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Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by dopamin-
ergic neuron-specific degeneration in the substantia nigra. A number of gene mutations and dele-
tions have been reported to play a role in the pathogenesis of familial PD. Moreover, a number of
pathological and pharmacological studies on sporadic PD and dopaminergic neurotoxin-induced
parkinsonism have hypothesized that mitochondrial dysfunction, inflammation, oxidative stress,
and dysfunction of the ubiquitin-proteasome system all play important roles in the pathogene-
sis and progress of PD. However, these hypotheses do not yet fully explain the mechanisms of
dopaminergic neuron-specific cell loss in PD. Recently, the neurotoxicity of dopamine quinone
formation by auto-oxidation of dopamine has been shown to cause specific cell death of dopamin-
ergic neurons in the pathogenesis of sporadic PD and dopaminergic neurotoxin-induced parkin-
sonism. Furthermore, this quinone formation is closely linked to other representative hypotheses
in the pathogenesis of PD. In this article, we mainly review recent studies on the neurotoxicity of
quinone formation as a dopaminergic neuron-specific oxidative stress and its role in the etiology of
PD, in addition to several neuroprotective approaches against dopamine quinone-induced toxicity.
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Parkinson’s disease(PD)is a progressive neurodegenerative disease characterized by dopaminergic
 

neuron-specific degeneration in the substantia nigra. A number of gene mutations and deletions
 

have been reported to play a role in the pathogenesis of familial PD. Moreover, a number of
 

pathological and pharmacological studies on sporadic PD and dopaminergic neurotoxin-induced
 

parkinsonism have hypothesized that mitochondrial dysfunction, inflammation, oxidative stress,
and dysfunction of the ubiquitin-proteasome system all play important roles in the pathogenesis and

 
progress of PD. However, these hypotheses do not yet fully explain the mechanisms of dopaminer-
gic neuron-specific cell loss in PD. Recently, the neurotoxicity of dopamine quinone formation by

 
auto-oxidation of dopamine has been shown to cause specific cell death of dopaminergic neurons in

 
the pathogenesis of sporadic PD and dopaminergic neurotoxin-induced parkinsonism. Furthermore,
this quinone formation is closely linked to other representative hypotheses in the pathogenesis of

 
PD. In this article, we mainly review recent studies on the neurotoxicity of quinone formation as

 
a dopaminergic neuron-specific oxidative stress and its role in the etiology of PD, in addition to

 
several neuroprotective approaches against dopamine quinone-induced toxicity.
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P arkinson’s disease(PD)is a progressive neuro-
degenerative disease characterized by degenera-

tion of dopamine (DA)-containing neurons in the sub-
stantia nigra and by the presence of Lewy bodies. A

 
number of efficient therapeutic drugs, including L-
DOPA, dopamine agonists, and inhibitors of dopamine-
metabolizing enzymes, have been used for the clinical

 
treatment of patients with PD. It has been shown that

 
several genes are mutated or deleted in familial PD, but

 
the etiology of sporadic PD, which accounts for the

 

majority of PD cases, is still obscure. A number of
 

important results have been accumulated from pathological
 

and pharmacological studies on PD and from animal or in
 

vitro studies using dopaminergic neurotoxins which cause
 

parkinsonism in animals. These studies have shown that
(1) mitochondrial dysfunction, (2) inflammation, (3)
oxidative stress, and (4) impairment of the ubiquitin-
proteasome system play important roles in the path-
ogenesis and progress of sporadic and familial PD.
However, the mechanisms of dopaminergic neuron-
specific cell loss in PD have not been fully clarified. More

 
recently, an additional factor, (5)DA quinone formation,
has been investigated with respect to not only L-DOPA-
induced neurotoxicity but also the pathogenesis of PD and
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dopaminergic neurotoxin-induced parkinsonism［1-3］.
This article focuses on the neurotoxicity of quinone

 
formation as a dopaminergic neuron-specific oxidative

 
stress and its role in the etiology of PD by reviewing

 
studies on patients with sporadic PD and studies employ-
ing models of sporadic PD induced by dopaminergic

 
neurotoxins. In addition, neuroprotective approaches

 
against DA quinone toxicity are also addressed.

Dopaminergic Neurotoxin-induced
 

Parkinsonism―Involvement of
 

Mitochondrial Dysfunction, Inflammation,
Oxidative Stress, and Proteolytic Stress―

Following the initial reports that a dopaminergic
 

neurotoxin, 1-methyl-4-phe n y l-1, 2, 3, 6-
tetrahydropyridine(MPTP), caused irreversible parkin-
sonism with progressive depletion of DA neurons in the

 
substantia nigra［4, 5］, the neurotoxic mechanism of

 
MPTP has been widely investigated and has been used as

 
a representative dopaminergic neurotoxin in animal models

 
of PD. MPTP which across the blood-brain barrier is

 
converted to 1-methyl-4-phenylpyridinium (MPP ) by

 
monoamine oxidase-B in the glial cells. MPP can be

 
selectively up-taken through DA transporters at the nerve

 
endings of nigrostriatal DA neurons, and then inhibit

 
mitochondrial complex I to cause cell death of DA

 
neurons［6, 7］. Furthermore, MPTP-induced parkin-
sonism is responsive to L-DOPA. It has been reported

 
that  an other dopaminergic neurotoxin, 6-
hydroxydopamine(6-OHDA), which has been commonly

 
used to make in vivo and in vitro models of PD, also

 
induces mitochondrial impairment by inhibiting mitochon-
drial complexes I and IV［8-10］and reducing cyto-
chrome c［11］, although there have been reported that

 
6-OHDA does not in fact impair mitochondrial function
［12, 13］. Therefore, these findings imply the hypothesis

 
of mitochondrial dysfunction:inhibition of mitochondrial

 
respiratory enzymes by certain environmental neurotoxin

 
which up-taken into DA neurons may cause selective

 
neuronal loss of DA neurons in the substantia nigra.
Betarbet et al.revealed that chronic and systemic infusion

 
of the lipophilic pesticide, rotenone, which is an inhibitor

 
of mitochondrial complex I, causes parkinsonism with

 
hypokinesia and rigidity in rats with highly selective

 
nigrostriatal dopaminergic degeneration and fibrillar cyto-
plasmic inclusions containing ubiquitin andα-synuclein.
These results indicate that chronic exposure to a common

 

pesticide can reproduce the anatomical, neurochemical,
behavioral and neuropathological features of PD［14］.
The dopaminergic neurotoxicity of rotenone strongly

 
supports the possible involvement of mitochondrial

 
dysfunction in the pathogenesis of PD, although it is

 
unclear how rotenone, which inhibits complex I

 
systemically, produces selective degeneration of DA

 
neurons.
Intracerebral injection of bacterial endotoxin

 
lipopolysaccharide(LPS)has been shown to induce the

 
expression of inflammatory cytokines and their related

 
molecules, i.e., interleukin(IL)-1β, IL-6, IL-12, p35,
tissue necrosis factor(TNF)-α, and inducible nitric oxide

 
synthase(iNOS)［15］. Furthermore, intranigral injec-
tion of inflammogen LPS has been shown to induce

 
degeneration of nigral DA neurons with accumulation of

 
microglia in rats［16, 17］. These reports showed that

 
the microglial activation and inflammatory reaction in-
duced by chronic exposure to the inflammogen were

 
capable of inducing selective degeneration of nigral

 
dopaminergic neurons. In animal models treated with

 
MPTP, astroglial and microglial reactions and

 
lymphocytic infiltration were found around impaired neu-
rons in the substantia nigra, suggesting that an immune

 
mechanism contributed to the MPTP-induced neuronal

 
damage［18］. As for the neurotoxicity of rotenone, this

 
may be at least partly due to the inflammatory reaction

 
occurring in conjunction with activation of microglia.
Marked microglial activation has been observed in the

 
striatum and substantia nigra of rotenone-treated animals,
and was prominent before anatomical evidence of

 
dopaminergic lesions［19］. Rotenone stimulated the

 
release of superoxide from microglia, and this release was

 
attenuated by inhibitors of NADPH oxidase. The

 
rotenone-induced neurotoxicity was also reduced by the

 
inhibition of NADPH oxidase or scavenging of superox-
ide［20］. In primary mesencephalic neuron-glia cultures,
dopaminergic neurons from NADPH oxidase-null mice

 
were more resistant to rotenone neurotoxicity［21］.
Furthermore, nontoxic or minimally toxic concentrations

 
of the pesticide rotenone(0.5 nM)and LPS (0.5 ng/ml)
synergistically induced dopaminergic neurodegeneration in

 
primary mesencephalic mixed cultures. All these findings

 
indicate that rotenone-induced dopaminergic neurotoxicity

 
may be based not only on mitochondrial dysfunction but

 
also on inflammatory reaction and free radical generation

 
through microglial activation, and that inhibition of

 
inflammation might become a promising therapeutic inter-
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vention for PD［22］. In other words, further studies on
 

the selectively toxic mechanisms of rotenone may eluci-
date the multifactorial etiology of PD. In fact, the

 
dopaminergic neurotoxicity induced by MPTP, MPP
and 6-OHDA was inhibited and ameliorated by treatment

 
with aspirin, salicylate and meloxicam,which are nonster-
oidal anti-inflammatory drugs (NSAIDs) inhibiting

 
cyclooxygenase (COX)［23-26］, and minocycline,
which is a tetracycline derivative that inhibits microglial

 
activation independently of its antimicrobial properties
［27-29］.

As mentioned above, oxidative stress with generation
 

of reactive oxygen species (ROS)or reactive nitrogen
 

species (RNS)is known to play important roles in the
 

pathogenesis and progress of PD as a common degenera-
tive process. Superoxide generated is leaked from mito-
chondria in the case of its dysfunction, especially when

 
the activity of mitochondrial respiratory enzymes reduced

 
by neurotoxins, MPTP, 6-OHDA and rotenone. Non-
enzymatic and spontaneous auto-oxidation of DA produce

 
superoxide and reactive quinones［30, 31］. In the

 
inflammatory process, superoxide is also generated in

 
activated microglia through NADPH oxidase or xanthine

 
oxidase. The superoxide generated is converted to hydro-
gen peroxide by superoxide dismutase(SOD), and super-
oxide also reacts with nitric oxide to consequently gener-
ate peroxynitrite, which is a highly RNS that leads

 
protein nitration. Hydrogen peroxide is up-taken into

 
neurons and normally reduced by antioxidants such as

 
glutathione (GSH), glutathione peroxidase (GPx) or

 
catalase. Where transition metals, especially iron, are

 
abundant, however, hydrogen peroxide reacts with

 
metals to form the most cytotoxic ROS, hydroxyl radi-
cals. The generation of ROS［32-34］and compensatory

 
elevation of antioxidative enzymes, SOD, GPx and

 
catalase［35］were reported in the basal ganglia of

 
MPTP-treated animals or MPP -treated cultured cells.
Furthermore, dopaminergic neurotoxicity induced by

 
MPTP administration was inhibited in Cu/Zn-SOD

 
transgenic mice［36］. Neurotoxic 6-OHDA is up-taken

 
into striatal nerve endings of dopaminergic neurons

 
through DA transporters, and the toxin produces ROS

 
such as superoxide, hydrogen peroxide and hydroxyl

 
radicals when it is converted to reactive quinones by

 
auto-oxidation［37, 38］. We have previously reported

 
that the intracerebroventricular injection of 6-OHDA

 
produced marked increases in Cu/Zn-SOD activity and

 
lipid peroxides in the striatum［39］and that 6-OHDA-

induced reduction of nigral DA neurons was prevented in
 

Cu/Zn-SOD transgenic mice［40］. Rotenone also pro-
duces the release of superoxide from microglia through

 
activation of NADPH oxidase［20, 21］.
The generated hydrogen peroxide activates NF-κB

 
transcription factor, which is related to inflammation［41,
42］, and consequently promotes transcription of iNOS,
COX, inflammatory cytokines (IL-1β, IL-6, TNF-α)
and apoptosis-promoting molecules (p53, Bcl-Xs, Bax)
［43］. The inflammatory cytokines activate iNOS expres-
sion directly or indirectly through activation of NF-κB

 
and thereby start a vicious cycle. It is known that

 
superoxide and hydrogen peroxide can open mitochondrial

 
permeability transition pores directly or indirectly through

 
the activation of NF-κB and Bax protein［44］to pro-
mote the release of cytochrome c and consequent

 
apoptotic cell death. Nitric oxide also inhibits mitochon-
drial respiratory enzymes to leak superoxide［45］. Thus,
mitochondrial dysfunction, inflammation, and oxidative

 
stress by generated ROS or RNS seem to be linked to

 
each other in establishing the pathogenesis of parkin-
sonism by dopaminergic neurotoxins in nigrostriatal DA

 
neurons and surrounding glial cells (Fig. 1).
Other possible hypothesis, which is proteolytic stress,

has been recently focused. Impairment of ubiquitin-
proteasome system leading to endoplasmic reticulum(ER)
stress, unfolded protein response and consequent aggre-
gation of cytotoxic proteins are involved in the path-
ogenesis of PD (see reviews［46-48］). This hypothesis

 
of proteolytic stress has arisen from the following evi-
dences:that parkin, mutation of which leads to an

 
autosomal recessive form of PD, is a ubiquitin ligase
［49］, thatα-synuclein,mutation of which causes familial

 
PD, is a major component of inclusion Lewy bodies
［50］, and that differentiated PC12 cells expressing

 
mutant α-synuclein showed a decrease in proteasome

 
activity［51］. ER stress caused by accumulation of

 
unfolded protein leads to up-regulation of parkin protein to

 
prevent unfolded protein response-induced dopaminergic

 
cell death［52］. Dopaminergic neurotoxins 6-OHDA,
MPP and rotenone induced ER stress and unfolded

 
protein response in catecholaminergic PC12 cells［53］.
The involvement of the ER-Golgi system in dopaminergic

 
cell death in PD is also supported by our recent study

 
showing that rotenone induced disassembly of the Golgi

 
apparatus in dopaminergic cells［54］. In dopaminergic

 
neuroblastoma SH-SY5Y cells and PC12 cells, 6-OHDA

 
increases the levels of free ubiquitin and ubiquitinated
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proteins, and proteasome inhibition by MG-132
 

potentiates toxicity of 6-OHDA［55］. Recently, Hoglin-
ger et al. reported changes in proteasome activities in-
duced by dopaminergic neurotoxins:rotenone and MPP
reduced proteasome activity via ATP depletion, while

 
6-OHDA increased the activity in response to oxidative

 
stress in primary cultured mesencephalic dopaminergic

 
neurons［13］. Furthermore, severe inhibition of

 
proteasome activity by the proteasome inhibitor epox-
imicin or MG-132 synergistically exacerbated dopaminer-
gic neurotoxicity of rotenone, MPP and 6-OHDA, and

 
antioxidant N-acetylcysteine and glucose supplementation

 
protected against the synergistic neurotoxicity［13］.
These reports suggest that proteasome inhibition

 
enhances vulnerability to subtoxic oxidative stress and

 
energy loss by complex I inhibition. Proteasome inhibi-

tion reduces mitochondrial complex I and II activities in
 

SH-SY5Y cells［56］, and up-regulates COX-2 and its
 

ubiquitin conjugates［57］. Thus, proteolytic stress in the
 

ubiquitin-proteasome system is linked not only to
 

oxidative stress but also to mitochondrial dysfunction and
 

the inflammatory process. It has been reported that
 

proteasome inhibition leads to formation of ubiquitin/
α-synuclein-positive inclusions in PC12 cells or mesence-
phalic cultured cells［58-60］. Furthermore, unilateral

 
infusion of lactacystin, a proteasome inhibitor, into the

 
substantia nigra or infusion of lactacystin/epoxomicin into

 
the striatum causes selective degeneration of dopaminergic

 
neurons in the substantia nigra with cytoplasmic accumu-
lation of ubiquitin and α-synuclein to form inclusion

 
bodies［60, 61］. The dopaminergic neurotoxic property

 
of overexpressedα-synuclein has been revealed in ani-

Fig.1  Neurotoxicity of quinone formation as a dopaminergic neuron-specific oxidative stressor which closely links representative hypotheses,
mitochondrial dysfunction, inflammation, oxidative stress, and impairment of the ubiquitin-proteasome system in the pathogenesis and

 
progress of sporadic Parkinson’s disease and dopaminergic neurotoxin-induced parkinsonism.
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mals that overexpress wild-type or mutantα-synuclein
［48, 62-66］. It has been suggested that the toxicity of
α-synuclein is due, in part, to the increase in transient

 
formation of pathogenic oligomerized α-synuclein

 
protofibrils at the conversion of fibrils to form Lewy

 
bodies［67］, as will be discussed further below. In

 
contrast to the aggravating effects of severe proteasome

 
inhibition on the neurotoxicity of rotenone, MPP , and

 
6-OHDA［13］and the neurotoxic property of wild-type

 
or mutantα-synuclein, Sawada et al.recently reported

 
that moderate proteasome inhibition by lactacystin or

 
MG-132 blocked MPP -or rotenone-induced cell death

 
of primary cultured dopaminergic neurons, despite the

 
appearance ofα-synuclein-positive inclusions［68］, sug-
gesting that impairment of proteasome plays an important

 
role both inα-synuclein-positive inclusion formation and

 
dopaminergic neuronal death on different lines, and that

 
the formation of inclusion bodies actually exerts neuro-
protective, rather than neurotoxic, effects. Thus,
although it remains uncertain whether proteolytic stress

 
due to impairment of the ubiquitin-proteasome system is

 
involved in dopaminergic cell death in PD, such stress

 
may be a common process downstream of the path-
ogenesis of PD.

Supporting Evidence of Mitochondrial
 

Dysfunction, Inflammation, Oxidative Stress
 

and Proteolytic Stress in Patients with
 

Sporadic Parkinson’s Disease
 

The activities of mitochondrial complex III in the
 

striatum and of complex I in the substantia nigra are
 

significantly reduced in the brain of patients with sporadic
 

PD［69-71］. These findings support the mitochondrial
 

dysfunction hypothesis mentioned above. It is well known
 

that the inflammation is involved in the pathogenesis of
 

PD［22, 72-74］. In fact, in the substantia nigra of
 

patients with PD, activated microglia that express iNOS
 

and COX-1 and-2―which are rate-limiting enzymes that
 

catalyze the formation of prostaglandin precursors from
 

arachidonic acid―were found to be accumulated［75,
76］. Furthermore, inflammatory cytokines (IL-1β,
IL-6, TNF-α), an NF-κB transcription factor related to

 
gene induction of cytokines, and some growth factors

 
were increased in the striatum and cerebrospinal fluid of

 
patients with PD［74, 77, 78］. Oxidative stress is

 
thought to play an important role in the pathogenesis and

 
progression of PD. This suggested mechanism is

 

supported by evidence in the brain of patients with
 

sporadic PD showing decreases in the levels of GSH,
GPx and catalase in the basal ganglia, including the

 
striatum and substantia nigra［79-82］, and increases in

 
ferrous ions and iron deposits in the substantia nigra［82,
83］. The most cytotoxic ROS hydroxyl radicals might be

 
generated from hydrogen peroxide through metal-
catalyzed Fenton reaction to cause degenerative reactions

 
including lipid or protein peroxidation and DNA fragmen-
tation［84］. Microglia showing up-regulated iNOS and

 
COX expression and protein nitration were found in the

 
substantia nigra of parkinsonian patients［76, 85］,
suggesting that nitric oxide reacts with superoxide to

 
generate peroxynitrite, which promotes protein nitration.
Concerning the ubiquitin-proteasome system, structural

 
and enzymatic defects of 26S/20S proteasome, especially

 
20S proteasomeα-subunits, have been revealed in the

 
substantia nigra of patients with sporadic PD［86-88］,
and parkin has also been shown to be present in Lewy

 
bodies in the substantia nigra of patients with non-familial

 
PD［89, 90］, suggesting that proteolytic stress is also

 
involved in the pathogenesis of non-familial PD or parkin-
sonism(see reviews［46-48］).

Neurotoxicity of Quinone Formation as
 

Dopaminergic Neuron-specific Oxidative
 

Stress
 

These representative hypotheses―i.e., that mitochon-
drial dysfunction, inflammation, and the resulting

 
oxidative stress and impairment of the ubiquitin-
proteasome system are common processes in the etiology

 
of PD―can explain the mechanism of neurotoxicity

 
induced by MPTP and 6-OHDA and some parts of

 
pathogenesis in sporadic and familial PD, as mentioned

 
above. However, these hypotheses have not yet fully

 
clarified the mechanisms of dopaminergic neuron-specific

 
cell loss in PD and rotenone-treated parkinsonian animal

 
models. Although rotenone is not up-taken through DA

 
transporters and systemically inhibits mitochondrial com-
plex I, it also causes highly selective nigrostriatal

 
dopaminergic degeneration with fibrillar cytoplasmic inclu-
sions［14］. It has been shown that ROS generation from

 
the mitochondria of damaged neurons and from microglia

 
through the activation of NADPH oxidase［20, 21］
induces the selective degeneration of nigral DA neurons

 
that are abundant in iron and vulnerable to oxidative stress
［19, 91］. However, this explanation does not fully
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clarify the mechanism of dopaminergic neuron-specific cell
 

loss, since ROS distributes diffusely and its toxic effects
 

are not localized. Recently, Sakka et al. reported that
 

depletion of DA attenuated rotenone-induced neurotox-
icity, suggesting that the existence of endogenous DA

 
itself is involved in the selective loss of dopaminergic

 
neurons induced by rotenone exposure［92］.
In contrast to the general oxidative stress induced by

 
ROS/RNS, neurotoxicity of DA quinones or DOPA

 
quinones have recently received attention as dopaminergic

 
neuron-specific oxidative stress known to play a role in the

 
pathogenesis of PD and neurotoxin-induced parkinsonism
［3］. There are 2 major pathways in the DA-related

 
oxidative stress (Fig. 1). When an excess amount of

 
cytosolic DA exists outside of the synaptic vesicle, i.e.,
after L-DOPA treatment, DA is easily metabolized via

 
monoamine oxidase-B or by auto-oxidation to produce

 
cytotoxic ROS, and then forms neuromelanin［1, 93］.
In the oxidation of DA by monoamine oxidase, hydrogen

 
peroxide and dihydroxyphenylacetic acid (DOPAC)are

 
generated. On the other hand, non-enzymatic and sponta-
neous auto-oxidation of DA and L-DOPA produces

 
superoxide and reactive quinones such as DA quinones or

 
DOPA quinones［30, 31］. These quinones are easily

 
oxidized to the cyclized aminochromes DA-chrome
(aminochrome)and DOPA-chrome, and then are finally

 
polymerized to form melanin. Furthermore, other path-
ways of DA oxidation have been reported, and in these

 
pathways, DA quinones are also generated in the en-
zymatic oxidation of DA by prostaglandin H synthase
(COX), lipoxygenase, tyrosinase, and xanthine oxidase
［94-97］. Although the auto-oxidation of DA via quinone

 
formation produces general ROS which shows widespread

 
toxicity not only in DA neurons but also in other regions,
highly reactive DA quinone and DOPA quinone them-
selves have been reported to exert predominant cytotox-
icity in DA neurons and surrounding neural cells, since

 
these quinones are generated from free cytosolic DA

 
outside the synaptic vesicle or from L-DOPA［93］.
The quinones generated from DA or L-DOPA exert

 
cytotoxicity by interacting with various bioactive mole-
cules in or beside dopaminergic neurons. The functional

 
proteins which possess cysteine residues are thought to be

 
the targets of DA quinone and DOPA quinone. These

 
quinones conjugate with the sulfhydryl group of the amino

 
acid cysteine, resulting predominantly in the formation of

 
5-cysteinyl-DA and 5-cysteinyl-DOPA, respectively［31,
98, 99］. Since the sulfhydryl group on cysteine is often

 

found at the active site of functional proteins, covalent
 

modification of cysteine residues by DA quinone or
 

DOPA quinone to form 5-cysteinyl-catechols would
 

irreversibly alter or inhibit protein function and conse-
quently cause cytotoxicity. This mechanism of neurotox-
icity by the formation of 5-cysteinyl-catechols on protein

 
is supported by evidence showing the generation of DA

 
quinone and DOPA quinone, and consequent formation

 
of 5-cysteinyl-catechols, 5-cysteinyl-DA, 5-cysteinyl-
DOPA, and 5-cysteinyl-DOPAC, in the cell loss of

 
dopaminergic neuronal cultured cells treated with DA and

 
L-DOPA［100-102］. In particular, it is of interest that

 
tyrosine hydroxylase, the rate-limiting enzyme in cate-
cholamine biosynthesis, is one of the proteins that may be

 
targeted by the DA quinone generated in the brain, since

 
DA quinones covalently modify and inactivate the DA-
synthesizing enzyme to subsequently form redox-cycling

 
quinoprotein［103, 104］(Fig. 1).
The formation of catechol-quinones in vitro and in vivo

 
has been dramatically blocked by treatment with GSH,
cysteine, or ascorbate［100, 101, 103, 105］, since the

 
reduced sulfhydryl group of cysteine in GSH and free

 
cysteine compete with the sulfhydryl group of cysteine on

 
proteins conjugating with DA or DOPA quinones. We

 
recently revealed the neurotoxic properties of DA-and

 
L-DOPA-related compounds in human neuroblastoma

 
SH-SY5Y cells by generating DA- or DOPA-
semiquinone radicals, which were subsequently converted

 
to toxic quinones［106］. DA or L-DOPA possessing 2

 
hydroxyl groups on the benzene ring showed marked cell

 
toxicity and generation of DA-or DOPA-semiquinone

 
radicals, as detected by in vitro ESR spectrometry. The

 
cell death and the formation of these semiquinone radicals

 
induced by DA or L-DOPA were markedly prevented by

 
the addition of Cu/Zn-SOD or GSH, but not by the

 
addition of catalase［106］. SOD can act as a superoxide:
semiquinone oxidoreductase to prevent quinone formation
［107］. Furthermore, by conjugating with DA quinone,
GSH prevents the binding of DA quinone to the sulfhy-
dryl groups of cysteine on proteins as described above.
Therefore, the protective effects of SOD and GSH

 
against DA-or L-DOPA-induced cytotoxicity may be the

 
result of the quinone-quenching activities of these antiox-
idants(Fig. 1). The involvement of quinone formation in

 
DA-or DOPA-induced cytotoxicity is also supported by

 
our recent study that overexpression of Cu/Zn-SOD

 
protects SH-SY5Y cells against DA-induced cytotoxicity

 
accompanied by an increase in their GSH level［108］. If
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DA-related neuronal death is caused by the generation of
 

general ROS or RNS, the cytotoxicity of DA would be
 

prevented by antioxidants such as ascorbic acid and
α-tocopherol. However, ascorbic acid andα-tocopherol

 
have lesser or no effects against DA-induced cell death in

 
PC12 cells, while the cell death is markedly inhibited by

 
the thiol-containing compounds GSH, N-acetylcyteine,
and dithiothreitol［109］. Furthermore, these thiol re-
agents prevent auto-oxidation of DA and consequent

 
melanin formation. Taken together, these findings indi-
cate that quinone formation may play an important role in

 
the neuronal damage induced by dopaminergic neuron-
specific oxidative stress.
One of the target proteins for DA quinone is thought

 
to beα-synuclein, which is a major component of the

 
insoluble fibrils of Lewy bodies in patients with PD［2］.
The soluble state ofα-synuclein is converted to aggregat-
ed fibrils via transient formation of pathogenic protofibrils

 
by its oligomerization［67］. Mutantα-synuclein(A30P),
which is linked to familial autosomal dominant PD,
enhances the rate of protofibril formation but inhibits the

 
conversion of protofibrils to fibrils, thereby increasing the

 
level of toxic protofibrils［110］, which lead to the

 
destruction of synaptic vesicular membranes［111］.
Conway et al.screened 169 compounds that inhibited the

 
conversion of protofibrils to fibrils, and found that all but

 
one of 15 fibril inhibitors were catecholamines related to

 
DA and L-DOPA. Furthermore, DA quinone reacts

 
withα-synuclein to form the DA quinone-α-synuclein

 
adduct, which inhibits fibril formation at oligomerization

 
by stabilizing the protofibrils［2］. Sinceα-synuclein does

 
not contain cysteine residues, the DA quinone-α-
synuclein adduct may be one of the quinoproteins formed

 
by coupling DA quinone to tyrosine residues ofα-
synuclein and/or by nucleophilic attack of quinone to

 
lysine residues forming a Schiffbase［103, 112］(Fig.
1).
In addition to neurotoxic DA quinones, cyclized

 
o-semiquinones derived from DA-chromes are involved in

 
the cytotoxicity induced by auto-oxidation of DA［113-
117］. In the pathway of melanin formation, the cyclized

 
aminochrome DA-chrome (aminochrome) is generated

 
from DA quinone via leukoaminochrome, and is convert-
ed to 5,6-dihydroxyindole and then indole-5,6-quinone,
which is consequently polymerized to form melanin. It

 
has been proposed that reduction of DA-chrome catalyzed

 
by NADPH cytochrome P450 reductase produces

 
cyclized o-DA semiquinone (leukoaminochrome o-

semiquinone)radicals which are highly reactive molecules
［116, 118］. This cytotoxic effect of cyclized o-DA

 
semiquinone derived from DA-chrome is supported by a

 
report showing that unilateral injection of cyclized amino-
chrome, DA-chrome into the substantia nigra resulted in

 
apomorphine-induced rotation behavior with a significant

 
reduction of nigral DA neurons［119］.
The cytotoxicity of quinone formation is closely linked

 
not only to general oxidative stress but also to mitochon-
drial dysfunction, inflammation, and proteasome impair-
ment (Fig. 1). Quinone formation by DA oxidation

 
reduces mitochondrial function and opens the mitochon-
drial permeability transition pores in the brain［120］.
DHBT-1 (7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-
1,4-benzothiazine-3-carboxylic acid), a further oxidation

 
product of 5-cysteinyl-DA, irreversibly inhibits the activ-
ity of mitochondrial complex I［121］. As described

 
above, several NSAIDs protected against dopaminergic

 
cell loss in MPTP-treated parkinsonian models［23, 24,
26］. Furthermore, reduction of nigral DA neurons by

 
MPTP injection was prevented in COX-2 knockout mice

 
or by treatment with a COX-2 inhibitor［122］. One

 
possible dopaminergic neuron-specific target molecule of

 
NSAIDs is thought to be prostaglandin H synthase,
which is abundant in the brain［96］. This enzyme,which

 
exerts both COX activity and peroxidase activity on the

 
arachidonic acid cascade, catalyzes the production of

 
prostaglandin G2 from arachidonic acid by its COX

 
activity, and then converts prostaglandin G2 to prosta-
glandin H2/E2 by its peroxidase activity. In the presence

 
of DA, oxidative reaction of DA to form DA quinone is

 
coupled with the latter step. In other words, the DA

 
quinone is generated not only in auto-oxidation of DA,
but also by the enzymatic oxidation of DA by prostaglan-
din H synthase in a reaction mediated by hydrogen

 
peroxide［96］. The NSAIDs indomethacin and aspirin

 
inhibit this prostaglandin H synthase-mediated oxidation

 
of DA［123］. These findings suggest that the induction

 
of COX and resulting formation of DA quinone play an

 
important role in the degeneration of DA neurons by

 
dopaminergic neurotoxins or excess DA. In fact, pros-
taglandin E2, which is generated by prostaglandin H

 
synthase, is increased in the substantia nigra of patients

 
with PD［123］. Furthermore, the 5-cysteinyl-DA/
homovanillic acid concentration ratio has been shown to

 
be significantly higher in the cerebrospinal fluid of the

 
patients with PD who received L-DOPA therapy［124］.
In another study, the 5-cysteinyl-catechols were
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significantly higher in the substantia nigra of PD patients
 

than in that of controls［125］. Apoptotic and selective
 

dopaminergic cell death with formation of ubiquitin and
α-synuclein-positive inclusion in vitro or in vivo induced

 
by the proteasome inhibitor lactacystin or epoxomicin was

 
suppressed by reducing endogenous DA, and enhanced

 
by treatment with L-DOPA or the monoamine oxidase

 
inhibitor pargyline［60］. In a related work, DA induced

 
proteasome inhibition in PC12 cells, and this inhibition

 
was attenuated by GSH, monoamine oxidase inhibitors,
or a DA uptake inhibitor［126］. These findings suggest

 
a possible role of proteasome inhibition in the toxicity

 
induced by high levels of DA or its quinone in the cytosol.
Thus, DA quinone-or DOPA quinone-induced cytotox-
icity is thought to be involved not only in the pathogenesis

 
of PD but also in the adverse reactions induced by

 
long-term L-DOPA therapy.

Neuroprotective Approaches against DA
 

Quinone Cytotoxicity
 

As mentioned above, various studies have introduced
 

neuroprotective approaches against DA quinone toxicity.
The DA-or L-DOPA-induced formation of catechol-
quinones such as 5-cysteinyl-DA and 5-cysteinyl-DOPA

 
and consequent dopaminergic cell damage in vitro and in

 
vivo were dramatically prevented by treatment with SOD,
GSH, N-acetylcyteine, or dithiothreitol, but not by

 
treatment with catalase orα-tocopherol［100, 101, 103,
105, 106, 108, 109］. These protective effects of SOD,
GSH, and some thiol reagents against DA-or L-DOPA-
induced cytotoxicity may be due to their quinone-
quenching activities. SOD exerts protective effects by

 
acting as a superoxide:semiquinone oxidoreductase to

 
prevent quinone formation［106-108］. The sulfhydryl

 
group of free cysteine in GSH and thiol reagents compete

 
with the sulfhydryl group of cysteine on functional pro-
teins conjugating with DA or DOPA quinones［3, 96,
106, 109］. These quinone-quenching reagents, espe-
cially N-acetylcyteine, which can cross the blood-brain

 
barrier, may be therapeutically useful against the neuro-
toxicity of quinone formation that causes oxidative stress

 
specifically in the dopaminergic neurons.
Against the DA-chrome-induced neurotoxicity, 2

 
enzymes, NAD(P)H:quinone oxidoreductase (NQO:
DT-diaphorase) and GSH transferase (GST) M2-2,
exert neuroprotective effects to prevent the formation of

 
cyclized o-DA semiquinone (Fig. 1). NQO:DT-diap-

horase(so-called quinone reductase), which is present in
 

the dopaminergic neurons in the substantia nigra［127］,
catalyzes the two-electron reduction of quinones, reduces

 
DA-chrome to leukoaminochrome by competing with

 
NADPH cytochrome P450 reductase, and consequently

 
inhibits the formation of o-semiquinone radicals［113,
115, 128］. Treatment with butylated hydroxyanisole,
dimethyl fumarate (DMF), or tert-butylhydroquinone,
which up-regulates the activity of NQO:DT-diaphorase,
protects against cell death related to quinone formation
［129-132］. GST M2-2 also prevents the formation of

 
cyclized o-semiquinone from DA-chrome by catalyzing the

 
conjugation of DA-chrome with GSH to form 4-
glutathionyl-5,6-dihydroxyindoline［133, 134］. In partic-
ular, DMF increases not only the activity of NQO:
DT-diaphorase but also total intracellular GSH and the

 
activities of GST and GSH reductase［130］to reduce the

 
cytotoxicity associated with DA quinone formation.
The neurotoxicity induced by the dopaminergic neuro-

toxins MPTP, MPP , and 6-OHDA was blocked by
 

treatment with the NSAIDs, aspirin, salicylate and
 

meloxicam, which inhibit COX activity［23-26］. The
 

NSAIDs indomethacin and aspirin inhibited prostaglandin
 

H synthase-mediated oxidation of DA［123］. The final
 

product, prostaglandin E2, which is catalyzed by pros-
taglandin H synthase, was increased in the substantia

 
nigra of patients with PD［123］. The NSAIDs can also

 
inhibit the induction of inflammatory cytokines and

 
apoptosis-promoting molecules by suppressing of iNOS

 
expression or NF-κB induction. Therefore, NSAIDs

 
could be neuroprotective agents in the treatment of

 
parkinsonian patients, and especially for treating adverse

 
reactions caused by long-term L-DOPA therapy, through

 
their anti-inflammatory action and their reduction of

 
catechol quinone-induced cytotoxicity［3, 135］.
Furthermore, the melanin-synthesizing  enzyme

 
tyrosinase, which catalyzes both the hydroxylation of

 
tyrosine to L-DOPA and the subsequent oxidation of

 
L-DOPA or DA to form melanin, might be useful for

 
reducing the neurotoxicity induced by DA quinone［3］
(Fig. 1), since tyrosinase can rapidly oxidize DA or DA

 
quinone to form melanin［136］. We previously reported

 
that inhibition of tyrosinase dramatically reduced the

 
viability of dopaminergic neuronal cells by increasing the

 
intracellular DA contents, and significantly enhanced

 
DA-induced cell death［137］. Tyrosinase also oxidizes

 
5,6-dihydroxyindole derived from DA-or DOPA-chrome

 
to indole-5,6-quinone. Furthermore, the replacement of
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DA synthesis by tyrosinase has been reported in tyrosine
 

hydroxylase-null mice［138］. Neuromelanin exerts
 

antioxidative properties to inhibit lipid peroxidation,
quenches free radicals, and has a strong chelating ability

 
as regards transition metals, preventing metal-induced

 
neurotoxicity［3, 139］. Therefore, enhancing the activ-
ity of tyrosinase in the brain may prevent or ameliorate

 
the DA quinone or DA-chrome-induced slow progression

 
of cell damage by rapid oxidation of excess amounts of

 
cytosolic DA and L-DOPA to form neuroprotective

 
melanin, and by its DA-synthesizing property.

Concluding Remarks
 

In conclusion, it is of interest that the cytotoxicity of
 

quinone formation is closely related not only to general
 

oxidative stress but also to mitochondrial dysfunction and
 

inflammation. In other words, quinone formation by
 

auto-oxidation of DA may play an important role as a DA
 

neuron-specific common degenerative factor that closely
 

links representative hypotheses, mitochondrial dysfunc-
tion, the inflammatory process, oxidative stress, and

 
impairment of the ubiquitin-proteasome system in the

 
pathogenesis and progress of PD. Further studies will be

 
required to clarify the role of quinone formation in patients

 
with PD.
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