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Summary  Maspin, which belongs to the serine protease inhibitor (serpin) superfamily, has been 

proposed as a potent tumor suppressor that inhibits cell motility, invasion, angiogenesis, and 

metastasis.  In the present study, we examined the effects of 5-Aza-2’-deoxycytidine (5-Aza-dC), 

a demethylating agent, and FR901228, a histone deacetylase (HDAC) inhibitor, on maspin 

expression in oral cancer cell lines.  The expression levels of maspin mRNA were divided into 

two groups, which was the maspin low-expressed and high-expressed cell lines in the 12 oral 

cancer cell lines.  The maspin promoter contained only a few methylated CpG sites in the maspin 

low-expressed cell lines.  Moreover, the methylation status was not altered after 5Aza-dC 

treatment.  However, the transcription of the maspin gene was clearly increased following 

5Aza-dC treatment in a number of oral cancer cell lines.  These results imply that an action of 

5Aza-dC is separate from induction of promoter demethylation.  Treatment with FR901228 

resulted in a time-dependent stimulation of the re-expression of maspin mRNA as early as 4 hours 

after treatment in the maspin downregulated cells.  The re-expression of the maspin gene may 

contribute to the recuperation of biological functions linked to FR901228 such as an inhibitory 

effect on tumor angiogenesis and cell invasion.  These results indicate that maspin and its target 

genes may be excellent leads for future studies on the potential benefits of FR901228, a histone 

deacetylase inhibitor, in cancer therapy.   

 

Keywords: maspin, methylation, 5-Aza-2’-deoxycytidine, FR901228 
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1. Introduction 

Maspin is a Mr 42000 protein that belongs to the serine protease inhibitor (serpin) superfamily 

and is expressed in the epithelial cells of the airway, breast, skin, and prostate, but not in skin 

fibroblasts, lymphocytes, bone marrow, or the heart or kidneys [1, 2].  It is known to be a potent 

tumor suppressor that inhibits cell motility, invasion, angiogenesis, and metastasis [3-8].  

Accumulative evidence demonstrates that maspin inhibits the progression of prostate and breast 

tumors at the late stages of invasion and metastasis [1, 7, 9-12].  In several mammary carcinoma 

cell lines, maspin is undetectable or is expressed at very low levels [1].  A loss of maspin 

expression correlates with increased metastatic potential in breast cancer and other human tumors.  

Maspin-transfected tumor cells tend to have less necrosis, mitogenesis, and neovascularization, 

which is associated with better prognosis and lower invasiveness [1, 9, 10, 13].  Domann et al. 

[14] and Futscher et al. [2] have shown that the silencing of maspin gene expression is inversely 

correlated with methylation of the promoter.  Although the maspin gene is a potential clinical 

targeted invention, the regulating mechanism remains to be elucidated.   

Domann et al. [14] have shown that 5-Aza-2’-deoxycytidine (5-Aza-dC), known to be a 

demethylating agent, causes maspin mRNA levels to recover and suggests that methylation at 

CpGs, located in the maspin promoter, is the only impediment to maspin expression in a 

nonexpressing tissue.  The maspin proximal promoter harbors many CpGs.  Domann’s study 

offers an intriguing theory of epigenetic silencing of the maspin gene. 

Among the new classes of chemotherapeutic agents, histone deacetylase (HDAC) inhibitors 

have aroused considerable interest in the pursuit of improved anticancer agents.  HDAC inhibitors 

increase or decrease the transcriptional levels of genes by causing hyperacetylation of histone, 
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which is considered to be a key mechanism for regulating transcription.  Various HDAC 

inhibitors such as sodium butyrate (SB), trichostatin A (TSA), and trapoxin are known to inhibit 

histone deacetylase activities.  FR901288, a novel cyclic peptide inhibitor of HDAC, is isolated 

from a fermentation broth of Chromobacterium violaceum.  FR901228 has a stronger cytotoxic 

activity than TSA, although only a limited number of genes involved are known to increase or 

decrease their transcriptional levels followed by hyperacetylation of histone.   

In the present study, we examined the regulatory effects of 5-Aza-dC and FR901228 on 

maspin in favor of its epigenetic regulation through a process such as histone acetylation and 

promoter methylation in oral cancer cell.
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2. Materials and methods  

 

2.1. Cell lines and culture   

Human oral cancer cell lines (HO-1-u-1, HSC2, HSC3, HSC4, SAS, KB, Hep2, and Ca9-22) 

were obtained from the Cell Resource Center for Biomedical Research Institute of Development, 

Aging, and Cancer (Tohoku University, Sendai, Japan), H-O-N-1, KOSC2, and KOSC3 from the 

Health Science Research Resources Bank (Osaka, Japan), SCC25 from Dainippon Pharmaceutical 

Co., Ltd. (Osaka, Japan), and human breast cancer cell line, MCF-7 obtained from the Cell 

Resource Center for the Biomedical Research Institute of Development, Aging, and Cancer 

(Tohoku University, Sendai, Japan).  They were maintained in Dulbecco’s modified Eagle’s 

medium (DMEM) (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) supplemented with 10% fetal 

bovine serum (FBS, HyClone Laboratories, Inc., Logan, UT, USA), 100 units/ml penicillin (Meiji 

Seika Kaisha, Ltd., Tokyo, Japan) and 100 µg/ml streptomycin (Meiji Seika Kaisha) in a CO2 

incubator (Sanyo Electric Co., Ltd., Osaka, Japan) with 95% air plus 5% CO2 at 37℃. 

  

2.2. Chemicals 

5-Aza-dC (Sigma Chemical Co., St Louis, MO, USA) and FR901288 (Fujisawa 

Pharmaceutical Company, Osaka, Japan) diluted in distilled water were added to the DMEM to the 

final concentrations indicated for each treatment.  

 

2.3. 5-Aza-dC treatment 

Stock solutions of 5-Aza-dC were prepared by dissolving the drug at a 10 mM concentration in 
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distilled water no more than 2 h prior to use in the experiment.  Final concentrations were 

obtained by diluting the stock solution directly into the tissue culture medium. Cells were incubated 

for 7 days with several different concentrations of 5-Aza-dC ranging from 4.4 to 22 µM. 

 

2.4. FR901228 treatment 

First, 1 × 105 cells were seeded in 5 ml MDEM in a petri dish (60 mm in diameter).  At 7 

days after seeding, the medium was changed to one containing FR901228, and the dish was 

incubated in a CO2 incubator with 95% air plus 5% CO2 at 37℃ for an adequate number of hours.   

 

 

2.5. DNA isolation and bisulfite modification 

DNA was isolated by the standard method. Bisulfite treatment was carried out using the 

CpGenome DNA Modification Kit (Intergen Company, Manhattanville Road, NY) according to 

the instructions supplied. After bisulfite treatment, the DNA was resuspended in Tris EDTA (pH 

7.5).  

 

2.6. Bisulfite sequencing 

The maspin promoter [15] was amplified from the bisulfite-modified DNA by PCR using primers 

specific to the bisulfite-modified sequence of the maspin promoter.  The amplifications were 

carried out in 25-µl reaction mixtures containing 1 µl of bisulfite-treated genomic DNA, 2 µl 

dNTPs, 0.63 µl primers, 0.75 µl MgCl, 2 µl 10×PCR buffer, and 0.25 µl Platinum Taq DNA 

polymerase (Invitrogen Corp., Carlsbad, CA) under the following conditions: 94℃ for 4 min 
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followed by 5 cycles of 94℃ for 1 min, 56℃ for 2 min, 72℃ for 3 min, then 35 cycles of 94℃ 

for 30 sec, 56℃ for 2 min, 72℃ for 1.5 min, and a final extension of 72℃ for 6 min.  The first 

primers were as follows: U2 (nt 673 to nt 703), 5’-AAA AGA ATG GAG ATT AGA GTA TTT 

TTT GTG-3’; primer D2 (nt 1114 to nt 1141), 5’-CCT AAA ATC ACA ATTATC CTA 

AAAAATA-3’.  The second round primers were as follows: primer U3 (nt 750 to 776), 5’-GAA 

ATT TGT AGT GTT ATT ATT ATT ATA -3’ ; primer D3 (nt 1064 to nt 1090), 5’-AAA AAC ACA 

AAA ACC TAA ATA TAA AAA -3’.  These primer sequences were a generous gift from Dr. B. 

Futscher.  Amplified DNA was ligated into the TA topo cloning vector (Invitrogen, Corp., 

Carlsbad, CA) and transformed into E.coli, Topo 10; at least 5 clones of each fragment were 

sequenced using a Big Dye terminator sequencing kit (Perkin Elmer, Branchburg, NJ). 

 

2.7. RNA isolation and RT-PCR 

Extraction of total cellular RNA was carried out using Trizol reagent (Invitrogen Corp., 

Carlsbad, CA, USA) according to the manufacturer’s instructions.  RNA was reverse-transcribed 

with Superscript II Reverse Transcriptase and oligo dT primers (Invitrogen Corp., Carlsbad, CA, 

USA). Amplification of cDNA was performed under the following PCR conditions: 7 min at 94℃ 

for 1 cycle; then 28 cycles at 94℃ for 30 s, 55℃ for 30 s, or 72℃ for 30 s; and a final elongation 

step at 72℃ for 10 min.  We used the following primers for amplification, designed by Li et al. 

[16]: Maspin 1, sense: 5’- cac tgg gca atg tcc tct tc -3’ (located at 146-165), antisense: 5’- tgg tct ggt 

cgt tca cac tg -3’ (located at 547-528).  To confirm our results, additional primer sets for maspin 

designed by Biliran et al. [17] were used in RT-PCR: Maspin 2, sense: 5’- ggg gaa ttc cat gga tgc 

cct gca act -3’, antisense: 5’- ccg gtc tag aca tgg gct atg cca ctt -3’; and 
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glyceraldehydes-3-phosphate dehydrogenase (GAPDH): sense: 5’-gaa ggt gaa ggt cgg agt c-3’, 

antisense: 5’-caa agt tgt cat gga tga cc-3’.  The amplified GAPDH fragment was used as a positive 

control.  The RT-PCR products were separated by electrophoresis on a 2% agarose gel, stained 

with ethidium bromide, and viewed by UV.   
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3. Results  

  

3.1. Expression of maspin mRNA in oral cancer cell lines   

The expression levels of maspin mRNA in 12 oral cancer cell lines were examined by RT- 

PCR.  The gels clearly showed that the Hep2, SAS, KB, and HO-1-u-1 cell lines contained only 

trace amounts of maspin mRNA (Fig. 1).  The other cell lines produced uniformly large amounts 

of the maspin mRNA, as indicated by the very dense bands that appear in the relevant lanes (Fig. 

1).   

 

3.2. Methylation map of the CpG island in the 5’ region of the maspin gene CpGs. 

We analyzed the methylation map of the CpG island in the promoter of the maspin gene in the 

three low-expressed cell lines (Hep2, SAS, KB).  The maspin promoter contains only a few 

methylated CpG sites in the maspin low-expressed lines (Fig. 2, upper). 

 

3.3. Effects of 5-Aza-dC treatment on the expression and CpG methylation of the maspin gene 

To test whether the maspin gene expression was suppressed by hypermethylation of its 

promoter, we exposed 5-Aza-dC, an inhibitor that prevents methylation of newly synthesized DNA, 

to three maspin downregulated cell lines (Hep2, KB, and SAS) and two maspin-expressed cell 

lines (HSC4 and HSC3).  Our results clearly show that the five cell lines regained their ability to 

produce high levels of maspin mRNA following exposure to graded doses of 5-Aza-dC (Fig. 3).  

We also analyzed the methylation map in the promoter of the maspin after 5-Aza-dC treatment in 
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the three low-expressed cell lines (Hep2, SAS, and KB).  After incubation with 4.4 µM 5-Aza-dC 

in a flask for 7 days, extracted DNA was bisulfited and sequenced as described in the Materials and 

Methods section.  The methylation status was not altered after 5Aza-dC treatment (Fig. 2 lower). 

 

3.4. Effects of FR901228 treatment on maspin transcription  

Three maspin downregulated cell lines that express low levels of maspin mRNA (Hep2, SAS, 

and KB) were incubated with FR901228 at a concentration of 0.5 or 1.0 μM.  Two 

maspin-expressed cell lines (HSC4 and HSC3) were also analyzed as controls.  Maspin 

expression was induced after 4-16 h of treatment with FR901228 in the maspin downregulated cell 

lines, while maspin transcriptional levels were not altered after treatment with FR901228 in the 

maspin-expressed cell lines (Fig. 4a).  As a negative control, human breast cancer cell line MCF-7, 

one of the maspin-negative lines, was incubated with FR901228.  Its maspin expression was also 

induced in a time-dependent manner in MCF-7 (Fig. 4b). 
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4. Discussion   

The expression levels of maspin mRNA were divided into two groups, which was the maspin 

low-expressed and high-expressed cell lines in the 12 oral cancer cell lines.  We first decided to 

examine the methylation status of the CpG island, one of the well-studied sites of epigenetic 

regulation in the maspin promoter region in the maspin low-expressed cell lines.  The maspin 

promoter contained only a few methylated CpG sites in the maspin low-expressed cell lines.  

Moreover, the methylation status was not altered after 5Aza-dC treatment.  However, transcription 

of the maspin gene was clearly increased following 5Aza-dC treatment in a number of oral cancer 

cell lines.  These results imply that the action of 5Aza-dC is separate from the induction of 

promoter demethylation.  It is possible that 5Aza-dC disrupts complexes between DNA 

methyltransferases and histone-modifying proteins [18, 19].  Kondo et al. [20] have reported that 

5Aza-dC dramatically decreases histone H3 Lys-9 methylation, slightly increases Lys-9 acetylation, 

and moderately increases histone H3 Lys-4 methylation and reactivated gene expression.  These 

findings could explain the previously reported 5Aza-dC induced activation of the un-methylated 

gene [21, 22] and could also explain the maspin activation in our results.   

 HDAC inhibitors are known to modulate transcription and exert antiproliferative effects on 

cancer cells.  Only a few target genes whose expression is upregulated in response to HDAC 

inhibitor-mediated growth arrest have been identified, e.g., the cyclin-dependent kinase inhibitors 

p21/WAF1 [23-25], c-myc [26, 27], and the anti-apoptotic bcl-2 gene [28, 29].  Among the latest 

reports, Butler et al. have found that Suberoylanilide hydroxamic acid (SAHA), one of the HDAC 

inhibitors, induces expression of the thioredoxin-binding protein-2 (TBP-2) gene in LNCaP 

prostate cells [30].  However, the gene responsible for inhibition of the proliferation and induction 
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of cell differentiation or death by HDAC inhibitors remains elusive.   

In the present study, we found that transcription of the maspin gene, whose expression has been 

implicated in apoptosis pathways as another possible candidate gene, is clearly increased following 

FR901228 treatment in a number of oral cancer cell lines.  However, we could not test the oral 

cancer cell lines for protein expression because of technical limitations with currently available 

antibodies.  It is thus reasonable to speculate that histone hyper- and hypoacetylation are common 

underlying features in maspin transactivation and repression, and this may be an important aspect 

of the regulation of maspin expression in oral cancer cells, which are primarily derived from 

epithelial cells.   

Additionally, our data suggest that maspin re-expressed by FR901228 can be an inhibitory 

regulator of natural tumor growth through its influence on neovascularization because the tumor 

suppressor activity of maspin may depend primarily on the inhibition of angiogenesis.  Zhang et 

al. [10] have previously reported that maspin blocks the growth of human prostate tumor cells and 

dramatically reduces the density of tumor-associated microvessels in a xenograft mouse model.  

In the present study, FR901228 was found to induce the gene expression of angiogenic-inhibitor 

maspin.  Supporting our idea, specific HDAC inhibitors have been shown to inhibit angiogenesis 

[31, 32], although little has been known about the mechanism of HDAC inhibitor in 

anti-angiogenesis until now.  HDAC inhibitor should undergo further examination not only as an 

anti-angiogenesis agent, but also regarding its role in maspin re-expression to explore its potential 

as a possible biomarker for relapse risk in cancer therapy, as alterations in maspin expression are 

known to play an important role in oral tumorigenesis.  In oral squamous cell carcinoma, high 

levels of maspin expression are associated with the absence of lymph node metastasis and with 
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better rates of overall survival [33].   

In conclusion, our research may provide a first suggestion of FR901228-dependent regulation 

of maspin in oral cancer.  Maspin upregulation by FR901228 may be of critical importance in 

clinical treatment for cancer, and may contribute to the future development of treatment for human 

oral cancer.   
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Figure legends 

Fig.1  Expression of maspin mRNA in oral cancer cell lines.   

The expression levels of maspin mRNA in 12 oral cancer cell lines were examined by RT-PCR.  

The gels clearly show that the Hep2, SAS, KB, and HO-1-u-1 cell lines contained only trace 

amounts of maspin mRNA.  The other cell lines produced uniformly large amounts of the maspin 

mRNA, as indicated by the very dense bands appearing in the relevant lanes. 

 

Fig. 2  Methylation map of the CpG island in the 5’ region of the maspin gene CpGs 

We analyzed the methylation map of the CpG island in the promoter of the maspin gene in the 

three low-expressed cell lines (upper). | bars represent CpG dinucleotides in the maspin promoter.  

Closed circles on the bar represent methylated cytosine. The numbers below the map represent the 

methylation frequency for each site, calculated as the percentage of clones with methylated CpG 

cytosines at that site. Bars with open circles indicate no methylation of the CpG cytosine.  At least 

five clones of each fragment were sequenced.  Interestingly, we found that the maspin promoter 

contains only a few methylated CpG sites in the maspin low-expressed lines.  We also analyzed 

the methylation map in the promoter of maspin after 5-Aza-dC treatment in the three 

low-expressed cell lines (lower).  After incubation with 4.4 µM of 5-Aza-2’-deoxycytidine in a 

flask for 7 days, extracted DNA was bisulfited and sequenced as described in the Materials and 

Methods section.  The methylation status was not altered after 5Aza-dC treatment. 

 

Fig. 3  Effects of 5-Aza-dC treatment on expression of maspin gene.  To test whether or not 

expression of the maspin gene had indeed been altered by hypermethylation, leading to its partial or 
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complete demethylation, we exposed a demethylating agent, 5-Aza-dC, to the three maspin 

downregulated cell lines (Hep2, SAS, and KB) and two maspin-expressed cell lines (HSC4 and 

HSC3).  The RT-PCR results clearly show that the five cell lines regained their ability to produce 

high levels of maspin mRNA following exposure to graded doses of 5-Aza-dC. 

 

Fig. 4  Effects of FR901228 treatment on maspin transcription.   

(a) Three maspin downregulated cell lines that expressed low levels of maspin mRNA (Hep2, SAS, 

and KB) were incubated with FR901228 at a concentration of 0.5 or 1.0 μM.  Two 

maspin-expressed cell lines (HSC4 and HSC3) were also analyzed as controls.  Maspin 

expression was induced after 4 h-16 h of treatment with FR901228 in the maspin downregulated 

cell lines, while maspin transcriptional levels were not altered after treatment with FR901228 in the 

maspin-expressed cell lines.  (b) As a negative control, human breast cancer cell line MCF-7, one 

of the maspin negative lines, was incubated with FR901228.  RT-PCR resulted in the induction of 

maspin expression in a time-dependent manner in MCF-7.  
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