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Abstract 

Recently, we observed that expression of a pea gene encoding oxophytodienoic acid reductase 

(OPR), S64, was induced by the suppressor of a pea pathogen, Mycosphaerella pinodes, which 

blocks pea defense responses. Because it is known that genes for OPR consist of several 

homologous members, we isolated genomic and cDNA clones encoding a member of the OPR 

subfamily. We isolated five members of the putative OPR gene family from a pea genomic DNA 

library and amplified six cDNA clones including S64 by a Reverse transcriptase-polymerase chain 

reaction (RT-PCR) strategy. Sequencing analysis revealed that S64 corresponds to PsOPR2, and 

the deduced amino acid sequences for the six OPR-like genes shared more than 80% identity with 

each other. According to their sequence similarity, all OPR-like genes isolated belong to OPR 

subgroup I, which does not involve the enzymes for jasmonic acid biosynthesis. However, they 

varied in exon/intron organizations and promoter sequences. To investigate the member-specific 

expression of OPR-like genes, RT-PCR was used with member-specific PCR primers. The results 

indicated that the OPR-like gene most strongly induced by the inoculation of a compatible 

pathogen and by treatment with the suppressor was PsOPR2.  Further, the ability of the 

oxidoreductases of the six recombinant OPR-like proteins to reduce a model substrate, 

2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 have 

a strong and PsOPR2 has a most remarkable ability to reduce 2-cyclohexen-1-one, whereas 

PsOPR3 has little and PsOPR5 has no ability to reduce it. Thus, the six OPR-like proteins could be 

classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic 
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activities used to classify each member of the pea OPR-like gene family clearly concurred with 

each other, indicating that each OPR-like member possesses distinct functions.  

 

Key words  Coronatine • Flavoproteins • Jasmonic acid • Oxophytodienoic acid reductase • 

OPR • Suppressor 

 

 

Introduction 

The pea fungal pathogen Mycosphaerella pinodes is known to produce both a glycoprotein elicitor 

and a glycopeptide suppressor in its germination fluid (Shiraishi et al. 1994, 1999). Elicitor-induced 

plant defense responses include phytoalexin accumulation (Shiraishi et al. 1978; Yamada et 

al.1989), activation of genes coding for phytoalexin biosynthetic enzymes (Yamada et al. 1989) 

and PR proteins (Yoshioka et al. 1992), and superoxide generation (Kiba et al. 1996). On the other 

hand, the suppressor inhibits or delays the elicitor-induced plant defense responses described above 

(Shiraishi et al. 1978; Yamada et al. 1989; Yoshioka et al. 1992; Kiba et al. 1996). Recently, we 

determined that a suppressor not only inhibits active plant defense responses, but also induces 

particular plant gene(s) (Ishiga et al. 2002). One example is S64; the cDNA clone was isolated from 

suppressor-treated pea epicotyls by differential screening. Northern blot analysis revealed that the 

expression of S64 was strongly induced by treatment with a suppressor and inoculation of a 

compatible pathogen of pea. Further, the deduced amino acid sequence indicates that S64 
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potentially encodes 12-oxophytodienoic acid reductase (OPR), which leads to the biosynthesis of 

jasmonic acid (JA) or related compounds, and that S64 recombinant protein produced in 

Escherichia coli possesses NADPH-dependent reductase activity for 2-CyHE and a racemic 

mixture of 12-oxophytodienoic acid (OPDA) (Ishiga et al. 2002). In Arabidopsis thaliana, there are 

three OPR genes, AtOPR1, 2 and 3. AtOPR1 and AtOPR2 were reported to be induced by 

wounding (Biesgen and Weiler 1999), and their protein products do not catalyze the reduction of 

cis(+)-OPDA, a precursor of JA (Schaller et al. 2000). On the other hand, AtOPR3 catalyzes the 

reduction of cis(+)-OPDA to 3-oxo-2-(2(Z’)-petenyl)-cyclopentane-1 octanoic acid (OPC 8: 0) 

(Schaller et al. 2000). Therefore, AtOPR3 regulates the JA biosynthetic pathway. JA is widely 

distributed in plants and affects a variety of processes, including fruit ripening, production of viable 

pollen, root growth, tendril coiling, plant responses to wounding and abiotic stresses and defenses 

against insects and pathogens (Creelman and Mullet 1997). DNA macroarray analysis revealed 

that the expression of all three AtOPRs was induced by methyl jasmonic acid (MeJA) (Sasaki et al. 

2001). Thus, JA biosynthesis seems to be regulated by JA itself. The OPR gene family is also 

known in tomato, where it consists of at least three members, LeOPR1, 2 and 3. Among them only 

LeOPR3 participates directly in jasmonic acid biosynthesis (Straßner et al. 2002). LeOPR3 and 

AtOPR3 are shown to localize in peroxisome, while other OPRs are cytosolic enzymes (Straßner et 

al. 2002). Thus the role of LeOPR1, which is most closely related to AtOPR1, in the octadecanoid 

pathway is also still unclear (Straßner et al. 1999, 2002). Very recently, the OPR gene was also 

isolated from a monocot plant, rice, and designated OsOPR1. Like AtOPR1, OsOPR1 
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preferentially reduced cis(-)-OPDA but not cis(+)-OPDA (Sobajima et al. 2003). The authors 

classified plant OPRs into two subgroups in terms of specificity against stereoisomers of 

cis-OPDA; subgroup I consists of AtOPR1, AtOPR2, LeOPR1 and OsOPR1, and subgroup II, 

AtOPR3 and LeOPR3 (Sobajima et al. 2003). Only OPRs belonging to subgroup II catalyze 

cis(+)-OPDA, a precursor of JA, and are involved in JA biosynthesis, while subgroup I is not 

involved in JA biosynthesis, and its role is still obscure. The non-host-specific phytotoxin 

coronatine is produced by several pathovars of Pseudomonas syringae and induces leaf chlorosis, 

the production of ethylene and several proteins, e.g., proteinase inhibitors, and inhibits root growth 

(Bender et al. 1999). Coronatine has been shown to be an essential factor in the early stages of 

Arabidopsis infection and presumably acts by suppressing defense-related genes (Mittal and Davis 

1995). On the other hand, coronatine seems to mimic several effects of octadecanoids like JA in 

plants and is thought to be an octadecanoid analog mediating and inducing defense reactions 

(Weiler et al. 1994). Therefore, the effect of coronatine on the expression of OPR-like genes was 

examined. 

In this paper, we present the analysis of the OPR-like gene family in pea. Five members of 

the OPR-like gene family and six cDNA clones including S64 were isolated from a pea genomic 

DNA library and cDNA library, respectively. To investigate the member-specific expression of 

OPR-like genes in response to biological, physiological and physical stresses, RT-PCR was used 

with member-specific PCR primers. We further measured the oxidoreductase activity of each 

OPR-like recombinant protein. From these structural and functional analyses, we discuss the 
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functional relevance and molecular evolution of the OPR-like gene family in pea.  

 

Material and methods 

Plant materials and fungal inoculation 

Pea (Pisum sativum L. cv. Midoriusui) was grown in darkness as described (Yamada et al. 1989), 

and etiolated epicotyls were cut longitudinally and treated with chemicals or water, elicitor and/or 

suppressor prior to the RNA extraction. For the inoculation and dehydration experiments, pea 

plants were grown in the growth chamber with a 16 h photoperiod for one month. Leaves that had 

been detached at the petiole and preincubated in water for 6 h were inoculated with a virulent 

pathogen, Mycosphaerella pinodes, or a nonpathogen, Ascochyta rabiei, at a concentration of 

250,000 spores/ml, or placed at room temperature without any water for the dehydration 

experiments. At each sampling, leaves were collected and frozen in liquid nitrogen for the RNA 

extraction.  

 

Preparation of elicitor and suppressor 

Elicitor and suppressor were prepared from pycnospore germination fluid of M. pinodes as 

described (Yamada et al. 1989) and used at the final concentrations of 500 µg/ml 

glucose-equivalent and 200 µg/ml BSA-equivalent, respectively. 
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Chemicals 

Commercially available OPDA and MeJA were purchased from Cayman Chemical Company 

(Ann Arbor, MI, USA) and Wako (Tokyo, Japan), respectively. Coronatine was chemically 

synthesized as described previously (Nara et al. 1997). We analyzed the effects of chemicals on 

OPR-like gene expression in pea epicotyls. A CyHE was purchased from Sigma (Tokyo, Japan) 

and used for model substrate of recombinant proteins.  

 

Cloning of OPR-like genes and corresponding cDNA clones 

The OPR-like genes were isolated from a Lambda DASH II (Stratagene, La Jolla, CA, 

USA)-based genomic library of Pisum sativum L. cv. Alaska. For the screening of genomic phage 

clones possessing OPR-like genes, we used a digoxigenin (DIG)-labeled DNA probe 

corresponding to the S64 (PsOPR2) cDNA synthesized with DIG PCR Labeling Mix (Boehringer 

Mannheim, Mannheim, Germany). The plaque DNA was hybridized at 42˚C overnight in 0.75 M 

NaCl, 75 mM sodium citrate, 50% (v/v) formamide, 0.02% (w/v) SDS, 2% (w/v) blocking reagent 

(Boehringer) and 0.1% (w/v) lauroylsarcosine, then finally washed at 65˚C in 75 mM NaCl, 7.5 

mM sodium citrate, 0.1% (w/v) SDS. The hybridized phage clones were further digested with 

appropriate restriction enzymes and subcloned into plasmid vectors, pBluescript II SK – 

(Stratagene) or pGEM 3Zf(+) (Promega, Madison, WI, USA). 

To isolate cDNA clones corresponding to OPR-like genomic clones, we screened a 

cDNA library constructed from suppressor-treated pea epicotyls (Ishiga et al. 2002) by PCR. 
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Corresponding cDNA clones were also isolated by the RT-PCR method using total RNA prepared 

from pea epicotyls treated with 100 mM jasmonic acid or 12-OPDA for 3 h. PCR conditions are 

described in Table 1. After isolation of the candidates for OPR-like cDNAs, DNA sequencing was 

carried out to confirm the cloning. After DNA cloning of PCR products, all nucleotide sequences 

were verified no mutations. 

 

DNA sequencing and homology search 

The nucleotide sequences were determined by the dideoxy chain termination method with an 

ABI310 sequencer (PE Applied Biosystems, Chiba, Japan). Homologies at the DNA and deduced 

amino acid sequence levels were analyzed with the Blast search protocol on the Internet 

(http://www.blast.genome.ad.jp). 

 

RNA extraction and semi-quantitative RT-PCR analysis 

Total RNA from pea epicotyls or leaves was extracted by a single-step method (Chomczynski and 

Sacchi 1987) with slight modification. One microgram of total RNA was reverse-transcribed by 

AMV reverse transcriptase (Takara, Kyoto, Japan) using the poly dT20 primer. To detect 

member-specific transcripts and whole transcripts for OPR-like gene expression, specific and 

consensus (common sequence among the OPR-like gene family) PCR primers were designed, 

respectively. The primer sequences and amplification conditions for each OPR-like gene are 

indicated in Table 2. PCR amplification was performed with AmpliTaq Gold (Roche Diagnostics, 
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Tokyo, Japan) except for PsOPR2. The amplification for PsOPR2 was carried out with SuperTaq 

(Sawady, Tokyo, Japan). For semi-quantitative PCR amplification, 1 µl of first-strand cDNA was 

used as the template for PCR. To avoid saturation of the PCR product, we repeated relatively fewer 

PCR cycles (20-23 cycles); 10 µl of PCR product was subjected to agarose gel electrophoresis. 

Amplified PCR products were visualized by staining with ethidium bromide or detected by 

Southern blot hybridization using a DIG-labeled S64 cDNA probe.  

 

Expression and purification of OPR-like recombinant isozymes 

The region for the open reading frame (ORF) of OPR-like cDNAs was amplified by PCR with an 

NdeI site-linked 5' primer and a BamHI site-linked 3' primer, as shown in Table 1, using respective 

cDNAs as templates. After cleavage of the amplified DNA fragment with NdeI and BamHI, the 

ORF region was inserted into a pET expression vector 16b (Novagen, Madison, WI, USA) at the 

same restriction sites. The resultant plasmid was introduced into bacterial host strain BL21 (DE3) 

or BL21 (DE3) plysS, and recombinant OPR-like proteins with a His-tag sequence were produced. 

After 3 h exposure to isopropyl thio-b-D-galactoside at a final concentration of 1.0 mM at 37˚C, 

bacterial cells were harvested, then solubilized with 3 ml of B-PER® Reagent (Pierce, Rockford, IL, 

USA). After centrifugation for 10 min at 10,000 rpm, the supernatant was collected, then the 

recombinant protein was purified using MagExtractorTM (TOYOBO, Tokyo, Japan) as described 

in the manufacturer's specifications.  
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Measurement of NADPH-dependent oxidoreductase activity 

Enzymatic activity of OPR-like recombinant proteins to reduce 2-CyHE was determined 

spectrophotometrically by monitoring the reduction of absorbance at 366 nm concomitant with the 

disappearance of NADPH (�366nm=3.3 mM-1 cm-1). The reaction was carried out at 25˚C in a 100 

µl reaction mixture consisting of 50 mM potassium-phosphate buffer (pH 7.5), 0.4 mM NADPH, 

0.4 mM substrate and 5 µg OPR-like recombinant protein.  

 

Results 

Isolation and structural analysis of genomic DNA for OPR-like genes in pea  

By screening the pea genomic DNA library with DIG-labeled S64 cDNA (Ishiga et al. 2002) as a 

probe, we obtained four independent positive clones (clones 6, 10-6, 6-2 and 4-10), as shown in Fig. 

1A. Restriction mapping and southern blot hybridization revealed the location and orientation of 

each OPR-like gene in four phage clones. To identify the OPR-like gene structure, DNA fragments 

that hybridized to the S64 cDNA probe were further subcloned into plasmid vectors, and nucleotide 

sequences were determined. Sequence analysis revealed that pea contains at least five OPR-like 

genes, designated PsOPR1 to 5, and that S64 cDNA corresponds to PsOPR2. In phage clone 6-2, 

two OPR-like genes, PsOPR3 and 4, are organized with a tandem repeat in a cluster; however, 

PsOPR4 lacks the 3’-part of the gene. Regions homologous to the S64 sequence in each OPR-like 

gene are separated into three to four portions that constitute exons as shown in Fig. 1B. Thus the 

five OPR-like genes could be classified into two groups: the first group (PsOPR1 and 2) possesses 
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three exons, and the other group (PsOPR3 and 5) possesses four exons. The first intron of both 

groups occurred at the same position, but the positions of other introns varied in each group. 

Although we did not isolate the entire region of PsOPR4, we expect that PsOPR4 probably 

belongs to the first group due to its extremely high sequence similarity to PsOPR1 (98.3% at the 

DNA level).  

To clarify gene expression and enzymatic characterization of recombinant proteins from 

OPR-like genes isolated from the genomic library, we isolated the corresponding cDNA clones for 

PsOPR1, 3, 4 and 5 with their specific primers by PCR. Using the sequence information obtained 

from OPR-like genomic clones, we designed primers for RT-PCR to clone directly into the 

expression vector, pET16b (Novagen), with a Topo TA Cloning Kit (Stratagene) as shown in 

Table 1. We first used a cDNA library constructed from suppressor-treated pea epicotyls (Ishiga et 

al., 2002) as a template DNA, then isolated corresponding full-sized cDNAs for PsOPR1, PsOPR4 

and the novel OPR-like cDNA PsOPR6, but not for PsOPR3 and PsOPR5. These two cDNA 

clones were isolated by the RT-PCR method using total RNAs prepared from pea epicotyls treated 

with 100 mM jasmonic acid for 3 h and PsOPR3- and PsOPR5-specific primers.  

To obtain maximal identities, we aligned the deduced amino acid sequences of 

PsOPR1-6 as shown in Fig. 2A. The amino acids of OPR-like proteins vary from 362 to 371 

amino acids in length; PsOPR2 is the longest polypeptide, with a 9-amino-acid extension at the 

C-terminus. All the OPR-like genes are highly homologous to each other with more than 80% and 

85% identities at the nucleotide and amino acid sequence level, respectively. Among the six 
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OPR-like genes, PsOPR1, 4 and 6 are the most similar to each other with more than 95% identity 

at both nucleotide and amino acid sequence levels. In Table 3, we summarized the percent 

sequence similarities of six members of OPR-like gene family at the nucleotide and amino acid 

sequence levels.  

OPR is a flavin mononucleotide (FMN)-dependent oxidoreductase in plants that 

belongs to the family of old yellow enzyme. Recently, the FMN binding site and the 

substrate-binding site of tomato LeOPR1 were investigated by X-ray analyses (Breithaupt et al. 

2001). We found that all pea OPR-like proteins conserve putative FMN- and substrate-binding 

sites (Fig. 2A). As shown in Fig. 2B, the phylogenetic tree based on the amino acid sequences of 

pea OPR-like proteins and other plant OPRs revealed that all pea OPR-like proteins isolated are 

clustered with the OPR subgroup I, which includes AtOPR1 and AtOPR2 of A. thaliana (Biesgen 

and Weiler 1999), LeOPR1 and LeOPR2 of tomato (Straßner et al. 1999) and OsOPR1 of rice 

(Sobajima et al. 2003) and which are not involved in jasmonic acid biosynthesis. Thus, all pea 

OPR-like proteins constitute an independent cluster apart from the OPR subgroup II enzymes 

involved in the jasmonic acid biosynthesis, like Arabidopsis AtOPR3. AtOPR3 is reported to locate 

in peroxisome, while AtOPR1 and AtOPR2 are thought to be cytosolic enzymes (Straßner et al. 

2002). The computer prediction for protein localization showed that six PsOPRs are cytosolic 

enzymes by PSORT program (http:// psort.nibb.ac.jp/, data not shown).  

Further, promoter sequences of PsOPR1 and PsOPR4 showed high sequence 

similarity(92.6%) for about 800 bp of the upstream region (data not shown). However, the other 
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promoter sequences do not have significant sequence similarity to each other. Recently, two 

cis-regulatory elements, JASE1 (CGTCAATGAA) and JASE2 (CATACGTCGTCAA), in the 

promoter of Arabidopsis AtOPR1 gene were reported. These cis-elements were thought to be 

involved in the regulation by senescence and JA (He and Gan 2001). We also found the JASE1 

element in the promoter of PsOPR1 and some potential cis-elements in all PsOPR-like genes (data 

not shown). However, the significance of these sequences is not clear at present. 

 

OPR expression in response to fungal inoculation 

To analyze each OPR-specific expression in response to various stimuli, we performed 

semi-quantitative RT-PCR. As the first step, we designed a set of specific primers for each 

OPR-like gene, as shown in Table 2 and Fig. 3A, and examined specific PCR amplifications in the 

presence of all members of OPR-like cDNAs as templates (Fig. 3B). Using the suitable conditions 

for semi-quantitative RT-PCR obtained, we first analyzed the expression of OPR-like genes in 

response to fungal inoculation (Fig. 4). Large amounts of OPR-like transcripts amplified with 

consensus primers were detected when inoculated with a pea pathogen, M. pinodes, whereas they 

were not detected in non-treated control leaves (Fig. 4, C2), and only slightly detected in the leaves 

that were treated with water or inoculated with a pea non-pathogen, A. rabiei. Member-specific 

RT-PCR for each OPR-like gene revealed that PsOPR2 is a major transcript induced by the 

inoculation of M. pinodes. The expression of PsOPR4 is also slightly induced by the inoculation of 

M. pinodes, but not by that of A. rabiei.  
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OPR expression in response to physical and chemical treatments 

Because Northern blot analysis revealed that the expression of S64 (PsOPR2) in pea leaves was 

induced by detachment and dehydration treatments (Ishiga et al. 2002), we investigated the 

expression of each OPR-like gene under these conditions. As shown in Fig. 4, detachment and 

dehydration induced OPR-like gene expression (see PsOPR consensus) in pea leaves, as we 

previously observed. Further member-specific RT-PCR revealed that PsOPR2 is the strongest 

transcript among OPR-like genes in the above conditions. Further, the expression of PsOPR1, 3 

and 4 were weakly and PsOPR6 was slightly induced by these physical stimuli. However, no 

OPR-like genes were detectable in the intact pea leaves (Fig. 4A, C1). 

The analysis of OPR-like gene expression in etiolated pea epicotyls revealed that the 

OPR-like gene was induced by treatment with the M. pinodes suppressor, but the induction was not 

inhibited by concomitant application of the elicitor (Ishiga et al. 2002). As shown in Fig. 5B, the 

semi-quantitative analysis indicates that the suppressor strongly induced the expression of PsOPR2 

and 4. The suppressor also weakly induced the expression of PsOPR1 and 6. Further, the elicitor 

did not interfere with the suppressor-induced expression of PsOPR1, 2 and 6. PsOPR2-transcripts 

were significantly detected in water- and elicitor-treated pea epicotyls; the level corresponds to the 

weak signal detected in Northern blot hybridization (Ishiga et al. 2002).  

OPR-like gene expression was induced by treatment with not only the M. 

pinodes-suppressor, but also by methyl jasmonate and 12-OPDA (Ishiga et al. 2002). Therefore, 
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we investigated each OPR gene expression by semi-quantitative RT-PCR (Fig. 5A). Consequently, 

MeJA induced PsOPR2 expression, and 12-OPDA did also but only weakly. In this study, we also 

examined the effect of the phytotoxin coronatine, a mimic of jasmonic acid produced by some 

phytopathogenic bacterial pathovars of Pseudomonas syringae. Coronatine strongly induced the 

expression of PsOPR1, 2 and 4, and weakly induced PsOPR3 and 6. These semi-quantitative 

analyses revealed that PsOPR2 is the most common OPR-like transcript and that PsOPR5 was 

little expressed under the conditions examined.  

 

Production of recombinant OPR-like proteins and their NADPH-dependent oxidoreductase activity 

To investigate the NADPH-dependent oxidoreductase activity of pea OPR-like proteins, we first 

produced their recombinant proteins using an expression system in E. coli. As shown in Fig. 6A, 

we successfully produced each recombinant protein, and the purity of the proteins was confirmed 

by major single bands in SDS-PAGE (Fig. 6A). NADPH-dependent oxidoreductase activity was 

investigated by the consumption of NADPH using CyHE (Fig. 6B) as a model substrate. Fig. 6C 

shows that recombinant PsOPR2 has the strongest reductase activity, and recombinant PsOPR1, 4 

and 6 show similarly strong reductase activity. However, recombinant PsOPR3 shows only weak 

activity, while PsOPR5 shows no activity.  
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Discussion 

In this study, we investigated the OPR-like gene family in pea. Genomic and cDNA clonings 

revealed promoter sequence, exon/intron organization and deduced amino acid sequence 

similarities in pea OPR-like genes (Figs. 1, 2 and Table 3). According to their homologies, all 

OPR-like genes isolated belong to OPR subgroup I, which is not involved in JA biosynthesis, (Fig. 

2B). We screened the genomic clones to isolate those possessing the OPR gene using S64 

(PsOPR2) cDNA as a probe under highly stringent hybridization condition. This should be the 

reason we isolated only OPR subgroup I, because in A. thaliana, the DNA sequence homology 

between OPR subgroup I and OPR subgroup II was as low as 54%. Thus pea OPR-like gene 

family (OPR group I) comprises at least six members, indicating that pea OPR-like genes are more 

complicated comparing to Arabidopsis and tomato. The significance of the complexity of the genes 

is not clear at present. It should be clarified whether complicated existence of OPR-like genes in 

pea relate to the specific function of leguminous plants, like a symbiotic relationship with root 

nodule bacteria.  

The number and position of the introns in the three AtOPR genes varied; the position of 

intron “B” is conserved in all AtOPRs, whereas intron “A” is conserved in AtOPR2 and 3. 

However, intron “C” is unique to AtOPR3, and intron “E” is conserved in AtOPR1 and 2. Thus, the 

organization of introns in the three AtOPRs is different. In the case of pea OPR-like genes, introns 

“A” and “D” are conserved in all PsOPRs, but only PsOPR3 and 5 possess intron “E”. Thus, the 

organization of introns in any PsOPR is not the same as in AtOPR. Although the deduced amino 
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acid sequences of PsOPRs showed high homology to each other, the varied structure of their 

introns indicates the differential molecular evolution of PsOPR genes. Further, the different 

patterns of OPR introns in pea and A. thaliana suggest that some introns might have appeared after 

differentiation of the leguminous and cruciferous families in plant evolution.  

Analysis of member-specific expression of PsOPR genes suggested that PsOPR2 is 

most and PsOPR4 is the second important OPR-like proteins in pea under the conditions analyzed. 

PsOPR2 is the most strongly and PsOPR4 is also induced by the inoculation of a compatible 

pathogen of pea and suppressor treatment. PsOPR2 and PsOPR4 are also induced by the 

coronatine treatment and PsOPR2 is strongly induced by two different physical stresses, 

detachment and dehydration (Figs. 4 and 5). Further recombinant PsOPR1, 4 and 6 showed a 

strong and PsOPR2 showed a most remarkable ability to reduce CyHE (Fig. 7). We did not detect 

any signals of the PsOPR5 transcript by RT-PCR or oxidoreductase activities of the recombinant 

PsOPR5 protein under the conditions studied, indicating that PsOPR5 might be a silenced 

pseudogene. However, PsOPR5 conserves the amino acids required for the oxidoreductase of 

flavoproteins (Fig. 2A). We observed that recombinant protein of PsOPR3 also showed little 

activity to reduce CyHE (Fig. 6C). The amino acid residues in PsOPR3 and 5 that differ from any 

residues of PsOPR1, 2, 4 and 6, including the N-terminal extension, might be a cause of the 

remarkable reduction of the enzymatic activity. Alternatively, PsOPR5 might require NADH 

and/or reduce other substrates under specified conditions.  

The substrate for OPR subgroup I in plants is still unknown. Because PsOPR2 was the 
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most strongly and PsOPR4 is also induced by suppressor-treatment and inoculation with a virulent 

pathogen (Figs. 4 and 5), the gene products of PsOPR2 and PsOPR4 might contribute to the 

establishment of compatibility. In this respect, it is very interesting that a fatty acid containing the 

a, b-unsaturated carbonyl group powerfully induced the expression of the wide range of genes 

involved in defense, oxidative burst including glutathione-S-transferase and various other 

signaling/stress responses (Vollenweider et al. 2000; Alméras et al. 2003). PsOPR2 has strong and 

PsOPR1, 4 and 6 have moderate activity to reduce CyHE, a model substrate of a, b-unsaturated 

carbonyl compounds. Vollenweider et al. (2000) also reported that linoleic acid 9- and 

13-ketodienes (KODEs) remarkably accumulate due to the inoculation of an avirulent strain of P. 

syringae pv. tomato; while the accumulation of these compounds was significantly lower in 

virulent bacteria-inoculated leaves in A. thaliana. These results indicate that KODEs biosynthesis 

was not strongly stimulated by the inoculation of virulent bacteria; otherwise, KODEs were 

effectively catalyzed by flavoproteins such as OPR subgroup I enzymes. CyHE is also reported to 

induce heat shock protein 70 with antiviral activity in mammalian cells (Rossi et al. 1996). Thus, 

the a, b-unsaturated carbonyl reactivity feature seems to be the key structure triggering the defense 

response in both animals and plants. Further investigation should be required.  

Old yellow enzyme was initially isolated from brewer’s bottom yeast and was shown to 

possess FMN as cofactor. Now proteins similar to those of old yellow enzyme have been 

discovered not only in fungal and plant species but also in bacterial species (French and Bruce 

1995; Rohde et al. 1999). P. syrignae pv. glycinea expresses Ncr (NAD(P)H-dependent 
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2-cyclohexen-1-one reductase) at low temperatures, during which the bacteria exhibit high 

virulence. Ncr also belongs to the flavoprotein family and possesses CyHE reductase activity 

(Rohde et al. 1999). At present, a number of genes encoding flavoproteins have been discovered in 

animal and plant pathogenic bacteria by genome sequencing projects. To investigate the potential 

correlation of the virulence of putative bacterial flavoproteins, mutational analyses of OYE are 

required. Further, the transcriptional regulation of PsOPR2 and PsOPR4 should also be 

investigated. We are now producing transgenic plants carrying the PsOPR2 promoter with a 

reporter gene to clarify the signal transduction pathway leading to the activation of PsOPR2 gene 

expression in response to invasion of virulent pathogens and environmental stimuli. 
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Figure legends 

Fig. 1 Structure of the OPR genomic clones.  (A) Physical map of phage clones possessing 

OPR-like genes. The horizontal lines indicate genomic DNA in the phage clone, and the thick 

arrows indicate the position and direction of OPR-like genes. Some restriction sites used to 

subclone the DNA fragments into plasmid vectors are shown (S, SacI; E, EcoRI; H, HindIII). 

PsOPR3 and PsOPR4 were included in phage clone No. 6-2. (B) Schematic comparison of 

exon/intron organization in PsOPR and AtOPR genes. Positions of introns in OPR-like proteins are 

indicated as vertical lines for five members of putative OPR-like genes in pea (PsOPR1-5) and 

three OPR members of A. thaliana (AtOPR1-3), and conserved positions were designated A to E 

as indicated. The downstream region from the second intron in PsOPR4 was not isolated.  

 

Fig. 2 Alignment and phylogenetic analysis of deduced amino acid sequences of OPR-like proteins.  

(A) Alignment of the deduced amino acid sequences for PsOPR1-6. The deduced amino acid 

sequences are aligned and numbered from the putative N-terminal methionine. In the lines of 

PsOPR1 and PsOPR3-6, only amino acids that differ from the sequence of PsOPR2 are indicated. 

Dots and asterisks indicate identity to the PsOPR2 sequence and positions that are identical in all 

six putative OPR-like polypeptides, respectively. Amino acids shaded in black and grey correspond 

to residues in LeOPR1 that contribute to the bindings to NADPH and FMN, respectively. (B) 

Phylogenetic tree based on the amino acid sequences of pea OPR-like proteins and their 

homologous proteins. The phylogenetic tree was constructed using the UPGMA program of 
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Genetyx-Mac (Software Development, Tokyo, Japan). The names of proteins are indicated at the 

right of the tree with the accession number in parentheses.  

 

Fig. 3 Member-specific amplification of PsOPR by PCR. (A) PCR strategy for the 

member-specific amplification of OPR-like genes. Horizontal bars indicate cDNA sequences, and 

their sizes are shown on the right. The arrows and gray boxes indicate the positions of the 

member-specific PCR primers and amplified DNA fragments, respectively. “PsOPRs consensus” 

indicates the consensus primers that can amplify all six members of PsOPRs. (B) Member-specific 

amplification of PsOPRs. Ten nanograms of each cDNA plasmid was used as a template for PCR. 

Primer sequences and PCR conditions are described in Table 2. A one-tenth volume of the PCR 

product was subjected to 0.7% agarose gel electrophoresis and visualized by ethidium bromide 

staining. The sizes of amplified DNA fragments are indicated in the right. 

 

Fig. 4 RT-PCR analysis of OPR-like genes expression in pea leaves. Responses of PsOPR genes 

to physical stresses (A) and fungal inoculations (B) were analyzed. Intact leaves were cut from 

one-month-old pea plants at the petiole and immediately frozen in liquid nitrogen (C1), or 

preincubated for 3 h (dt) and 6 h (C2) with water supply. Alternatively, detached leaves were 

preincubated for 6 h with water supply, then held for 3 h at room temperature without any water 

supply (dh). In the inoculation experiment, preincubated leaves for 6 h after detachment were 

inoculated with a pea pathogen, M. pinodes (Mp), a nonpathogen, A. rabiei 21 (Ar) or treated with 
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water (W) for 9 h. PCR cycles were repeated 23 times in (A) and 20 times in (B). Each total RNA 

used in RT-PCR was independently isolated and its quality was verified by staining with an 

ethidium bromide. Although the degree of staining was different in each RNA, the bands for rRNA 

were clearly observed.  

 

Fig. 5 RT-PCR analysis of OPR-like genes expression in pea epicotyls. Responses of PsOPR 

genes to treatment with chemical compounds and fungal signal molecules were analyzed. Etiolated 

pea epicotyls (C) were cut longitudinally and treated with water (W), elicitor (E), suppressor (S) or 

elicitor and suppressor (E+S) for 3 h. Alternatively, pea epicotyls were treated with 100 µM MeJA 

(J), a racemic mixture of 12-OPDA (O) or coronatine (Co) for 3 h. PCR cycles were repeated 23 

times. Each total RNA used in RT-PCR was independently isolated and its quality was verified by 

staining with an ethidium bromide. Although the degree of staining was different in each RNA, the 

bands for rRNA were clearly observed.  

 

Fig. 6 Purification and NADPH-dependent reductase activity of PsOPRs. (A) SDS-PAGE analysis 

of purified recombinant PsOPRs. ''M'' indicates the positions of size marker proteins. Purified 

OPR-like proteins (1.1 mg, PsOPR1 to 6) were electrophoresed into lanes 1 to 6. (B) Structure of 

2-cyclohexen-1-one, which was tested as a potential substrate of OPR-like proteins. (C) 

NADPH-dependent oxidoreductase activity of each OPR protein. NADPH-dependent 

oxidoreductase activity was measured by the consumption of NADPH with the potential substrate 
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CyHE.  

 

Fig. 7 Molecular relevance between structure, expression and enzymatic activity. Expression 

profiles and enzymatic activity were summarized with a phylogenetic tree based on the amino acid 

sequences of six members of PsOPR. The level of expression of individual members of the PsOPR 

gene family in response to environmental stimuli and enzymatic reduction with CyHE as a 

substrate is indicated by plus signs.  

 



Table 1 PCR  primers used for isolation and connection of OPR cDNAs into pET16b vector

GGAATTCCATATGGGTATCAAAAAAGTTGA
CCGCTCGAGTCAGTCGAGAAATGGGTAGT

PsOPR5 pET5’
PsOPR5 pET3’

GGAATTCCATATGAATCTCAATACGGATGC
CGGGATCCTCATTCAAGAAAAGGATAGT

PsOPR3 pET5’
PsOPR3 pET3’

GGAATTCCATATGATGGGTGCTCCAATTGCCAA
CGGGATCCTCAAGCCTTGGATTCAACCG

PsOPR2 pET5’
PsOPR2 pET3’

GGAATTCCATATGGGTGCTACCACTACTGA
GTAATACGACTCACTATAGGGC

PsOPR146 pET5’
T7 primer

Primer sequence (5'-3')  Specific primersGene

PsOPR5

PsOPR3

PsOPR2

PsOPR1, 4 and 6

Matsui et al.
Table 1

Underlined sequences CATATG, GGATCC and CTCGAG are restriction sites for NdeI, BamHI 
and XhoI, respectively.



Table 2 Member specific  primers for OPR genes and conditions used in semi-quantative RT-
PCR analysis

ACAAGTGGAGGCATGGAAAC
ATTGGGATTGGAGTCTCCAC

GGAATTCCATATGGGTGCTACCACTACTGA
GTTCCACCCTTGGATGCTAG

CATGCTAAAGGCGGTGTCAT
GTGAGGACTATTATCAACCA

PsOPR cons 5’sp
PsOPR cons 3’sp

PsOPR6 5’sp
PsOPR6 3’sp

PsOPR5 5’sp
PsOPR5 3’sp

ACCAAGACGACTAAGGACAG
TCTTATTTAAGTGGCCAACT

TACGGATGCGGCTCTTACCA
TCAACTGGATCAAAGGTATG

PsOPR1,4&6 5’sp
PsOPR4 3’sp

PsOPR3 5’sp
PsOPR3 3’sp

CTGATACAGACCTTTGATCC
TCAACCGGTGTTTCATCGTT

PsOPR2 cRT5’
PsOPR2 cRT3’

ACCAAGACGACTAAGGACAG
AGAGAAGATTGAGAGGAATC

PsOPR1,4&6 5’sp
PsOPR1 3’sp

Primer sequence (5'-3')Specific primersGene

PsOPR Consensus

PsOPR6

PsOPR5

PsOPR4

PsOPR3

PsOPR2

PsOPR1

Matsui et al.
Table 2

PCR was carried out under the following conditions: one cycle of 10 min at 95˚C, 30 cycles 
of 30 s at 95˚C, 30 s at respective annealing temperature (PsOPR1, 60˚C; PsOPR2, 55˚C; PsOPR3,4 
and 5, 56˚C; PsOPR6,62˚C; PsOPR consensus, 48˚C), 1 min (PsOPR1, 3, 4, 5, and PsOPR consensus), 
30 s (PsOPR2) or 1.5 min (PsOPR6) at 72˚C.
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Table 3 Percentage homology of pea OPR genes between each othera

85.795.991.490.496.1

85.485.285.285.6

89.193.498.0 79.9

81.5

95.6

89.783.187.591.190.3

87.8 90.2 90.9 80.7 90.6

95.380.798.388.390.9

PsOPR6 (AB104742)

PsOPR5 (AB104740)

PsOPR4 (AB104741)

PsOPR3 (AB104739)

PsOPR2 (AB044940)

PsOPR1 (AB104738)

PsOPR6PsOPR5PsOPR4PsOPR3PsOPR2PsOPR1

a The upper part of the matrix shows the percentage homology at the level of the nucletide sequence in th coding region. The 
lower part shows the percentage of identity at the amino acid level based on the alignment in Fig. 2. The accession numbers 
in the DDBJ/GenBank/EMBL databank for the corresponding genes are shown in each parenthesis. 
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PsOPR1        MGATTTDP...L...N..K.K............T...............S......................L.D.......Q.........D.  94
PsOPR2  M----GAPI--ANAIPLITPYKMGNFNLSHRVVMAPLTRMRSYNNVPQPHAILYYAQRASQGGLLIAEATGVSDTAQGYPNTPGIWTKEQVEAWKPIVEA  94
PsOPR3  .NLNTD.ALTTSDP...L...............L...............I..N..........F....................V...D.........D. 100
PsOPR4        MGATTTDSV..L...N..K.K............T...............S......................L.D.......Q.........D.  94
PsOPR5  .GIK-KVEMSA.DP...V...............L.....T...............S..........T...............................D.  99
PsOPR6        MGATTTDSV..V...N..K.K............T...............S........................D.......Q.........D.  94
                       ** *** ** * ****** ***** ********* ** ** ******* ** *********** * *** *** ********* *

PsOPR1  ....GAI..C...........S......A.........................D............................................. 194
PsOPR2  VHAKDSVFFLQIWHVGRVSNSIYQPNGQAPISSTDKAITSNDQQQFTAPRRLRTNEIPNIVNDFKLAARNAIEAGFDGVEIHGAHGYLLDQFMKDKVNDR 194
PsOPR3  ....G....C....A......I......A.......SL...EE...........D...D......I......................V........... 200
PsOPR4  ....GAI..C...........S......A.........................D............................................. 194
PsOPR5  ....GG.IIC...........C......T....S..SL..SHA....P....S.D...D.....R.............I.........IE.....E.... 199
PsOPR6  ....G.I..C...........I......A.......S.................D...D...H..................................... 194
        ****      **** ****** ****** **** **  **   **** **** * *** *** *  ************ *********  ***** ****

PsOPR1  ..............PL......V.....ER..........F...............V.................I.V......-...C............ 293
PsOPR2  TDEYGGSLENRCRFTFEVVEAVANEIGADKVGIRLSPFAEYAESGDSNPNALGLYMANALNKYNILYCHMVEPRLIQTFDPVE-TPHSLEPMRKAFNGTF 293
PsOPR3  ..............ALQ.............L.........................V...................H......-................ 299
PsOPR4  ..............PL......V.....ER..........F.......................I.........I.D......-................ 293
PsOPR5  .......I......AL.....AV.................HS.C...S.KE.....V.......L.........IKSA.EV.DNS...LV.......... 299
PsOPR6  ...............L......V.....ER..........F...............V..........................-................ 293
        ******* ******   ****  *****   *********  * *** *  ***** ******* *********    *  *   ** * **********

PsOPR1  .........................................N...........................                                362
PsOPR2  MVAGGYNRQDGIKAIAENRADLVVYGRWFISNPDLPKRFALDAPLNKYNRETFYSSDPVIGYTDYPFLNDETPVESKA                       371
PsOPR3  ............N..............L.LA.................H..........L.........                                368
PsOPR4  .........................................N..............E............                                362
PsOPR5  I.....D.....N.V...KT.......L.LA.......................T....L........D                                368
PsOPR6  ............N..D...........L.............N.................L.........                                362
         ***** ***** *  **  ******* *  ********** ****** ***** * ** ********          

(A)

(B) AtOPR1 (U92460-1)
AtOPR2 (U92460-2)
LeOPR1 (AJ242551)
PsOPR1 (AB104738)
PsOPR4 (AB104741)
PsOPR6 (AB104742)
PsOPR2 (AB044940)
PsOPR3 (AB104739)
PsOPR5 (AB104740)
CrOYE (AF005237-1)
VuCPRD8 (D83970-1)
OsOPR1 (AB040743)
LeOPR2 (AJ278331)
AtOPR3 (AJ238149)
LeOPR3 (AJ278332)

subgroup 1

subgroup 2
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