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Abstract

Oxidative/nitrosative stress is responsible for a variety of degenerative processes in some hu-
man diseases. Measurement of oxidatively/nitrosatively modified DNA, proteins, lipids, and sug-
ars in biological samples has been expected to detect appropriate biomarkers for diseases in which
reactive oxygen/nitrogen species are involved. Recently, the application of these biomarkers to
epidemiological studies has resulted in a new discipline, molecular epidemiology, which provides
the opportunity for better understanding of their causal relation with disease outcomes in a popu-
lation level. In this brief review, we cover some specific biomarkers of oxidative/nitrosative stress
with regard to the commonly used analytical methods for these biomarkers, their integration with
epidemiology, and their application in antioxidant intervention trials, with an emphasis on those
applicable to human studies and their potentialities for disease prevention.
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eactive oxygen species (ROS) and reactive 
nitrogen species (RNS) are produced as 

by-products of normal metabolic processes in all aero-
bic organisms.  In physiological conditions,  the anti-
oxidant defense systems in the body protect the cells 
and tissues against these species [1].  When the gen-
eration of ROS/RNS exceeds the ability of antioxi-
dant defense systems to remove them,  such an imbal-
ance can cause oxidative/nitrosative damage to cellu-
lar constituents (DNA,  proteins,  lipids,  and sugars),  
which is defi ned as oxidative/nitrosative stress [1,  
2].  Many studies have shown that oxidative/nitrosa-
tive stress is responsible for a variety of the degen-

erative processes of some human diseases [1,  3].  
Since ROS/RNS themselves are very reactive and 
have an extremely short half-life,  direct determina-
tion of them in tissue or body fl uids is generally 
impracticable.  Therefore,  measurement of oxida-
tively/nitrosatively modifi ed DNA,  proteins,  lipids,  
and sugars in biological samples has been expected to 
detect appropriate biomarkers for diseases in which 
ROS/RNS are involved.
　 The National Academy of Sciences in the United 
States defi nes biomarkers as “indicators,  signaling 
events in biological systems or samples” [4].  The 
biomarkers can be used as “intermediate endpoints or 
early-outcome predictors” of disease development for 
preventive purposes [5].  Recently,  there has been a 
great improvement in assay methods and measurement 
accuracy for biomarkers of oxidative/nitrosative 

R

Oxidative/nitrosative stress is responsible for a variety of degenerative processes in some human dis-
eases.  Measurement of oxidatively/nitrosatively modifi ed DNA,  proteins,  lipids,  and sugars in bio-
logical samples has been expected to detect appropriate biomarkers for diseases in which reactive 
oxygen/nitrogen species are involved.  Recently,  the application of these biomarkers to epidemiologi-
cal studies has resulted in a new discipline,  molecular epidemiology,  which provides the opportunity 
for better understanding of their causal relation with disease outcomes in a population level.  In this 
brief review,  we cover some specifi c biomarkers of oxidative/nitrosative stress with regard to the 
commonly used analytical methods for these biomarkers,  their integration with epidemiology,  and 
their application in antioxidant intervention trials,  with an emphasis on those applicable to human 
studies and their potentialities for disease prevention.

Key words: biomarker,  oxidative/nitrosative stress,  molecular epidemiology,  disease prevention

Acta Med.  Okayama,  2007
Vol.  61,  No.  4,  pp.  181ﾝ189

http ://www.lib.okayama-u.ac.jp/www/acta/

CopyrightⒸ 2007 by Okayama University Medical School.

Review

Received October 17, 2006 ; accepted January 16, 2007.
 ＊Corresponding author. Phone : ＋81ﾝ86ﾝ235ﾝ7184 ; Fax : ＋81ﾝ86ﾝ226ﾝ0715
E-mail : kogino＠md.okayama-u.ac.jp (K. Ogino)

1

Ogino and Wang: Biomarkers of oxidative/nitrosative stress: an approach to diseas

Produced by The Berkeley Electronic Press, 2007



stress [6,  7],  and the incorporation of biomarkers 
into epidemiological studies provides a promising fi eld 
for better understanding the role of ROS/RNS in the 
pathogenesis and progression of diseases.  In this brief 
review we cover some specifi c biomarkers of oxida-
tive/nitrosative stress,  with an emphasis on those 
applicable to human studies and their potentialities for 
disease prevention.

Biomarkers of Protein Oxidation/Nitration

　 Protein carbonyls. Protein carbonyl groups 
are generated by direct oxidation of amino acid resi-
dues,  particularly lysine,  arginine,  threonine,  and 
proline (Fig.  1),  or by secondary reaction with the 
primary oxidation products of sugars and lipids [7ﾝ9].  
Such oxidative modifi cations of proteins result in 
important changes in the proteins’ structure and func-
tion.  Several studies have proved that proteins are 
major initial cell targets of ROS,  leading to earlier 
formation of the protein carbonyls in biological sys-
tems [10ﾝ12],  and detection of increased levels of 
protein carbonyls has been proposed as “a sign of 
disease-associated dysfunction” [13].  Patients with 
neurodegenerative illnesses [14],  diabetes and hyper-
cholesterolemia [15],  and children with juvenile 
chronic arthritis [16] were found to have elevated 
levels of total protein carbonyls,  suggesting the 
potentiality of carbonated proteins serving as bio-
markers for early diagnosis of these diseases.
　 Protein carbonyls are widely used and chemically 
stable biomarkers of oxidative stress.  They circulate 
for longer periods in the blood compared to other oxi-
dized products [17],  and the assay sample can be kept 
at －80 °C for at least 10 years [18].  For detection 
of carbonylated proteins in human diseases,  the com-
monly employed methods are spectrophotometric 
2,4-dinitrophenylhydrazine (DNPH) assay,  spectro-
photometric DNPH assay coupled to protein fraction-
ation by HPLC,  and one- or two-dimensional electro-
phoresis and Western blot immunoassay [7,  19].  
However,  these methods cannot identify which amino-
acid residues are oxidatively attacked and which pro-
tein has been modifi ed [1].  Recently,  the proteomics 
technique,  which allows one to identify specifi c car-
bonated proteins in the plasma and hippocampus of 
subjects with Alzheimer’s disease,  has thrown new 
light on this issue [20,  21].  The proteomics tech-

nique mainly consists of two-dimensional gel electro-
phoresis for protein separation and mass spectrometry 
for protein identifi cation; this technique may allow 
researchers to develop a specifi c intervention strategy 
for this disease.
　 Nitration of tyrosine. The 3-nitrotyrosine 
(Fig.  1) generated by nitration of the amino acid tyro-
sine and protein-bound tyrosine is another biomarker 
for studying the in vivo oxidation/nitration of protein 
[22].  There is considerable evidence in the literature 
that elevated levels of 3-nitrotyrosine occur in dis-
eases associated with ROS/RNS.  Mean plasma levels 
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of nitrotyrosine are signifi cantly higher in diabetic 
patients with lower intake of some antioxidant vita-
mins (vitamin A,  C) and positively correlated with 
serum fasting glucose [23],  and are also higher in 
patients with coronary artery disease and modulated 
by statin therapy [24].  Taken together,  these results 
imply that plasma nitrotyrosine measurement in 
humans is possibly a useful tool for monitoring the 
eff ect of antioxidant intervention.  In a controlled 
weight loss trial,  weight reduction was strongly asso-
ciated with a decrease in serum protein 3-nitrotyro-
sine levels in Caucasian women but not in African-
American women [25].
　 The 3-nitrotyrosine in biological samples has been 
detected and quantifi ed by a variety of methods.  
Antibody-based methods {enzyme-linked immunosor-
bent assay (ELISA)} are considered to be semiquanti-
tative because there is no strict assay validation and it 
is diffi  cult to assess the tests’ reliability [7].  HPLC 
with electrochemical detection (ECD),  mass spectrom-
etry-based assays {gas chromatograph-mass spectrom-
etry (GC-MS) and gas chromatograph-tandem mass 
spectrometry (GC-MS/MS),  liquid chromatograph-
mass spectrometry (LC-MS) and liquid chromato-
graph- tandem mass spectrometry (LC-MS/MS)} are 
proposed to have adequate sensitivity for quantifi ca-
tion of 3-nitrotyrosine,  especially the use of MS/MS 
technique can remove interference caused by the coe-
lution of substances in GC-MS [7].  However,  recent 
reviews have raised concerns about the quantifi cation 
of circulating 3-nitrotyrosine in human plasma because 
of the varied plasma levels of both free and protein-
bound 3-nitrotyrosine in healthy subjects in reported 
fi ndings [26,  27].  More eff orts are needed to 
improve the methodology for measurement of 3-nitro-
tyrosine in vivo,  particularly at low concentrations,  
and standardization of nitrotyrosine measurements is 
probably needed to make comparisons possible among 
studies [26,  27].  Shishehbor et al.  found that pro-
tein-bound nitrotyrosine values in plasma determined 
by isotope-dilution LC-tandem MS are reproducibly 
greater than that in serum and are stable over time in 
healthy subjects [24].  In addition,  great care should 
be taken during sample preparation and analysis 
because the artifactual formation of nitrotyrosine dur-
ing sample processing,  especially under acidic condi-
tions,  can confound nitrotyrosine determinations 
[26].

　 The results of several studies have demonstrated 
the successful detection of 3-nitrotyrosine-containing 
proteins in vivo using a qualitative proteomics 
approach [28ﾝ30],  by which a total of 48 and 11 
putative proteins containing nitrotyrosine in heart and 
skeletal muscle of aged rats were identifi ed,  respec-
tively [31,  32],  and 40 nitrotyrosine-immunopositive 
proteins were also identifi ed in both rat tissue extract 
and cell culture infl ammatory disease models [28].  
This promising approach may off er an early diagnostic 
tool for disease by defi ning patterns of abnormal pro-
teins [33].

Biomarkers of DNA Oxidation/Nitration

　 8-hydroxy-2’-deoxyguanosine. Elevated lev-
els of oxidatively modifi ed DNA lesions are considered 
responsible for an increased risk of cancer develop-
ment later in life [34].  The most representative prod-
uct that may refl ect oxidative damage to DNA in the 
cells is 8-hydroxy-2’-deoxyguanosine (8-OHdG) (Fig.  
1),  a product of oxidatively modifi ed DNA base gua-
nine [1].  Elevated levels of 8-OHdG have been found 
in the serum and myocardium of patients with heart 
failure [35] and in the urine of patients with 
Parkinson’s disease [36].  Many methods such as 
HPLC-ECD,  GC-MS,  LC-MS,  and immunoassay 
have been established to measure 8-OHdG in biological 
specimens and are reviewed in detail in several arti-
cles [6,  37,  38].
　 HPLC-ECD is a frequently used method with high 
accuracy and sensitivity,  but the procedures are com-
plex and time-consuming [6].  Measurement of low 
levels of oxidative DNA damage is still an issue for 
GC-MS and HPLC-tandem MS [38].  Isotope-dilution 
LC-tandem MS has been proposed as a highly specifi c 
and sensitive analytical method for urinary 8-OHdG in 
human subjects [39].  Immunohistochemistry is also a 
popular method with good sensitivity and simplicity,  
but it can only semiquantitatively measure 8-OHdG 
[37].  Two commercially available kits are used; the 
one using monoclonal antibody N45.1 is from the Japan 
Institute for the Control of Aging (Fukuroi,  
Shizuoka,  Japan),  and the other using monoclonal 
antibody clone 1F7 is from Trevigen (Gaithersburg,  
MD,  USA) [40].  The 2 showed a strong correlation 
(r＝0.9),  although the latter demonstrated 3 times 
higher urinary values,  in which not only 8-OHdG but 

183Biomarkers of Oxidative/Nitrosative StressAugust 2007

3

Ogino and Wang: Biomarkers of oxidative/nitrosative stress: an approach to diseas

Produced by The Berkeley Electronic Press, 2007



also 8-hydroxyguanosine (8-OHG: analogue of 
8-OHdG derived from RNA) and 8-hydroxyguanine 
(8-OHGua: an oxidatively modifi ed free guanine base) 
were included [40].  None of the available methods for 
measuring 8-OHdG formation can locate the original 
site of oxidative DNA damage [37].
　 The measurement of urinary 8-OHdG has been 
considered to refl ect the whole-body oxidative DNA 
damage [37],  and the correlation coeffi  cient of 
8-OHdG measurements between spot and 24 h urine 
samples is 0.50 (by HPLC) and 0.87 (by ELISA),  
respcetively [41].  The level of urinary 8-OHdG was 
found to be independent of dietary infl uence in humans 
[42],  although that was not the case in rats [43].
　 8-nitroguanine. It is known that RNS such as 
oxides of nitrogen (NOX) and peroxynitrite (ONOOﾝ) 
generated in various pathophysiological conditions can 
nitrate guanine and its related nucleosides and nucleo-
tides in the free form or in DNA/RNA [44].  The 
8-nitroguanine (Fig.  1) is a representative DNA 
nucleobase product of nitrative lesion by RNS.  
Several studies have demonstrated that 8-nitrogua-
nine is not detected in normal tissues but is mostly 
found in the nucleus of infl ammatory cells and/or epi-
thelial cells in infl amed tissues,  indicating that 
8-nitroguanine may serve as a potential biomarker for 
nitrative DNA damage induced by RNS in infl amed 
tissues [45ﾝ47].  Recent fi ndings of 8-nitroguanine at 
the sites of carcinogenesis under various infl ammatory 
conditions in animals and humans imply that the excess 
generation of RNS may be a risk factor for cancer 
development in patients suff ering from infl ammation-
related diseases [46,  48,  49].
　 Several methods have been developed for measure-
ment of 8-nitroguanine in vivo,  such as HPLC with 
electrochemical detection,  HPLC with a UV detector,  
GC-MS,  and immunohistochemistry.  However,  their 
reproducibility and validity have not been well verifi ed 
[37,  44].  Recently,  Sawa et al.  fi rst reported a sen-
sitive method to quantitate 8-nitroguanine in human 
urine using immunoaffi  nity columns with an anti-8-
nitroguanine antibody,  followed by HPLC-ECD [50].  
They found that cigarette smoking is associated with 
elevated urinary levels of 8-nitroguanine.

Biomarkers of Lipid Oxidation

　 Malonaldehyde. Malonaldehyde (MDA) (Fig.  

1) is one of the end products of lipid peroxidation in 
the cell membranes or in low-density lipoproteins 
(LDL) [1].  Levels of MDA are often measured spec-
trophotometrically by the thiobarbituric acid-reacting 
substance (TBARS) assay.  This simple assay is the 
most frequently used method in lipid peroxidation 
research,  but some scientists question its clinical util-
ity.  Because some aldehydes other than MDA can also 
be generated in peroxidizing lipid and have the same 
range of absorbance as MDA,  the TBARS assay can 
be confounded by these chromogens [1].  The HPLC-
based TBARS assay can separate MDA from other 
aldehydes and is suggested as a useful method for 
examining large numbers of biological samples for lipid 
peroxidation [1].  The GC-MS method has been used 
to analyze the end-products of peroxide breakdown 
such as MDA in human plasma [51].  Peroxides and 
aldehydes from food can be absorbed via the gut and 
can aff ect the determination of the MDA,  especially in 
urine [52].
　 The results of a recent three-year longitudinal 
study suggest that serum levels of TBARS (measured 
by reverse-phase HPLC and spectrophotometric 
approaches) are strongly predictive of cardiovascular 
events in patients with stable coronary artery disease,  
independent of some risk factors (age,  low-density 
lipoprotein,  high-density lipoprotein,  total choles-
terol,  triglyceride,  BMI,  and blood pressure) and 
infl ammatory markers (C-reactive protein,  soluble 
intercellular adhesion molecule-1,  interleukin-6) [53].
　 F2-Isoprostanes. F2-Isoprostanes,  especially 
8-iso-PGF2ｸ (Fig.1),  have been proposed as specifi c,  
reliable,  and non-invasive markers of lipid peroxida-
tion in vivo [52,  54].  F2-Isoprostanes are a group of 
bioactive prostaglandin-like compounds generated via 
a non-enzymatic mechanism involving the free radical-
initiated peroxidation of arachidonic acid in vivo,  and 
they can be measured in most of the biological fl uids,  
among which plasma and urine are the most commonly 
used samples.  The short half-life of F2-Isoprostanes in 
plasma limits their practical use,  but this is not the 
case in urine [6].  F2-Isoprostanes can also be 
detected in exhaled breath condensate and induced 
sputum.  The MS techniques (GC-MS,  GC- MS/MS,  
LC-MS,  LC-MS/MS) can accurately and sensitively 
measure F2-Isoprostanes in biological samples [52].  
Immunoassays {ELISA,  radio immuno assays (RIA)} 
are also frequently used techniques to quantify 
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F2-Isoprostanes because of their low cost and ease of 
use,  although there is limited information on their 
precision and accuracy [54].  F2-Isoprostanes are 
stable in isolated samples,  and the samples should be 
stored at －70 °C to prevent artifactual formation of 
isoprostanes products [6].  Unlike MDA,  the levels of 
F2-Isoprostanes are not infl uenced by lipid content in 
the diet [55].
　 F2-Isoprostanes can also be detected in normal 
human biological fl uids and tissues [54].  The 
increased levels of 8-iso-PGF2ｸ in plasma,  tissue,  and 
urine have been found in many human disorders and 
have been suggested to play a causative role in oxida-
tive damage in diseases like cardiovascular disease,  
allergic asthma,  hepatic cirrhosis,  scleroderma,  and 
Alzheimer’s disease [54,  56].

Oxidative Modifi cation of Sugars

　 Advanced glycation end-products (AGEs) are prod-
ucts of non-enzymatic glycation of proteins by reducing 
sugars (the Maillard reaction).  It has been reported 
that AGEs accumulate in plasma and tissues with age,  
diabetes,  renal failure,  and Alzheimer’s disease [1,  
57,  58],  and they have been considered potentially 
useful biomarkers for monitoring glycemic control,  
predicting the risk of diabetes-associated clinical com-
plications,  and monitoring the treatment eff ect of 
diabetic patients with retinopathy,  nephropathy,  and 
neuropathy [57].
　 Carboxymethyllysine (CML) and pentosidine (Fig.  
1) are products of oxidation-accompanied glycation and 
have been regarded as representative biomarkers of 
AGEs [56].  In comparison with healthy subjects,  
serum levels of CML and pentosidine are about 3- and 
10-fold higher in diabetic patients with decreased 
renal function,  respectively [60,  61],  and the serum 
levels of AGEs increase with the severity of glomeru-
lar lesions in patients with diabetic nephropathy [62] 
and with the severity of diabetic retinopathy [63].  
These fi ndings suggest that AGEs may be a clinically 
useful tool for assessing diabetic complications.  A 
recent population-based 18-year follow-up study also 
showed that serum levels of AGEs could predict mor-
tality from cardiovascular disease and coronary heart 
disease in nondiabetic women [64].
　 HPLC,  GC-MS,  ELISA,  and immunohistochem-
istry are commonly used methods for analysis of 

AGEs.  The accuracy and reproducibility of these 
techniques have not been well examined because there 
is no universally established unit of measurement for 
comparing study fi ndings from diff erent laboratories 
[59,  65].  In addition,  confounding factors such as 
food and tobacco smoke can aff ect the level of AGE 
precursors in the body [66,  67].

The Integration of Biomarkers
with Epidemiology

　 Many biomarkers have been developed for the iden-
tifi cation of oxidative/nitrosative damage to DNA,  
proteins,  lipids,  and sugars in biological samples.  
Whether these biomarkers are truly useful in the 
early detection and prevention of diseases requires 
further validation via human fi eld investigations.  
There has been a growth in application of biomarkers 
to epidemiological studies.  Such an integrated 
approach has resulted in a new discipline,  molecular 
epidemiology,  which may provide specifi c information 
concerning the causal relation of biomarkers with dis-
ease outcomes in a population level,  ultimately con-
tributing to the development of strategies for health 
risk assessment and disease prevention [5,  68,  69].
　 In the literature,  a cross-sectional study design has 
been commonly employed to examine the relation 
between biomarkers of oxidative/nitrosative stress and 
diseases.  Cross-sectional studies can be easily and 
rapidly accomplished,  but they can only provide infor-
mation on the association between the biomarkers and 
some diseases.  Whether there are any causal relations 
between biomarkers and the diseases should be exam-
ined by a prospective cohort study [68,  70].  This 
approach is also the optimum epidemiological study 
design for biomarker validation,  through which the 
alteration of biomarker values on the course of dis-
eases and the response of biomarkers to the interven-
tion trials could be directly observed,  although such a 
study will require large numbers of participants,  an 
appropriate follow-up period,  and high cost.  Recently,  
the use of meta-analysis to re-evaluate published data 
from many small clinical studies has been considered 
an effi  cient approach to obtain information on the eff ec-
tiveness of intervention trials [5],  and a checklist 
containing specifi cations for reporting meta-analyses 
of observational studies (cohort,  cross-sectional,  and 
case-control studies,  etc.) in epidemiology has been 

185Biomarkers of Oxidative/Nitrosative StressAugust 2007

5

Ogino and Wang: Biomarkers of oxidative/nitrosative stress: an approach to diseas

Produced by The Berkeley Electronic Press, 2007



proposed [71].

Application of Biomarkers of Oxidative/
Nitrosative Stress to Intervention Trials

　 The ultimate goal of developing ideal biomarkers 
for oxidative/nitrosative damage is to fi nd better tools 
for the prevention of diseases (Fig.  2).  In intervention 
trials,  close monitoring of the alteration of biomarker 
levels in biological samples may provide important 
information on which antioxidants and at what dose(s) 
oxidative/nitrosative damage can be reduced in study 
subjects with the aim of fi nding a safe and reliable 
antioxidant treatment [37,  72].  Many antioxidants 
from natural products are known to be capable of 
decreasing oxidative/nitrosative damage in vitro,  but 
determining whether they will act the same way in vivo 
will require more convincing evidence from animal and 
human studies [72ﾝ74].  Some studies have demon-
strated short-term antioxidant eff ects against oxida-
tively/nitrosatively damaged DNA,  protein,  and lipid 
peroxidation in vivo [41,  74ﾝ76],  but long-term 
eff ects remain to be elucidated.
　 Several antioxidant interventional trials in humans 
have showed controversial results,  such as the eff ects 
of vitamin E on cardiovascular outcomes [77,  78] and 
of beta-carotene and vitamin A on lung cancer [79],  
and the reduction by vitamin C supplementation of 
certain types of oxidative protein damage in subjects 
with low basal antioxidant but not in those with normal 
basal level [75].  Moller et al.  recently have reviewed 

139 cross-sectional and intervention studies regarding 
the eff ect of antioxidants on oxidatively damaged DNA 
and have found that many of the studies were “of 
mediocre value because of problems with design or 
high baseline DNA damage values” [41].  They also 
found it impossible to analyze such studies by a meta-
analysis because of the great diff erences in design,  
biomarkers,  and antioxidant supplementation among 
them.  Clearly,  the protective eff ects of antioxidants 
against human disease still need evidence-based confi r-
mation by well-designed,  randomized,  controlled epi-
demiological studies in various study populations.

Conclusions

　 In the last 2 decades,  there has been great prog-
ress in the development of biomarkers of oxidative/
nitrosative stress that may eventually be useful in 
disease prevention.  The challenges for the future are 
(1) to validate available biomarkers for oxidative/
nitrosative damage in animal and human studies based 
on their specifi city,  stability for storage,  reproduc-
ibility,  causal relation with disease,  and response to 
antioxidant intervention; (2) to examine the basal lev-
els of oxidative/nitrosative damage in healthy 
subjects; and (3) to assess the long-term eff ect of 
antioxidants on oxidative/nitrosative damage by well-
designed,  randomized,  controlled trials in humans and 
as well as to examine the consistency of the fi ndings 
among various studies.  The biomarkers of oxidative/
nitrosative damage,  if validated,  may open the way for 
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the development of early detection and prevention 
strategies for oxidative/nitrosative stress-associated 
human diseases.
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