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Abstract  Background: O6-methylguanine-DNA methyltransferase (MGMT), DNA repair 

enzyme, modulates the effectiveness of alkylating agents.  However, the relationship between 

MGMT and the sensitivities to other agents has not been explored.  Experimental design: In the 

present study, the association between MGMT expression and the cellular sensitivity to the 

platinum agent, CDDP, in 4 human oral cancer cell lines, was examined.  Results: CDDP depleted 

MGMT protein and mRNA levels in all 4 cell lines.  Two cell lines with low MGMT expression 

were sensitive to an alkylating agent, N-methyl-N’-nitro-N-nitrosoguanidine and CDDP, whereas 2 

other cell lines with high MGMT expression were resistant to both agents.  Furthermore, the 

addition of the MGMT inhibitor, O6-benzylguanine (O6-BG), invariably enhanced CDDP 

sensitivity.  Conclusion: CDDP depleted MGMT expression, and CDDP sensitivity was 

enhanced by O6-BG.  These results provide valuable information about the relationship between 

MGMT expression and CDDP sensitivity in oral cancer chemotherapy.  

Keywords: MGMT; CDDP; O6-BG; oral cancer 
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Introduction 

Platinum agents are widely used in cancer chemotherapy, either alone or in combination with 

other antitumor agents, in the treatment of a variety of cancers such as lymphomas and testicular, 

ovarian, lung, and head and neck cancers [1].  Among the platinum agents, 

cis-Diaminedichloroplatinum(II) (CDDP) primarily forms cross-links on DNA that can block 

replication or inhibit transcription [2, 3], which produces cytotoxicity against cancers.  The 

cross-links generated by CDDP on DNA are primarily intrastrand cross-links including 1,2-d(GpG), 

1,2-d(ApG), and 1,3-d(GpNpG), and interstrand cross-links [4].  The intrastrand cross-links are 

thought to be removed by nucleotide excision repair proteins (NERs) [5, 6].  Several studies have 

suggested the existence of a correlation between NER expression and CDDP sensitivity in cancer 

cells.  Furthermore, to improve the clinical response to CDDP, many studies have focused on the 

search for a preferential target or a predictor of CDDP sensitivity.  Recently, it was demonstrated 

that CDDP is capable of abrogating O6-methylguanine-DNA methyltransferase (MGMT) activity 

[7, 8] and that the promoter methylation of MGMT plays a role in achieving a favorable response to 

CDDP [9].   

MGMT is a DNA repair enzyme that rapidly repairs adducts at the O6-position of guanine 

[10-17].  Because MGMT is inactivated after O6-alkylating DNA adducts are restored, MGMT 

activity is likely to be an important marker of the sensitivity to alkylating agents that generate a 

complex spectrum of adducts at the O6-position of guanine similarly may be a predictor or the 

success of chemotherapeutic regimens using such alkylating agents.  A small number of human 

tumor-derived cell lines have little or no methyltransferase activity and are hypersensitive to 

alkylating agents; these are the so-called Mer- or Mex- cell lines [18-21].  The depletion of 

MGMT in tumors has become a therapeutic target for sensitizing cells to O6-alkylating agents [22].  

To deplete MGMT in tumors, attempts have been made to inactivate it by pre-treatment with a 

methylating agent to induce O6-methylguanine [23] or by using specific MGMT inhibitors [24].  

O6-benzylguanine (O6-BG) is one such specific, rationally designed MGMT inhibitor that produces 

suicidal inactivation of MGMT with a restoration of sensitivity to chloroethylators or methylators 

[24-26].  O6-BG has been approved in a phase I trial due to its demonstrated toxicity [27] and is 
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currently being used in combination with O6-alkylguanine-generating drug, 1,3 

bis(2-chloroethyl)-1-nitrosourea, for the treatment of glioblastoma.   

In addition to such alkylating agents, the platinum agent, cis-Diaminedichloroplatinum(II) 

(CDDP) is also capable of inhibiting MGMT activity [7].  Therefore, given that CDDP is more 

widely used than alkylating agents in the clinical setting for the treatment of oral, colon, and other 

solid epithelial tumors, it would clearly be a major step forward in cancer chemotherapy if MGMT 

expression could also enhance the potential effectiveness of CDDP.  In the present study, we 

examined whether or not CDDP could induce the MGMT depletion effect, and we also 

investigated whether MGMT expression status could correlate with the clinical cellular response to 

CDDP in four oral cancer cell lines.   

 

Materials and Methods 

 

Cell lines and culture   

Four human oral cancer cell lines (HSC4, HSC3, SAS and Hep2) were obtained from the 

Cell Resource Center for the Biomedical Research Institute of Development, Aging and Cancer, 

Tohoku University.  All cell lines were maintained in Dulbecco’s modified Eagle’s medium 

(MDEM) (Nissui Pharmaceutical Co. Ltd., Tokyo, Japan) supplemented with 10% fetal bovine 

serum (FBS) (Hyclone Laboratories Inc., UT, USA), 100 units/ml penicillin (Meiji Seika Ltd., 

Tokyo, Japan) and 100 µg/ml streptomycin (Meiji Seika Ltd., Tokyo, Japan) in a CO2 incubator 

(Sanyo Electric Co., Ltd., Osaka, Japan) with in an atmosphere of 95% air plus 5% CO2 at 37℃. 

Table 1 shows the MGMT expression status in the 4 cell lines used in the present study.  

We previously examined MGMT expression status by Western blotting and RT-PCR [28].  Low 

levels of expression of MGMT protein and mRNA were observed in the SAS and Hep2 cells, and 

high levels were observed in the HSC4 and HSC3 cells.   

 

Chemicals 

N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) (Nacalai Tosque, Inc. Kyoto, Japan), 
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CDDP (Sigma Chemical Co., St. Louis, MO, USA), bleomycin (BLM) (Nippon Kayaku Co., Ltd., 

Tokyo) and O6-Benzylguanine (O6-BG) (Sigma), diluted in water, were added to MDEM to the 

final concentration indicated in each treatment.  

 

MNNG or BLM treatment   

First, 5 × 105 cells were seeded in 5 ml MDEM in a flask (Nalge Nunc International, 

Roslilde, Denmark).  Then, 24 h after seeding, the medium was changed for medium containing 

the appropriate drug (MNNG or BLM), and the flask was immersed in a 37℃ water bath (Taitec, 

Co., Ltd., Saitama, Japan).  Following treatment with the drug for 1 h, the cells were rinsed three 

times with drug-free medium, and their survival rates were determined as described below. 

 

Cell survival assay for MNNG and BLM 

Cell survival rates were assayed by measuring the colony-forming ability of the cells in 

triplicate samples.  Only colonies containing more than 50 cells were counted.  After drug 

treatment, the cells were dispersed with trypsin, seeded at adequate concentrations, and incubated at 

37°C in a CO2 incubator.  Surviving cells were fixed in 10% formaldehyde and stained with 10% 

Giemsa staining solution.  Cell survival rates were corrected for the seeding efficacy of untreated 

controls. 

 

RNA isolation and RT-PCR 

Extraction of total cellular RNA was carried out using Trizol reagent (Invitrogen Co., 

Carlsbad, CA) according to the manufacturer’s instructions.  For CDDP-treated groups, 1 × 105 

cells incubated for 38 h in medium containing 20 μM of CDDP were rinsed three times with PBS, 

and then the RNA (or protein for Western blotting) was extracted.  The RNA was 

reverse-transcribed with Superscript II Reverse Transcriptase and oligo dT primers (Invitrogen Co., 

Carlsbad, CA).  Amplification of the cDNAs was performed under the following PCR conditions: 

7 min at 94℃ for 1 cycle; then 26 cycles at 94℃ for 30 s, 59℃ for 30 s, 72℃ for 30 s; and a 

final elongation step at 72℃ for 10 min.  The following primers used for the amplification: 
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MGMT; sense: 5’-GCCGGCTCTTCACCATCCCG-3’, antisense: 

5’-GCTGCAGACCACTCTGTGGCACG-3’, GAPDH; sense: 

5’-GAAGGTGAAGGTCGGAGTC-3’, antisense: 5’-CAAAGTTGTCATGGATGACC-3’ [29].  

The MGMT primers amplified a 211-bp product spanning sequence (339-527) from GenBank, 

accession number M29971.  The amplified GAPDH fragment was used as a positive control.  

The RT-PCR products were separated by electrophoresis on a 2% agarose gel, stained with 

ethidium bromide, and viewed by UV.  The intensities of the bands were quantified using Image J 

1.33u (National Institutes of Health, USA). 

 

Western blotting 

The proteins in the cell-free extracts were separated by 10% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS PAGE), and the individual proteins were transferred to 

polyvinylidene difluoride membranes (Bio-Rad Laboratories, Hercules, CA) using a semi-dry 

electrophoretic transfer apparatus (LKB-Produkter AB, Bromma, Sweden) at room temperature.  

The blotted membranes were blocked for 1 h in TBS-T (containing 0.1% Tween 20) plus 5% 

powdered skin milk.  The memgranes were then probed for 2 h with mouse anti-MGMT 

monoclonal antibody MT 3.1 Ab-1 (Neomarkers, Fremont, CA) diluted 1:800 in TBS-T.  The 

membranes were then washed three times in TBS buffer, and incubated for 1 h with the appropriate 

secondary antibody horseradish peroxidase-conjugated AffiniPure Goat Anti-Mouse IgG (H+L) 

(ImmunoResearch Laboratories Inc., West Grove, PA) in TBS-T. Bound antibody was detected 

using ECL + plus kit (Amersham Pharmacia Biotech Inc., Little Chalfont, UK) according to the 

manufacturer’s instructions.  The mouse monoclonal antibody for beta actin, beta actin 

AC-15-ab6276, was purchased from Abcam Limited (Cambridge, UK): this antibody was diluted 

1:5000 in TBS-T and was utilized as that described above. The intensities of the bands were 

quantified using Image J 1.33u (National Institutes of Health, USA). 

 

CDDP sensitivity 

The alteration of CDDP sensitivity for each condition was evaluated using MTT 
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(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) assay.  The MTT assay was 

carried out using MTT Cell Growth Kit (Chemicon International, Inc. Temecula, CA) according to 

the manufacturer’s instructions.  Eight replicate wells per assay condition were seeded at a density 

of 1.5×104 cells in 0.1 ml of medium.  The wells were incubated for 24 h at 37°C.  Stock 

solutions of CDDP were prepared by dissolving the drug at a concentration of 10 mM in distilled 

water for no more than 2 h prior to use in an experiment, and the final concentrations were obtained 

by diluting the stock solution directly into the tissue culture medium.  The cells were incubated 

with several concentrations of CDDP ranging from 10-100 μM for an additional 38 h.  At the 

end of the exposure to CDDP exposure, 10 μl of MTT (5 mg/ml) were added to each well for 4 h 

at 37℃ to allow MTT to form formazan crystals by reaction with metabolically active cells.  

Next, 100 μl of color development solution (isopropanol with 0.04 N HCl) were added to each 

well.  Within one hour, the absorbance of each well was measured in a microplate reader (Corona 

microplate reader MTP-120, Corona Electric Co., Ltd, Japan) with a test wavelength of 570 nm.  

The percentage of cell growth inhibition was calculated by comparison of the absorbance reading 

from treated versus untreated control cells under each experimental condition. 

 

O6-BG treatment and alteration of CDDP sensitivity 

For the O6-BG-treated groups, 1×105 cells incubated in medium containing 75 μM of 

O6-BG for 4 days were rinsed three times with fresh medium, and then the cells were seeded into 

96-well plates.  Eight replicate wells per assay condition were seeded at a density of 1.5×104 

cells in 0.1 ml of medium containing the appropriate amount of O6-BG (37.5 or 75μM).  To 

serve as O6-BG-untreated control groups, cells were also seeded into 96-well plates at the same 

density in medium lacking O6-BG.  The cells were then incubated for 24 h at 37°C.  The cells 

were incubated with several concentrations of CDDP ranging from 10-100 μM for an additional 

38 h.  At the end of the period of exposure to CDDP, the MTT assay was carried out as described 

above. 

 

Statistical analysis 
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Statistical analysis was conducted with JMP 5.0.1 J software (SAS Institute Inc. Cary, NC). 

 

Results 

 

MNNG and BLM sensitivity 

In order to confirm the contribution of MGMT expression status to cellular sensitivity to the 

alkylating agents MNNG, we treated each of the oral cancer cell lines considered here with varying 

concentrations of MNNG and with a non-alkylating chemotherapeutic agent, BLM.  The cell 

lines with high MGMT expression (HSC4 and HSC3) were resistant to the effects of MNNG, 

whereas the cell lines with low MGMT expression (SAS and Hep2) exhibited sensitivity.  In 

contrast, we found no evidence of a relationship between MGMT expression status and BLM 

sensitivity in the 4 cell lines studied here (Figure 1a and b).  

 

Effects of CDDP on levels of MGMT expression level 

In order to test whether or not MGMT expression was altered by CDDP, we examined the 

levels of MGMT expression by Western blotting and RT-PCR after treating the cell lines with 20 

μM CDDP for 38 h.  Interestingly, in all 4 cell lines, CDDP reduced the levels of MGMT 

protein expression compared to those of the CDDP un-treated control (Figure 2a).  Furthermore, 

the RT-PCR results revealed that MGMT mRNA expression was also attenuated by treatment with 

CDDP (Figure 2b).   

 

CDDP sensitivity   

Because MGMT is inactivated after O6-alkylating DNA adducts are restored, MGMT 

activity may be an important marker of sensitivity to alkylating agents that are known to generate a 

complex spectrum of adducts at the O6-position of guanine.  Considering our finding that CDDP 

also depleted MGMT expression (Figure 2), we hypothesized that MGMT may play a role in 

cellular sensitivity to CDDP.  Figure 3 shows the results of treatment with varying concentrations 

of CDDP using 4 oral cancer cell lines.  Among these 4 cell lines, SAS and Hep2 cells, both of 
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which exhibited low levels of MGMT expression, were more sensitive to CDDP than were HSC4 

and HSC3 cells, which exhibited high levels of MGMT expression (Figure 3).  Interestingly, the 

difference between MGMT expression levels seemed to relate to the respective cellular sensitivities 

to CDDP.   

 

Effect of O6-BG on cellular sensitivity to CDDP 

To examine whether MGMT depletion enhances the potential utility of CDDP in the 

treatment of oral cancer, we evaluated the effects of an MGMT inhibitor, O6-BG, on CDDP 

sensitivity in 4 oral cancer cell lines.  For the O6-BG-treated groups, cells were exposed to 75 μ

M O6-BG for 4 days.  Then, the cells were washed and seeded into 96-well plates with medium 

containing the appropriate concentrations of O6-BG (37.5 or 75 μM).  After 24-h incubation, the 

cells were then exposed to CDDP at various concentrations for an additional 38 h.  In addition, in 

order to exclude the effects of the cytotoxicity of O6-BG when used alone, we evaluated the cell 

survival rates of group treated with O6-BG alone at the end of the course of treatment (Figure 4a).  

Given that the cell survival in the O6-BG-treated groups was consistently higher than 80% of that of 

the drug-untreated control groups, the cytotoxicity of O6-BG was confirmed to have remained at a 

minimum.  Figure 4b shows that all cell lines inhibited growth inhibition in a dose-dependent 

manner following treatment with CDDP for 38 h over a concentration range from 10 to 100 μM.  

The combined treatment with O6-BG and CDDP produced supra-additive effects compared to the 

result obtained with CDDP alone.  Interestingly, 2 cell lines with low MGMT expression levels 

(SAS and Hep2) also showed restored sensitivities to the cytocidal effects of CDDP by 

pre-treatment with O6-BG.   

 

Discussion 

CDDP is a commonly used chemotherapeutic agent that is effective when used alone or in 

combination with other drugs, radiotherapy, and/or surgery in the treatment of various malignancies, 

including head and neck cancers [1, 30, 31].  A major limitation to successful treatment with 

platinum agents is the development of acquired drug resistance by the cancer cells [4].  Cellular 
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resistance to these drugs is multifactorial, and the mechanisms by which such resistance is achieved 

are not yet fully understood.  Modulation of CDDP resistance is thus a potential new therapeutic 

target.  

MGMT is a DNA repair enzyme that rapidly repairs adducts at the O6-position of guanine, 

and its expression is known to modulate the effectiveness of alkylating agents [18-21].  Alkylating 

agents may generate DNA adducts (such as O6-methyl guanine) and may produce suicidal 

inactivation of MGMT.  Moreover, not only such alkylating agents inhibit the activity of MGMT; 

Wang and Settlow reported that CDDP is also capable of inhibiting MGMT activity [7].  This 

CDDP-induced attenuation of MGMT renders novel chemotherapy approaches such as 

temozolamide plus CDDP particularly attractive in the treatment of a number of cancers [7].  

Koul and co-workers reported that the transcriptional inactivation of MGMT by epigenetic 

alterations confers exquisite sensitivity to CDDP [9]. 

In our study, the administration of CDDP was associated with decreased levels of MGMT 

protein and mRNA contents, in comparison with those of the un-treated control (Figure 2a and 2b).  

The question that arises in this context is the identity of the pathway involved in MGMT depletion 

by CDDP.  First, a simple explanation for MGMT depletion by CDDP would be that CDDP may 

also generate DNA adducts (such as the O6-alkylating DNA adducts generated by alkylating 

agents).  MGMT may repair those adducts, which results in the suicidal inactivation of MGMT.  

Second, considering that CDDP primarily forms cross-links on DNA that can block replication or 

inhibit transcription [2, 3], those cross-links on the DNA that are induced by CDDP may inhibit the 

transcription of MGMT.  A third possible explanation would be that CDDP might affect the CpG 

methylation in the promoter region of the MGMT gene, perhaps resulting in the decreased 

transcription of MGMT.  Evidence that MGMT expression levels are greatly reduced following 

the methylation of its promoter has already been reported in a study by Esteller and co-wokers [32], 

who also suggested that the differential methylation of the MGMT promoter might be responsible 

for the marked differences in prognosis observed among glioma patients following treatment with 

carmustine treatment.  A previous study has indicated that human tumor cells exposed to high 

concentrations of CDDP induce alterations in 5-methyl cytosine in vitro [33].  Koul and 
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colleagues [9] reported that promoter hypermethylation of the MGMT and RARB genes is 

associated with CDDP sensitivity, and that the complete promoter methylation of MGMT plays a 

role in achieving a favorable response of male germ cell tumors to CDDP treatment.  It remains 

unclear whether or not CDDP induces CpG methylation in the MGMT promoter; however, in our 

previous study, we did discover a link between the methylation status of the upstream promoter of 

the MGMT gene and transcriptional inhibition in oral cancer cell lines, including the same cell lines 

tested in the present study [28].  Another possible explanation could be suggested at this point, 

namely, that the CDDP-induced depletion of a natural amino acid, methionine (Met), may be 

responsible for the attenuation of MGMT expression.  Scanlon et al [34, 35] and Mineura et al 

[36] demonstrated that CDDP affected the metabolism of Met in tumor cells and that CDDP 

interfered with Met transport by acting as an inhibitor of amino acid entry [34, 37].  Recently, 

Kokkinakis and co-wokers [38] observed in brain cancer cells and non-small cell lung cancer cells 

that MGMT activity was markedly down-regulated in response to Met deprivation in vitro.  

An additional question remains to be addressed in this context: What is the biological goal of 

CDDP-induced MGMT depletion?  Because MGMT is inactivated after O6-alkylating DNA 

adducts are restored, MGMT activity may be an important marker of tumor and normal tissue 

sensitivity to alkylating agents which generate a complex spectrum of adducts at the O6-position of 

guanine.  When considering our results (Figure 2), we hypothesized that MGMT may play a role 

in cellular sensitivity to CDDP.  Interestingly, SAS and Hep2 cells, which exhibited low levels of 

MGMT protein expression, were growth-inhibited by treatment with CDDP in a dose-dependent 

manner.  Difference between original MGMT expression levels appeared to be relate to cellular 

sensitivity to CDDP (Figure 3).   

Next, to investigate the possible relationship between MGMT expression and CDDP sensitivity, we 

examined whether MGMT depletion by O6-BG would lead to the sensitization of cells to CDDP 

(Figure 4).  Recently, MGMT activity has been regarded as an important marker of sensitivity to 

alkylating agents, and many attempts have been made to deplete MGMT by using the specific 

inhibitor O6-Benzylguanine (O6-BG) to enhance the sensitivity of tumors to alkylating agent [24].  

O6-BG is a MGMT substrate that was rationally designed to produce suicidal inactivation via a 
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restoration of sensitivity to chloroethylators or methylators [24-26].  In our O6-BG regimen, 

O6-BG treatment depleted levels of MGMT protein expression and restored sensitivity to an 

alkylating agent, MNNG (data not shown).  To exclude the cytocidal effects induced by O6-BG 

pre-treatment, we re-seeded cells into 96-well plates after O6-BG treatment at the same density as 

that used for the O6-BG-untreated control groups.  In our combined regimen with O6-BG and 

CDDP, O6-BG treatment alone was found to exert only minimal cytocidal effects on cancer cells 

(Figure 4a).  We also found that the combined regimen with O6-BG and CDDP produced 

supra-additive cytocidal effects in all cells lines, compared with the results obtained by CDDP 

treatment alone (Figure 4b).  Single administration of O6-BG to the cells has been known as 

non-toxic [39, 40].  Although pretreatment of cancer cells by O6-BG showed minimal cytocidal 

effect in our study, our co-incubation time of CDDP and O6-BG in our protocol was a little long 

compared to other study.  Anyhow, we found that the O6-BG/CDDP combined regimen produced 

supra-additive cytocidal effects in all cells examined.  Clearly, it would be a major step forward in 

cancer chemotherapy if MGMT protein expression could be related to the likely effectiveness of 

CDDP, and O6-BG could be a promising modulating agent for CDDP as well.  However, we 

could not exclude the involvement of different pathways, other than the apparent one in which 

MGMT is involved in the control of the combined regimen with O6-BG and CDDP.  Fishel et al. 

also reported that O6-BG treatment resulted in additive effect on CDDP- and carboplatin-induced 

cytotoxicity, however, its enhancement seems to be independent of MGMT status [41].  They 

focused on the aspect of O6-BG as a cell cycle inhibitor and reported that O6-BG enhances CDDP 

-induced cytotoxicity resulting from its effect on the cell cycle.  Mack et al. reported that the 

cyclin-dependent kinase inhibitor (i.e. 7-hydroxystaurosporine, UCN-01) could potentiate CDDP 

activity through targeting the cell cycle [42].  O6-BG is also known to inhibit CDK1/cyclin B and 

CDK2/cyclin A by competing for the ATP binding domain in the CDK enzyme [43, 44].  

However, the mechanism of O6-BG to modulate platinating agent has not been definitively 

demonstrated, improved studies are needed in this area.  

In summary, MGMT depletion occurs in response to CDDP treatment in oral cancer cell 

lines.  Moreover, MGMT expression may play a role in cellular sensitivity to CDDP; an 
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enhancement of the anti-tumor effects of CDDP by MGMT depletion was observed in the present 

study.  Although our findings are the results of in vitro studies, we believe that the resent results 

may have important clinical implications in the potential utility of CDDP in the treatment of cancer.   
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Figure Legends 

Figure 1: MNNG and BLM sensitivity in oral cancer cell lines. 

a: Cellular sensitivity to the alkylating agent MNNG.  HSC4 and HSC3 cells with high MGMT 

expression were resistant to the lethal effects of MNNG, whereas SAS and Hep2 cells with low 

MGMT expression showed sensitivity.  The cell-survival rates in groups with high MGMT 

expression were significantly different (p < 0.01) from those with low MGMT expression by a 

Student’s t-test. 

b: Cellular sensitivitiy to BLM.  HSC3 cells with high levels of MGMT expression were the most 

sensitive to the lethal effects of BLM, whereas the 3 other lines proved to be much less sensitive.  

We found no evidence of a relationship between the MGMT expression status of any of the 4 cell 

lines studied here and their sensitivity to BLM.  Symbols: HSC4, ◆; HSC3, ▲; SAS, □; 

Hep2, △. Standard errors are shown for each concentration.  

 

Figure 2: The effect of CDDP treatment on MGMT expressions.   

For CDDP-treated groups, 1 × 105 cells were incubated for 38 h in medium containing 20 μM 

of CDDP.  After 38-h incubation in the presence of CDDP, MGMT mRNA and protein 

expression were measured by Western blotting or RT-PCR, and then the results were compared 

were compared to those obtained with non-treated cells.   

a: CDDP treatment attenuated MGMT protein in all 4 cancer cell lines.  Extracted protein from 

the indicated cell lines was loaded onto a 10% SDS-PAGE gel and electrophoresed.  In the 

Western blot analysis, an equal amount of proteins were electroblotted.  Proteins were 

electroblotted onto a PVDF membrane, which was probed with monoclonal antibody MT 3.1 

specific for human MGMT.   

b: CDDP treatment attenuated MGMT mRNA in all 4 cancer cell lines.  CDDP treatment reduced 

the content of MGMT protein and mRNA compared to the CDDP un-treated control in all four cell 

lines examined here.   

c: Intensities of the bands were quantified by the proportion of MGMT versus beta actin or 

GAPDH with Image J 1.33u (National Institutes of Health, USA).  The relative band intensity 
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represents the intensity of CDDP treated sample / CDDP un-treated control sample.  Closed 

columns represent cells with no CDDP treatment Open columns represent cells treated with CDDP.  

The significance of the differences was tested by the Student’s t-test: p < 0.01.  Each column is the 

average of three measurements; bars, SD.  The band intensities in groups treated with CDDP were 

significantly different from those without CDDP. 

 

Figure 3: CDDP sensitivity.   

Cellular sensitivity to CDDP among 4 cell lines was examined using an MTT assay.  HSC4 and 

HSC3 cells with high MGMT expression were resistant to the lethal effects of CDDP.  In contrast, 

SAS and Hep2 cells with low MGMT expression were sensitive to CDDP. The cell-survival rates 

in groups with high MGMT expression were significantly different (p < 0.01) from those with low 

MGMT expression by a Student’s t-test, except for the asterisk-added groups. 

 

Figure 4: Effect of O6-BG on cellular sensitivity to CDDP treatment. 

To examine whether or not MGMT depletion y enhances the potential utility of CDDP in oral 

cancer therapy, we evaluated the combined effect of CDDP and the MGMT inhibitor O6-BG in 4 

cell lines.  For the O6-BG-treated groups, cells were exposed to 75 μM O6-BG for 4 days.   

a: The cellular sensitivity to O6-BG in 4 cell lines.  Given that the cell survival in the O6-BG 

alone-treated groups was consistently higher than 80% compared to that of drug-untreated control 

groups, the cytotoxicity of O6-BG was confirmed to be minimal.   

b: The combined effect with O6-BG on cellular sensitivity to CDDP treatment.  All cells exhibited 

dose-dependent growth inhibition due to treatment with CDDP, and the combined regimen with 

O6-BG and CDDP produced supra-additive effects, compared with the results obtained by CDDP 

treatment alone.  The closed symbols represent the survival rates of CDDP alone-treated groups, 

whereas the open symbols represent the survival rates of cells treated with O6-BG and CDDP.  

The cell-survival rates in groups treated with CDDP together with O6-BG were significantly 

different (p < 0.05) from those without O6-BG by a Student’s t-test, except for the asterisk-added 

groups. 
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cell line          origin        histological type                    MGMT expression       

HSC-4           tongue        squamous cell carcinoma          +++                  
HSC-3           mouth         squamous cell carcinoma      +++                   
SAS               tongue        squamous cell sarcoma              +/-             
Hep2　　    larynx         epidermoid carcinoma                +/-            

Table 1.  MGMT expression status in the oral cancer cell lines  
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