	(g)	(g)	(%)
102	92	3.1	0.00676	0.211
118	105	4.1	0.00501	0.122
112	102	3.8	0.00428	0.112
117	106	3.6	0.00524	0.145
130	119	3.8	0.00447	0.117
131	120	3.9	0.00601	0.154
109	110	3.2	0.00473	0.148
115	102	3.8	0.00575	0.151
124	115	3.7	0.00524	0.141
140	130	4.2	0.00673	0.136
	'	0.144		

T. Ishihara, T. Kimura, S. Miyazi, T. Shintaku u. G. Sugiyama:

Tabelle 2 (0.3 cc Natriumcholatlösung pro 100 g)

Körpers (g	gewicht g)	Lebergewicht	Leberglykogen	Leberglykogen	
Vor Hu	Nach ngern	(g)	(g)	(%)	
115	105	3.2	0.00783	0.245	
112	98	3.0	0.00717	0.237	
111	101	3.5	0.00978	0.279	
105	91	3.4	0.00717	0.211	
104	95	3.2	0.00673	0.210	
190	175	5.0	0.01277	0.255	
145	135	4.6	0.00601	0.130	
130	124	4.1	0.00935	0.228	
115	110	3.7	0.00601	0.162	
172	160	4.6	0.00873	0.198	
	Durchschnittswert				

2. Versuch mit Dulzit.

Das Dulzit (Fp. 188°) wurde nach Fischer u. Hertz¹⁰⁾ durch Reduktion von Galaktose in neutraler Lösung mit Natriumamalgam bereitet. Aus den Versuchen (siehe Au. B der Tabelle 3) geht hervor, daß der Glykogengehalt der Leber bei alleiniger Zufuhr von Dulzit durchschnittlich 0.151% und bei Mitzufuhr von Cholsäure durchschnittlich 0.241% beträgt. Durch Zufuhr von Cholsäure wird also das Glykogen der Leber durchschnittlich um 59.6% vermehrt.

3. Versuch mit d-Galaktonsäure.

Die d-Galaktonsäure wurde nach Kiliani¹¹⁾ aus Milchzucker dargestellt (Fp. 120°. $[\alpha]_{5}^{2\circ} = -37.0^{\circ}$). Die Versuche (siehe Au. B der Tabelle 4) zeigen, daß der Glykogengehalt der Leber bei Zufuhr von d-Galaktonsäure durchschnittlich 0.233 % beträgt, während er sich bei Zufuhr von d-Galaktonsäure mit Cholsäure durchschnittlich auf 0.295 % beläuft.

Auch hier fördert die Cholsäure die Glykogenbildung aus d-Galaktonsäure in der Leber; und zwar wird die Glykogenbildung durch Verabreichung von Cholsäure mit Galaktonsäure durchschnittlich um 26.6% vermehrt.

Ub. d. Einfluß d. Gallensäure auf d. Glykogenie aus verschiedenen usw. 549

Tabelle 3 A (0.05 g Dulzit pro 100 g)

Körperg	gewicht	I also and tale		7 1 1 1	
(6	g <i>)</i>	Lebergewicht	Leberglykogen	Leberglykogen	
Vor Hui	Nach ngern	(g)	(g)	(%)	
91	88	3.0	0.00496	0.165	
`91	82	2.6	0.00397	0.153	
109	99	3.2	0.00344	0.107	
111	102	3.3	0.00564	0.170	
98	80	2.85	0.00403	0.141	
70	61	2.25	0.00357	0.158	
92	84	3.0	0.00520	0.173	
101	92	2.3	0.00271	0.118	
92	84	2.5	0.00392	0.157	
81	74	2.4	0.00415	0.173	
	Durchschnittswert				
	Vermehrung				

Tabelle 3 B (0.05 g Dulzit und 0.3 cc Natriumcholatlösung pro 100 g)

97	93	2.8	0.00730	0.261
98	95	3.1	0.00919	0.296
85	81	2.8	0.00805	0.285
89	81	2.7	0.00685	0.253
90	82	2.6	0.00467	0.179
93	87	3.3	0.00806	0.244
94	84	2.7	0.00832	0.304
92	81	2.7	0.00516	0.191
87	73	2.6	0.00421	0.162
114	104	3.4	0.00782	0.230
		0.241		
		Vermehrung		59.6 %

T. Ishihara, T. Kimura, S. Miyazi, T. Shintaku u. G. Sugiyama:

Tabelle 4A (0.05 g Galaktonsäure pro 100 g)

Körperg (g	gewicht g)	Lebergewicht	Leberglykogen	Leberglykogen	
Vor Hur	Nach ngern	(g)	(g)	(%)	
113	102	4.0	0.00838	0.209	
106	98	3.2	0.00792	0.247	
107	99	3.3	0.00838	0.254	
103	91	3.4	0.00762	0.244	
124	114	3.3	0.00720	0.248	
107	96	3.6	0.00623	0.173	
95	87	2.9	0.00647	0.223	
110	100	2.8	0.00818	0.292	
92	84	2.9	0.00696	0.240	
102	95	2.6	0.00574	0.221	
	Durchschnittswert				
·		Vermehrung			

Tabelle 4B (0.05 g Galaktonsäure und 0.3 cc Natriumcholatlösung pro 100 g)

108	96	3.1	0.00838	0.270
90	80	2.6	0.00728	0.280
112	105	2.6	0.00696	0.267
112	102	3.1	0.00985	0.317
102	94	3.0	0.00939	0.313
103	92	3.0	0.00985	0.328
106	97	2.9	0.00891	0.307
114	102	3.9	0.01008	0.284
112	100	3.3	0.01054	0.319
108	94	3.4	0.00891	0.262
	•	0.295		
		26.6 %		

Ub. d. Einfluß d. Gallensäure auf d. Glykogenie aus verschiedenen usw. 551

4. Versuch mit Glukonsäure.

Die Glukonsäure wurde nach Kiliani u. Kleemann¹²⁾ aus Dextrose dargestellt. Durch die Versuche (siehe Au. B der Tabelle 5) wird klar, daß bei Zufuhr von Glukonsäure allein der Glykogengehalt der Leber durchschnittlich 0.192% beträgt, während er bei gleichzeitiger Zufuhr mit Cholsäure durchschnittlich sich auf 0.297% beläuft.

Die Glykogenbildung der Leber aus Glukonsäure wird also durch Zufuhr von Cholsäure durchschnittlich um 54.6 % vermehrt.

Tabelle 5 A (0.05 g Glukonsäure pro 100 g)

	gewicht g)	Lebergewicht	Leberglykogen	Leberglykogen
Vor Hu	Nach ngern	(g)	(g)	(%)
97	85	2.7	0.00598	0.221
105	98	3.2	0.00598	0.187
112	105	3.6	0.00802	0.223
110	103	3.2	0.00598	0.187
91	80	2.9	0.00477	0.164
94	85	2.6	0.00483	0.186
108	100	2.8	0.00463	0.166
87	80	2.7	0.00574	0.213
114	100	3.1	0.00618	0.200
113	102	3.2	0.00558	0.174
		0.192		
		33.33 %		

Tabelle 5 B (0.05 g Glukonsäure u. 0.3 cc Natriumcholatlösung pro 100 g)

i32	4.0	0.01124	0.281
95	2.8	0.00814	0.291
130	3.6	0.01072	0.298
110	3.3	0.01006	0.305
105	2.8	0.00891	0.318
106	3.6	0.01124	0.312
130	4.2	0.01155	0.275
		0.297	
		54.6 %	
	95 130 110 105 106 130	95 2.8 130 3.6 110 3.3 105 2.8 106 3.6	95

T. Ishihara, T. Kimura, S. Miyazi, T. Shintaku u. G. Sugiyama:

5. Versuch mit d-Mannonsäure.

d-Mannonsäure wurde nach Fischer u. Hirschberger¹³⁾ aus d-Mannose als Lakton dargestellt (Fp. 150°).

Die Versuche (siehe Au. B der Tabelle 6) zeigen, daß der Glykogengehalt der Leber bei Zufuhr von Mannonsäure allein durchschnittlich 0.224% und bei einer solchen mit Cholsäure 0.319% beträgt. Auch hier kann ein Teil der verabreichten d-Mannonsäure als Glykogen in der Leber aufgespeichert werden und die Cholsäure fördert die Glykogenbildung aus d-Mannonsäure in der Leber und zwar wird sie durch Cholsäure um 42.4% vermehrt.

Tabelle 6 A (0.05 g Mannonsäure pro 100 g)

Körpergewicht (g)		Lebergewicht	Leberglykogen	Leberglykogen
Vor Hur	Nach ngern	(g)	(g)	(%)
170	155	4.5	0.00843	0.187
144	122	5.2	0.00986	0.189
120	105	3.5	0.00745	0.213
110	100	3.0	0.00600	0.199
130	117	3.8	0.01194	0.314
112	103	3.5	0.00939	0.268
120	108	4.8	0.01055	0.220
100	89	3.1	0.00745	0.240
153	135	4.0	0.00794	0.174
131	117	3.7	0.00884	0.238
Durchschnittswert			0.224	
		Vermehrung		55.5 %

Tabelle 6 B (0.05 g Mannonsäure und 0.3 cc Natriumcholatlösung pro 100 g)

140 130 130 170 165 140 152 158 175	125 115 117 155 146 123 135 140 155 148	4.1 3.8 3.2 4.6 5.3 4.2 4.2 4.4 4.6 5.5	0.01494 0.01178 0.01100 0.01421 0.01564 0.01333 0.01421 0.01078 0.01494 0.01920	0.304 0.302 0.344 0.309 0.295 0.317 0.338 0.245 0.325 0.349
75	155 148			
Vermehrung			42.4 %	

6. Versuch mit Mannit.

d- Mannit (Fp. 165°) wurde nach Krusemann¹⁴) durch Reduktion von d-Fruktose mit Natriumamalgam oder aus Cortinellus Shiitake¹⁵) dargestellt.

Aus der Tabelle 7 Au. Bist ersichtlich, daß der Glykogengehalt der Leber bei Zufuhr von Mannit allein 0.203 % und bei gleichzeitiger Zufuhr von Mannit und Cholsäure durchschnittlich 0.312 beträgt. Die Glykogenie aus Mannit in der Leber wird also durch Zufuhr von Cholsäure um 53.7 % vermehrt.

Tabelle 7 A (0.05 g Mannit pro 100 g)

	gewicht g)	Lebergewicht	Leberglykogen	Leberglykogen
Vor Hu	Nach ngern	(g)	(g)	(%)
82 76 86 96 94 80 96 95 87	75 70 78 90 85 72 88 85 80 70	2.0 2.2 2.5 3.0 2.8 2.3 3.0 2.9 2.7 2.2	0.00412 0.00412 0.00505 0.00642 0.00622 0.00431 0.00651 0.00670 0.00499	0.206 0.187 0.202 0.214 0.222 0.187 0.217 0.231 0.185 0.179
		0.203		
		40.97 %		

Tabelle 7 B (0.05 g Mannit und 0.3 cc Natriumcholatlösung pro 100 g)

00	90	2 2	0.00777	O 220
88	80	2.3	0.00777	0.338
75	68	2.4	0.00660	0.275
91	82	2.6	0.00905	0.348
94	85	2.5	0.00755	0.342
84	75	2.4	0.00744	0.310
79	70	2.2	0.00649	0.295
83	75	2.4	0.00759	0.316
76	67	2.1	0.00548	0.261
87	79	2.3	0.00713	0.310
99	90	2.7	0.00888	0.329
Durchschnittswert				0.312
Vermehrung			53.70 %	

T. Ishihara, T. Kimura, S. Miyazi, T. Shintaku u. G. Sugiyama:

Mannit, Glukonsäure, Mannonsäure und Galaktonsäure werden also in der Leber als Glykogen aufgespeichert und diese Aufspeicherung durch Zufuhr von Cholsäure weiter verstärkt, obwohl die Verstärkung je nach der Art der Zuckerderivate verschieden ist. Die Glykogenie der Leber aus Dulzit tritt erst bei Gegenwart von Cholsäure ein. Diese Daten sind in der folgenden Figur 1 übersichtlich zusammengestellt.

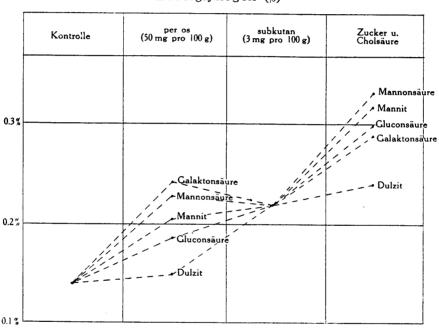


Fig. 1 Leberglykogen (%)

Literatur.

¹ Satoh, S., Mitt. Med. Ges. Keio 11, 2141, 1931. — ² Sakiyama, K., Mitt. Med. Ges. Osaka 31, 377, 1932. — ³ Jaffe, M., Zs. Physiol. Chem. 7, 297, 1882. — ⁴ Frommherz, K., Handb. norm. u. path. Physiol. 5, 1006, 1928. — ⁵ Salkowski, E., Zs. Physiol. Chem. 27, 539, 1899. — ⁶ Embden, G. u. Griesbach, W., Zs. Physiol. Chem. 91, 251, 1914. — ⁷ Carr, C., Müsser, R., Schmidt, J. u. Krantz, C., J. of Biol. 102, 721 – 32, 1933; Carr, C. u. Krantz, C., J. of Biol. 107, 371, 1934. — ⁸ Fuzita, S., J. of Bioch. 12, 383, 1930. — ⁹ Fuzita, S., Arb. Med. Fakt. Okayama 3, 192, 1931. — ¹⁰ Fischer, E. u. Hertz, J., Ber. d. deutsch. chem. Ges. 25, 1261, 1892. — ¹¹ Kiliani, H., Ber. d. deutsch. chem. Ges. 55, 95, 1921. — ¹² Kiliani, H. u. Kleemann, S., Ber. d. deutsch. chem. Ges. 17, 1298, 1884. — ¹³ Fischer, E. u. Hirschberger, J., Ber. d. deutsch. chem. Ges. 22, 3218, 1889. — ¹⁴ Krusemann, H.D., Ber. d. deutsch. chem. Ges. 9, 1466, 1876. — ¹⁵ Thörner, W., Ber. d. deutsch. chem. Ges. 12, 1635, 1879.