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ABSTRACT. Presented research demonstrates the inclusion of 

endogenous technical change into the PAGE2002 integrated assessment 

model of climate change. The ‘experience curve’ or learning-by-doing 

concept, made popular by the Boston Consulting Group during the 1960’s 

provides a mechanism with which to describe cost reduction through 

experiential learning. The implementation of learning requires both a 

restructuring of the way costs are modelled as well as the inclusion of an 

explicit learning function with initial abatement costs and learning 

coefficients calibrated to historical renewable energy data. The discounted 

values for total abatement costs are calculated for both the standard 

PAGE2002 model without an explicit learning function and the modified 

PAGE2002 model. The results were found to be of a similar magnitude, 

partially due to the myopic effects of discounting, though the result was 

found to be highly sensitive to the learning rate used, which in our case was 

a conservative estimate. 

 

Keywords: Endogenous Technical Change, Learning Curves, Climate Change 

JEL Classification: O13 , Q55, Q56 

                                                      
1 This article is based on research leading to an MPhil in Management Studies at the Judge Business School, 
University of Cambridge. Corresponding author, s.alberth@jbs.cam.ac.uk. Submitted November 2005. 

2 Senior Lecturer at the Judge Business School, University of Cambridge, c.hope@jbs.cam.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/1254691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


   

Stephan Alberth & Chris Hope  Page 2 of 36 

 

                                               Table of Contents 

Chapter 1. Introduction 3 

Chapter 2. Climate Modelling Background 5 

2.1. Climate Change Models 5 
2.2. Modelling Technological Progress 6 

Chapter 3. The PAGE2002 Integrated Assessment Model 13 

3.1. Model Design and Stochastic Features 13 
3.2. The Standard PAGE2002 Model 14 
3.3. Modified Energy Aspects and Abatement Costs for CO2 16 
3.4. Endogenous Technical Learning 17 
3.5. Choice of sector 18 
3.6. Cheap versus expensive cutbacks 19 
3.7. Cost of cutbacks 19 
3.8. Initial Cumulative Experience 20 
3.9. Regional cross-over effects 20 
3.10. Learning rates for endogenous technical change 21 
3.11. Autonomous learning rates 22 

Chapter 4. Modelling results 23 

4.1. CO2 concentration and global mean temperature for the ‘450 ppm’ scenario 23 
4.2. CO2 abatement costs for the ‘450ppm’ scenario 24 
4.3. The cost of prevention and global warming impacts. 25 
4.4. Cost of abatement over time for the ‘450 ppm’ scenario 27 
4.5. Comparison of the 450, 500 and 550 ppm scenarios 28 

Chapter 5. Discussion and Conclusion 29 

5.1. Main findings 29 
5.2. Limitations and areas of future research 29 

Reference List 30 

Annexe 1 34 

 
 



   

Stephan Alberth & Chris Hope  Page 3 of 36 

 

Chapter 1. Introduction 

The research presented in this paper looks at the effects associated with Endogenous 

Technical Change (ETC) in the area of renewable energies and climate change. The aim was 

to devise a method for implementing ETC into a stochastic model of climate change. These 

models are often referred to as Integrated Assessment Models (IAM) or E3 models, 

representing the three fundamental elements, the environment, energy and economics. 

During the last 5 years, there has been a lot of concern over the energy and economic aspects 

of E3 models and in particular the way that technical innovation has been modelled. Of all 

the techniques for reducing CO2 emission, such as improving efficiency or reducing 

consumption, it is government sponsored Research and Development (R&D) or strategic 

deployment of new technologies that appear to be the most acceptable solution. Yet, most E3 

models have until recently used exogenous learning factors such as autonomous 

improvements in energy efficiency that ignore the role of policy and avoid the complicated 

issue of how learning actually takes place. It has been suggested that through explicitly 

modelling cost reductions through ETC these models would be better able to guide policy 

towards cheaper and more effective abatement strategies3 than has previously been done. A 

general shift is taking place towards “a new generation of environmental-economic models” 

(Löschel, 2002) and the method of choice for incorporating ETC into E3 models has been to 

measure the acquired learning-by-doing or learning-by-searching of technology. This is a 

heuristic method of modelling costs, meaning that it is not based on any provable theory but, 

owing to its relatively consistent results, is a useful tool for our purposes. Groups such as the 

IMCP4 have paid particular attention to this area of research, looking at both the benefits, 

drawbacks and caveats of applying such methods. The research presented in this paper relates 

to the introduction of an explicit learning-by-doing feature into the PAGE2002 Integrated 

Assessment model of climate change. In keeping with the structure of the PAGE2002 model, 

no energy sector has been incorporated. Instead of calculating the costs associated with 

energy technologies, abatement cost itself has been calculated directly, placing an artificially 

lower limit on the cost of greenhouse gas abating technologies. The overall results do 
                                                      
3 An abatement strategy defines the amount of CO2 emissions that are reduced as compared to a normal 
scenario where no such measures have taken place. 

4 Innovation modelling comparison project (see Köhler et al. 2006) 
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coincide well with those of a number of other studies as published in the 2001 IPCC report 

and are able to shed some light on the importance of uncertainty in modelling ETC in a 

climate change model. 

There has been some confusion regarding the terms “endogenous” learning and “induced” 

learning. We have used the term “endogenous” learning to describe the fact that changes in 

the abatement path through the learning function effects the costs of abatement. It is 

important to note however that the level of abatements made, and thus the costs, remain 

exogenous for any fixed stabilisation scenario, but becomes a decision variable for an 

optimisation of the PAGE2002 model. The term induced will be reserved to describe the 

actual changes in cost or performance as a result of policy change as modelled by 

PAGE2002. 

The format of the paper begins with chapter 2 presenting a literature review of integrated 

assessment models and the theories on learning and innovation modelling. Chapter 3 goes on 

to look specifically at the PAGE 2002 model with an emphasis on the features that have been 

added or changed with the introduction of ETC into the model. The main results are then 

presented in chapter 4 and Chapter 5 concludes the paper by discussing how ETC has 

affected the PAGE2002 stabilisation results including suggestions for future research. 
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Chapter 2. Climate Modelling Background 

2.1. Climate Change Models 

Models that combine information on the numerous important areas of assessment are broadly 

referred to as Integrated Assessment Models, or IAMs, such as the PAGE2002 model. The 

model aim to better understand the correlation of the emission of ‘greenhouse’ gases to 

climate change, and how the impacts and abatement costs could shape the world over the 

coming decades or centuries. Table 1 presents a list of various popular models that have only 

recently been adapted to include ETC, one of which incorporates full stochastic features, the 

PAGE2002 model. Stochastic models are in many way ideally suited to the study of climate 

change due to the high level of uncertainty that exists in the field.  

Table 1   E3 Models modified to include technical change5 

Model MODEL TYPE INNOVATION MODELLING Reference 
MARKAL Global energy system Learning by doing Barreto et al., 2004a 

ERIS Energy system optimisation Two factor learning curve Barreto et al., 2004b 
R&DICE Energy system optimisation Innovation production function Nordhaus, 2002 

DEMETER 
Computable general 
equilibrium Learning by doing Gerlagh et al. 2003 

MERGE IAM Learning by doing Kypreos, 2004 
ENTICE Macroeconomic model Learning by searching Popp, 2004 
WIAGEM IAM Learning by searching and backstops Kemfert, 2005 

MESSAGE 

Energy engineering 
optimisation Learning by doing Grubler & Al. 1998 

MIND 
Macroeconomic model Two factor learning curve Edenhofer, 2005 

PAGE2002 
(Modified) 

IAM Learning by doing Current work 
 

By using a distribution as opposed to a best guess estimate to calculate values, and by 

iterating through thousands of different possible outcomes, a stochastic model is able to 

avoid the ‘[f]law of averages’ as well as present substantial information on the uncertainty of 

outputs. The term ‘[f]law of averages’ describes a common error of assuming linearity 

between inputs and results when in fact the model is non-linear. In other words, it is to 

assume that by inputting average values, the model will also output the average result. By 

using a stochastic model that instead uses distributions as inputs instead of mean expected 

values, the model’s true output also in the form of a distribution can then be found. 

                                                      
5Models referring to two factor learning curve (2FLC) refer to incorporating both learning by doing (cumulative 
production/capacity) and learning by searching (cumulative R&D). Cumulative capacity stands for a type of 
learning by doing function and cumulative R&D for a learning by searching function.  
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2.2. Modelling Technological Progress 

In the overview of the 1998 Energy Economics special issue on ‘The Optimal Timing of 

Climate Abatement’, Carraro and Hourcade pointed out the notable influence that learning 

appeared to have on the calculation of abatement costs. According to their survey of E3 

models, learning introduced around a 50% drop in abatements costs. The IEA publication 

‘Experience Curves for Energy Technology Policy’ (IEA 2000) presents a broad overview of 

the work covered up to the end of the 1990’s and also presents the findings from the 1999 

IEA workshop on this subject. Their recommendation was that experience effects should be 

“explicitly considered in exploring scenarios to reduce CO2 emissions and calculating the 

cost of reaching emissions targets” (IEA 2000, p114). 

The alternative to adopting ETC, the most common method used to date to explain changes 

in energy use, specifically the decoupling of economic growth from energy consumption has 

been the Autonomous Energy Efficiency Improvement (AEEI) parameter (Löshel 2002) 

which has been widely used in IAMs (Grubb & Köhler 2000). This exogenous factor, as 

presented in Equation 1, aims to define energy consumed as a function of Gross Domestic 

Product (GDP) and time and is calculated with the assumption that there are no changes in 

input energy costs (Manne & Richels 1992). 

                                                                                    Equation 1  

There have been numerous criticisms made of this type of ‘technical progress’ and according 

to Grubb et al., it has been “widely recognised that the AEEI approach is inadequate” (2000), 

mainly this approach puts energy consumption/GDP as being independent of policy 

decisions, and thus supposes that public policy could not affect this ratio. Furthermore, due to 

the very long term nature of global warming, even small differences in the AEEI and 

carbonisation levels of energy sources used can have significant effects on the overall 

outcome (Grubb & Köhler 2000). 

Modelling ETC is seen as an important factor in Climate modelling due to its ability to 

provide clues about the risks of technology ‘lock-out’ of potentially cheap and 

environmentally friendly technologies. Technology lock-out arises where traditional energy 



   

Stephan Alberth & Chris Hope  Page 7 of 36 

 

technologies have had their prices driven down through cumulative experience, while 

alternative technologies are unable to gain enough momentum to become cost competitive. 

This can be true even where the overall benefits of deploying new technologies far outweigh 

the costs in the long term. The following is a brief history of the development of experience 

curves, and a look at some of their benefits and drawbacks. 

Empirical evidence for learning curves was first discovered in 1925 at the Wright-Patterson 

Air Force Base where it was discovered that plotting an aeroplane’s manufacturing input 

against cumulative number of planes built on a log/log scale was found to result in a straight 

line. The benefits in efficiency found were proclaimed by Wright as being the result of 

“Learning by Doing” in his 1936 publication. This “learning curve” was calculated for a 

manufacturing input such as time as shown in Equation 2, where tN is the labour 

requirements per unit output for period (t), tX is the cumulative output in units by the end of 

the period. In the equation ‘a’ is the constant and ‘b’ the learning coefficient as determined 

by regression analysis. 

                                                           tt XbaN loglog −=                                                           Equation 2 

The next major advancement in learning curves was made by Arrow in his 1962 publication 

(Arrow 1962, IEA 2000). He was able to generalise the learning concept and also put 

forward the idea that technical learning was a result of experience gained through engaging 

in the activity itself. Undertaking an activity, Arrow suggested, leads to a situation where 

“favourable responses are selected over time” (Arrow 1962, p156). 

During the 1960’s the Boston Consulting Group (BCG) popularised the learning curve 

theory. They further developed the theory and published a number of articles on the subject 

(BCG 1968 in IEA 2000, Henderson 1973a, Henderson 1973b). They also coined the term 

“experience curve”, as distinct from “learning curve” which related to ‘unit total costs’ as a 

function of ‘cumulative output’, rather than ‘unit inputs’ as a function of ‘cumulative output’ 

as shown in Equation 3. In this Equation the cost per unit ‘Ct’ depends on the cumulative 

number of units produced ‘Xt’ and the constant ‘a’ and coefficient ‘b’ that are found using a 

regression style analysis. This can be rewritten into a more simple form, as shown by 

Equation 4 to Equation7. A similar but much more useful representation of this formula for 

modelling purposes is to compare costs at a future time ‘t’ to present known costs. This type 

of formulation is shown in Equation 8 and Equation 9. The Progress Ratio (PR) is a widely 
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used ratio of final to initial costs associated with a doubling of cumulative inputs. The simple 

algebraic manipulation is presented in Equation 10 through to Equation 12. The learning rate 

represents the cost savings made as presented in the last of these Equations. 

                                                            tt XbaC loglog −=                                                          Equation 3 
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Despite a strong preference for the use of cost data in the calculation, lack of such 

information often leads to replacing costs with price data which are more readily available 

(IEA 2000). This leads to an equivalent formulation as presented in Equation 13 and 

Equation 14, where b is the learning coefficient and 0P and oX are the price and cumulative 

output during the initial period. 

                                                               tt XbaP loglog −=                                                         Equation 13 
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The use of price data reduces the quality of the empirical analysis as prices can vary due to 

market influences. As proposed by BCG, reductions in cost that are made early in the 

product’s development are often not passed on to the buyer, as shown in Figure 1. This 

situation can remain until there is a ‘shake-up’ of the industry due to increased competition 

(BCG 1968 in IEA 2000). Furthermore, due to the discovery that knowledge diffusion could 
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have a serious impact on long-term cost advantages (Lieberman, 1987), learning curves 

began to lose favour. 

 

Figure 1   Price development of a new product as formulated by BCG (Source IEA 2000) 

However, much of what is described by the jagged line in Figure 1 relates only to a transfer 

of funds, and as such, would have little effect on the net costs of abatement. This allows 

integrated assessment modellers and policy-makers, facing long term strategic decisions, to 

use experience curves in order to predict how costs of low-carbon technologies might evolve 

thereby helping them to calculate the overall costs of abatement. So with a new emphasis on 

global cost reductions rather than sustained competitive advantages, these ideas have once 

again enjoyed great popularity. 

Learning rates for a number of electricity producing curves have been calculated, as shown in 

Figure 2.  Electricity costs in 1990 US dollars per kWh have been graphed against 

cumulative production in TWh on a log/log graph with the associated progress ratios 

included. The line of best fit for each technology has a linear slope equal to the ‘-b’ as 

described in Equation 3. This can also be transferred into a Progress Ratio (PR) as shown by 

Equation 11.  For example in this study, photovoltaics has a PR of 65% (the very upper limit 

of published findings) which means that if there was a doubling of the amount of cumulative 

photovoltaic electricity production, the price would generally be reduced to 65% of the 

present value. Alternatively one could say that for every doubling of cumulative production, 

there is a cost reduction equal to the Learning Rate (LR) which is 1-PR, or 35%.  
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Figure 2   Progress Ratios of Electric Technologies in EU, 1980-1995 (Source IEA 2000) 

Another related area of research has focused on the prediction of the “Break-even” point of 

low-carbon alternatives. That is, the amount of cumulative production required and 

associated costs such that the unit cost of a relatively new and expensive technology such as 

solar can become comparable to the unit cost of traditional technologies. In Figure 3, the area 

shaded in grey represents the cumulative costs needed to reach the break-even point. A 

similar problem exists here than what has been found for the AEEI, where a small amount of 

uncertainty in the average rate can lead to large errors in the determination of future costs. As 

presented by Figure 3, a small error of less than 2% in the learning rate can lead to an error in 

the final Break-even point of close to an order of magnitude. 

 

Figure 3   Making Photovoltaics Break-Even (IEA 2000, p15). 

The IEA has paid special attention to the whole learning curve concept and has suggested 

that all models relating climate change to the economy should explicitly define technical 
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innovation. Not only have the standard “experience curves” been used, but a number of more 

complex versions have also been developed. One common example is the 2 Factor Learning 

Curve (2FLC) which combines both ‘leaning-by-searching’ and ‘learning-by-doing’ that 

relates cost reductions to both cumulative experience and cumulative R&D as described in 

Equation 15.   
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This presupposes that spending on R&D can also help achieve cost reductions, through all 

stages of a product’s life cycle, and thus can become an important factor when any sort of 

optimisation is made. There are, however, serious limitations on publicly available data about 

private R&D expenditure and so an accurate representation of this factor can sometimes be 

difficult to make (Junginger 2005). Lack of such data explains perhaps while Single Factor 

Learning Curves (SFLC) are sometimes preferred. It has also been found by some authors 

that R&D has only a minor and often statistically insignificant effect on costs when used with 

historical data (Papineau 2004). Other authors, who prefer the use of the SFLC, suggest that 

“cumulative production or capacity is a surrogate for total accumulated knowledge gained 

form many different activities whose individual contributions cannot be readily discerned or 

modelled” (Rubin et al. 2004). An explanation for some of the difficulty in arriving at 

accurate data for the 2FLC is a “‘virtual cycle’ or positive feedback loop between R&D, 

market growth and price reduction which stimulated its development” (Wanatabe 1999 in 

Barreto & Kypreos 2004a, p616). Here the authors concluded that “sound models for the role 

of R&D in the energy innovation system are not yet available (Barreto & Kypreos 2004a, 

p616). 

The aim of the two factor learning curve is to increase the accuracy of the predictions made 

using experience style curves yet the overall results have been far from conclusive. Papineau 

found the results of R&D “disappointing” for wind and solar production. She suggested that 

this may be due in part to the relative benefits of other forms of government intervention 

“such as direct subsidisation” (Papineau 2004), which would lead to increased cumulative 

production, rather than increased R&D. For the sake of completeness, the formulation of the 

2FLC is shown in Equation 15.  
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The question of floor-costs has also been raised and efforts to calculate their value with 

respect to minimum material costs for specific technologies has been carried out (Zweibel 

1999, Neuhoff 2005). Zweibel looked at long term goals for the solar market and concluded 

that costs of 1/3 USD/Wp could be reached, thus making it a financially viable option to 

fossil fuel electricity (1999). Another important issue raised by various authors is the need 

for more accuracy of data and the inherent uncertainty associated with the learning model 

itself (Papineau 2004, IEA 2000). Grübler et al. (1998) also listed uncertainty in learning as 

one of their “final caveats” and acknowledged the potential drawbacks of “‘best guess’ 

parameterisation” (p510). Furthermore inaccurate predictions and dynamic variability of the 

learning rate may lead to situations where prices do not fall as planned (IEA 2000) and where 

apparently optimal uptake strategies may in fact become very costly. One approach to this 

problem is to “incorporate stochastic learning curve uncertainty” directly into the model 

(Papineau 2004, p10), potentially reducing the danger of using the learning curve 

phenomenon. A stochastic style of modelling allows an appreciation of true mean expected 

values as well as describing the level of uncertainty in the prediction.  

A greater understanding of the learning curve phenomenon offers solutions to policy makers 

through the “creation of new energy technology options by exploiting the learning effect, 

e.g., through niche markets” (IEA 2000, p19). For much the same reasons, it may also be true 

that the private sector, armed with more accurate knowledge about long term learning rates 

and diffusion rates would be encouraged to invest in low-carbon technologies foreseeing 

their widespread uptake.  
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Chapter 3. The PAGE2002 Integrated Assessment 

Model 

As the focus of this present work is directly on the issue of abatement costs, and not on the 

calculation of impacts, it is requested that interested readers refer directly to Hope (2004) for 

a full explanation of all other aspects of the model such as the calculation of impacts and the 

carbon-cycle, both remaining unchanged in the modified PAGE2002 model presented here. 

3.1. Model Design and Stochastic Features 

The PAGE2002 model is a stochastic IAM of climate change that uses a number of 

simplified formulas to replicate the complex environmental and economic interactions as 

presented in the literature. Furthermore, the coefficients and data ranges used often come 

directly from the Third Intergovernmental Panel on Climate Change (IPCC 2001a, 2001b, 

2001c) assessment report (Hope 2004).  The stochastic features are designed to embrace the 

remaining uncertainty of the best available knowledge found in the literature, or the 

randomness of nature itself, and is generated through the ‘@Risk’ and ‘Risk Optimiser’ 

applications installed over an existing Excel platform (Palisade). These programs, designed 

specifically for stochastic modelling, allow the user to define the type of distribution used for 

all model inputs. The model simulates the outcome by running a set number of iterations and 

presents statistical summaries of the correlation coefficients between the model’s inputs and 

various outputs.  

The PAGE2002 model uses triangular distributions and a total of 5000 simulations are used 

for calculating the costs and impacts of stabilisation scenarios. The model is defined by ten 

different time intervals spanning 200 years, divides the world into eight regions, and 

considers three different gases as described in Table 2. 

As shown, the model uses shorter time steps at the beginning and uses longer time steps 

towards the end of the model’s time span, with time steps ranging from one year to 50 years. 

This has been done so that the “computational effort is concentrated in the earlier years 

because emission forecasts become less accurate with time, and because later emissions have 

a smaller influence on costs and realised global temperature increase to 2200” (Hope 2002).   
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Table 2   Definition of gases, regions and years 

g Gas i Year 
1 carbon dioxide (CO2) 0 2000 (base year)
2 methane (CH4) 1 2001
3 third gas (SF6) 2 2002

r Region 3 2010
0 The European Union (focus region) 4 2020
1 The United States of America 5 2040
2 Other OECD nations 6 2060
3 Africa and the Middle East 7 2080
4 China and Centrally Planned Asia 8 2100
5 India and South East Asia 9 2150
6 Latin America 10 2200
7 Former Soviet Union & E. Europe  

The standard version of PAGE2002 used in this research considers three greenhouse gasses 

that cause global warming, Carbon Dioxide (CO2), Methane (CH4) and Sulfur Hexafluoride 

(SF6). Only CO2 costs have been modelled using ETC in the modified version of 

PAGE2002, although a similar representation could be made for the other important 

greenhouse gas, CH4.  

3.2. The Standard PAGE2002 Model 

The standard PAGE2002 model does not incorporate energy or industry activity variables. 

Instead the model takes the simplifying assumption that costs can be directly associated to 

the emission reductions themselves. The calculation begins with each region’s allocation of 

an emissions path as described by the scenario being modelled, and compares this to the 

BAU scenario. The abatements made for each region is the difference between these two 

emission paths. Using a set of fixed unit costs associated with abatement, the model uses this 

information to calculate the total costs of abatements as well as the adaptive costs and 

impacts caused by the climate change as induced by the scenario’s emissions levels6.  

The abatement costs are divided into cheap and added-cost cutbacks. Cheap cutbacks refer to 

a cost that relates to all cutbacks made. The distribution of cheap cutback ‘costs’ can 

incorporate negative values in the standard version, describing situations where abatements 

actually lead to reduced overall costs. Added-cost cutbacks refer to cutbacks made above a 

certain fixed level relative to base year emissions, and incur costs that are added to the cheap 

                                                      
6 The model does not, on the other hand, include a feedback loop where high abatement levels could slow down 
the economy. 
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cutback costs. As the abatement levels increase, a larger proportion of cutbacks are made at 

the added-cost cutback level, increasing the average cost of abatement. The total costs of an 

abatement scenario as compared to the BAU scenario can then be compared to the total 

reduction in impacts gained through reduced global warming impacts. The difference of 

these two values represents the Net Present Value (NPV) of the abatement strategy being 

tested with a positive NPV meaning that discounted benefits outweigh the discounted costs. 

The details of the standard methods for calculating abatement costs and associated formulas 

for the three greenhouse gases, as developed in the standard PAGE2002 model, can be found 

in Hope (2004).  

Figure 4  Present value of future benefits or damages as a proportion of future value 

 

The PAGE2002 model has shown to be highly sensitive to the method of discounting used. 

The model allows for variable discount rates for each time period and region following what 

is known as the “prescriptive approach7”. 

                                                      ( )iriruir pgeptpdr ,,, −•+=               Equation 16  

This approach calculates the discount rate (drr,i), using a Ramsey type optimal growth 

function (Cline 2004) with a pure rate of time preference (ptp). This is shown in Equation 16 

where ‘eu’ represents the elasticity of utility and ‘g’ and ‘p’ show the growth rates of GDP 

                                                      
7 The preferred terminology for the IPCC (IPCC, 2001a) 
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and population respectively, with variables indexed by region ‘r’ and period ‘i’. The average, 

highest and lowest results of the discounting method can be seen in Figure 4. 

3.3. Modified Energy Aspects and Abatement Costs for CO2 

The energy/emission/abatement assumptions made in the standard PAGE2002 model have 

created an interesting challenge for the development of a learning mechanism in the modified 

PAGE2002 model. This is mainly due to the highly aggregate nature of CO2 abatement. For 

instance abatements can be the result of changing energy production methods on one hand or 

by reducing demand for energy on the other, each with different associated financial and 

social costs. Furthermore, abatements can be made in the electricity sector or transport sector, 

by either individual or industry consumers.  

Since PAGE2002 does not explicitly model the energy sector, costs are not defined as the 

difference between two forms of energy production, but instead as a function of CO2 

abatements directly. This means that, apart from an initial calibration procedure, all aspects 

relating to energy production are directly calculated in the PAGE2002 model in terms of 

abatements. This includes backstops that represent a cheaper way to abate CO2 rather than 

referring to a particular energy producing technology. Cheap cutbacks can represent any mix 

of technologies able to reduce CO2 emissions easily and cost effectively. Added-cost 

cutbacks again represent any number of technologies able to extensively cut back CO2 

emissions past a certain threshold, and these come at an extra cost.  

In the versions used in this study of both the standard and the modified PAGE2002 models, 

the cutbacks are calculated as the difference between the IMCP prescribed stabilisation 

scenarios and the BAU scenario. As one might expect, the BAU scenario has essentially zero 

abatement costs associated with it as it is assumed the most cost effective measure would 

generally be chosen. In the modified model, the threshold between cheap and expensive 

cutbacks has been designated in a slightly different manner to the standard model. Whereas 

the standard PAGE2002 model has defined the threshold level as a percentage of base year 

emissions, in the modified version they are calculated as a percentage of the region’s zero 

cost emissions, as indicated by the business-as-usual emissions for the year in question. 

Hence as the general tendency goes towards higher emission levels, the amount of cutbacks 

that are cheap or come with added-costs varies proportionally. 
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These changes can be described by Equations 17 through 20 for CBHi,CO2,r, which represents 

the added-cost cutbacks as a percentage of base year emission. All of the following formulas 

can be found in Annexe 1 where the formula number in square brackets [] refers to the 

formula numbers used in Hope (2004) which have been changed in the modified PAGE2002 

model with learning (for CO2 abatement only). Equation 18 for total cutbacks CBi,CO2,r  

remains unchanged however it has also been included for the sake of completeness. 

Equations 19 and 21 for CCBi,CO2,r  and CCBHi,CO2,r  are the cumulative cheap and added-cost 

cutbacks for a given region and time period where E0,CO2,r represents the base year emissions 

converting cutbacks measured in percentage points to physical cutbacks in million tonnes.  

Equation 22 for CBT and Equation 23 for CBHT represent the total amount of cheap 

cutbacks and added-cost cutbacks made for all regions for a particular time period ‘i’. 

3.4. Endogenous Technical Learning 

As well as the inclusion of a single factor learning function to the PAGE2002 model, other 

alterations in the cost structure have also had to be made. The standard model allowed the 

distribution of cheap cutback costs to include negative values, whereas in the modified model 

all cutback costs are positive. This implies that at any point in time, all technologies leading 

to abatements are more expensive than the cost of traditional fossil fuel energies. Due to 

positive cutback costs, the modified model implicitly includes a floor cost (albeit variable) 

for energy production equal to that of fossil fuels, beneath which it is assumed low-carbon 

alternatives cannot fall and towards which their costs gradually tend as a result of learning. 

Cost-reductions are described by an experience curve style function with a small autonomous 

learning element, however, unlike traditional experience curve functions that look at costs as 

a function of cumulative investments or output, we have applied the function to CO2 

abatements made.  

Cheap cutbacks, Equation 24, and added-cost cutbacks, Equation 25, for region ‘r’ and 

period ‘i’ are also shown. Initial costs are calculated as a fraction of the model’s focus region, 

the EU. rCPF  represents the ratio of the initial costs in region ‘r’ to those of the model’s 

focus region. Naturally, the value for the CPF of the focus region is unitary, i.e. 10 =CPF . 

Hence, the total CO2 abatement cost in US$(2000) for analysis year i and region r is as 

shown in Equation 26. 
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3.5. Choice of sector 

A particularly difficult choice with regards to the design of the modified model was to decide 

how or on which sector to base the learning assumptions and calibration. There are three 

main industrial sectors that emit CO2, the electricity sector, the transport sector and a variety 

of other industries such as the steel industry. Despite the fact that electricity accounts for less 

than half of CO2 emissions, it has been chosen as the representative sector for two main 

reasons. 

1) There exists a substantial body of literature in the area of electricity costs and ETC. 

This would allow a more rigorous representation of the model as a whole with the 

possibility for amendments as knowledge about the transport and other sectors 

becomes available. 

2) As the transport industry moves towards larger CO2 abatements, a similar set of 

technologies to the electricity sector abatements may be used. This includes the use of 

electric vehicles, hydrogen or flywheel power storage systems, distributed energy 

technologies and greater use of electrified public transport. This could lead not only 

to an increased importance of the electricity sector, but may also allow for a direct 

transfer of technologies from one sector to the other. 

Another important decision considers which of the many possible current and future 

technologies or strategies should be taken as representative of overall abatements. Despite 

the effectiveness that a sharp reduction in energy consumption would have on CO2 

emissions, it would be difficult for a government to, for instance, reduce peoples mobility 

without causing political problems (IPCC 2001c, p65). Innovation would seem to be the 

preferred method to reach substantial CO2 abatements.  

Present abatement technologies fall into three general categories, renewables, nuclear (both 

fission and fusion), and Carbon Capture and Sequestration (CCS). The first of these, 

renewables, are chosen as they represent the only known final solution to the problem of 

CO2 abatement without necessarily creating other future environmental problems such as 

nuclear waste. For the electricity industry, the most economic form of renewable energy that 

can still be expanded to fulfil a large proportion of our energy needs is onshore and offshore 

wind power. The use of wind power will be constrained by the availability of sites and the 
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overall stability of the electricity infrastructure due to the intermittent nature of the wind. 

Beyond a certain level, the energy system then enters into the expensive cutbacks, with the 

addition of ‘added costs’ to take into account the use of more expensive electricity generation 

technologies or changes in the overall infrastructure. For these added costs, solar energy is 

considered as the backstop technology. 

3.6. Cheap versus expensive cutbacks 

The threshold separating cheap and expensive cutbacks is based on an assumption that 

around 30% of reductions could be met through the production of relatively inexpensive 

renewable energy, such as wind power. As suggested by Smith et al. (2004) the variation in 

electricity production of wind power could start to become problematic at the 10% level, and 

may be moderately problematic with 20% or more of electricity production coming from this 

source. A distribution with a higher range of minimum 10%, average 30% and maximum 

limit of 50% has been used for three reasons. Firstly, as suggested by Smith, improvements 

in forecasting can improve the above ratio. Short of applying another learning curve to this 

value, a higher judgement-based upper limit has been used. Secondly, technological 

advancements may improve this ratio as experience builds in such areas. Furthermore, other 

renewable energies may form part of the mix and, so long as they are not highly correlated 

with wind production, would increase the ratio of cheap renewable electricity that could be 

produced without impacts on stability of supply.  

Added-cost cutbacks are those that relate to energy production requiring the use of expensive 

technologies such as solar photovoltaic electricity and, because of the increased level of 

production from renewable technologies, may also require an overhaul of electricity 

transmission and storage systems. 

3.7. Cost of cutbacks 

Both wind energy and particularly solar energy have been attacked for their high energy 

requirements in the production phase. According to the World Energy Council comparison of 

lifecycle emissions, an average amount of CO2/kWh over the entire product life cycle was 

found to be 60g of CO2/kWh for solar PV and 10g of CO2/kWh for wind power8(WEC, 

                                                      
8 The values used are also much the same as the values shown (IEA 2002) 
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2004). The CO2 abatement realised as compared to coal or gas powered electricity is 

described by Equations 27 and 28. It is important to note that the analysis has been used to 

get mean approximate values, however the model then uses very wide distributions. 

The value of 22c/kWh for solar PV plus distribution or storage costs as used in Equation 28 

is close to the values presented by Zwaan and Rabi (2004) for stand alone solar systems that 

included the significant storage costs required for large scale abatements by solar 

photovoltaics. 

Since the cost per tonne of CO2 remains positive in this version of the PAGE2002 model, the 

mean zero cost scenario is set at 5% below the CPI Baseline, suggesting that, on average, the 

first 5% of reductions as compared to the BAU scenario have a zero average cost. 

3.8. Initial Cumulative Experience  

In order for the model to take into account learning, an estimation of the total amount of CO2 

already saved through the two backstop technologies is required. As the values used 

represent the cutbacks made in the electricity industry, and do not consider similar types of 

abatements in other sectors that make up two thirds of all emissions, the historical 

abatements made for the electricity backstop are multiplied by three. This assumes that 

similar abatements and learning has taken place in these other sectors. Furthermore, as these 

values serve as a proxy, a wide distribution is used in order to encompass the true value.  

According to IEA data, the sum of wind capacity installations per year over the period from 

1990 to 1999 is around 50 000 with the units of MW*years. As there were small amounts of 

wind power before that date, the total value is increased to 60 000 MW years. A similar 

appraisal of available data has been made by Junginger et al. (2005) who have carried out an 

in depth study of global wind power learning rates. For the added-cost cutbacks, according to 

the BP website, the cumulative solar capacity*years is around 2 400 MW years up to but not 

including the year 2000. From these values we can calculate the cumulative historical CO2 

abatements made by each of these two technologies. 

3.9. Regional cross-over effects 

Our revised learning curve formula calculates the marginal cost of CO2 abatement, as a 

function of total abatement to date and, for the modified PAGE2002 model, incomplete 
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sharing of experience across the eight regions is allowed. For the initial experience gained 

before the year 2000, 100% sharing is assumed across all regions. The range for the Regional 

Crossover rate (RC) in the future starts from 100% sharing as used in the ERIS model 

(Barreto & Kypreos 2004b) , as well as partial sharing, while maintaining a relatively high 

average of 87% as shown in Table 3. The distribution used is judgement based, however with 

time a more accurate appraisal should be available. Furthermore, as suggested by Junginger 

et al. (2005), as large international companies service more clients around the world, learning 

becomes a global, rather than local phenomenon, perhaps leading to regional cross-over rates 

that should increase with time.  

3.10. Learning rates for endogenous technical change 

Due to the aggregate nature of CO2 abatement and the lack of previous work done to 

measure CO2 abatement learning rates explicitly, quite a wide distribution of learning rates is 

incorporated. In this way, it is the aim of the modified PAGE2002 model to encompass the 

general results presented in the literature, as put forward by Zwaan & Rabi (2004), Junginger 

et al. (2005), Rubin (2004), WEA (2000), IEA (2000) and Papineau (2004).  

For solar energy alone, the learning rates found in the literature have been quite varied. They 

have ranged from 35% to 18% in the IEA (2000) publication, depending on how and from 

which region the values have been calculated.  Papineau (2004), on the other hand, has found 

values of 5% to 19%, once again, depending on the chosen region and type of calculation 

made. The rates of mature technologies, on the other hand, such as coal and CCGT were 

found to be around 4% to 10% according to IEA (2000) and FGD and SCR scrubbers9 have 

also been found to have learning rates of 11% and 12% respectively (Rubin, 2004).  

The learning rates used for both types of technologies have a mean triangular distribution of 

0.13 with a maximum value of 0.22 and minimum value of 0.03. This range encompasses all 

values except the one highest value published by the IEA (2000) for solar, and also 

encompasses the learning rates of the more mature technologies.  These lower rates were 

included because abatements need to be modelled over the next two centuries, and it is 

                                                      
9 A process that reduces pollutants such as SO2 and NOx emissions, particularly important for fossil fuel 
powered electricity generation. 
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possible that learning rates for these new and growing technologies will eventually slow 

down to levels commonly found by mature technologies. 

3.11. Autonomous learning rates  

Table 3   Summary Table of coefficient ranges used. 

Code Key learning coefficient distributions Mean Units Min Mode Max 

 Uncertainty in baseline emission levels -5 % -30 -5 20 

CL CO2 abatement cost (cheap=L) 17 US$(2000)/t CO2 0 10 40 

CH CO2 abatement cost (added-cost=H) 250 US$(2000)/t CO2 100 250 400 

AL Autonomous technical change L 0.10 %/Year 0 0.1 0.2 

AH Autonomous technical change H 0.25 %/Year 0 0.25 0.5 

 Approx. Learning rate (LR) L 0.13  0.03 0.13 0.22 

BL Learning coefficient L 0.2  0.04 0.2 0.36 

 Approx. Learning rate (LR) H 0.13  0.03 0.13 0.22 

BH Learning coefficient H 0.2  0.04 0.2 0.36 

EL Initial experience stock L 1000 MT of CO2 100 1000 1900

EH Initial experience stock H 10  MT of CO2 1 10 19 

RC Regional crossover of experience L & H 87 % 70 90 100 

MAX maximum cheap emissions as percentage 
of zero cost emissions  30 

% 
10 30 50 

 

As well as endogenous technical learning, the modified PAGE2002 model also includes a 

small amount of autonomous technical learning. These values have been made on judgement 

and their coefficients are as shown in Table 310. A sensitivity analysis is carried out as part of 

this research to identify the most pertinent coefficients. 

                                                      
10 The autonomous technical change level is smaller for the cheap cutbacks due to the fact that the CPI baseline 
from which emission reductions are calculated shows a reduction in total emissions. This has been assumed to 
reflect increased competitivity of renewable energies that are near to being competitive already, and as such 
would already be part of the cheap cutbacks category. 
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Chapter 4. Modelling results 

4.1. CO2 concentration and global mean temperature for the 

‘450 ppm’ scenario 
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The standard CO2 emission scenario that is supposed to lead to a 450 ppm stabilisation target 

for the year 2100 is found to give a higher CO2 concentration when applied to the 

PAGE2002 model, as shown in Figure 5a. This is due to a feedback loop in the PAGE2002 

model’s carbon cycle which limits the ocean’s carbon sequestration ability as the temperature 

rises (Hope, 2004). This result also applies to the 500 and 550 ppm stabilisation scenarios. 

Furthermore, due to the stochastic nature of the model and the distributions for the input 

coefficients, it can be seen that the final concentration levels are far from certain. The 

resulting temperature rise by 2100, shown in Figure 5b, and abatement costs in Figure 7 

show similarly large variations.  

For the purpose of compatibility to other models, and since the focus of the comparison 

project is on preventative costs and innovation, and not on the carbon cycle, the projects 

standardised emission scenarios are used throughout. Hence any reference to, for example, a 

‘450 ppm’ stabilisation scenario refers in fact to a higher stabilisation level within the 

PAGE2002 model. Once again interested readers should refer to Hope (2004). 

 

 

 

Figure 5a CO2 Concentration in 2100                 
under the 450ppm scenario  with a mean of  
521ppm and 5% and 95% confidence levels at 
477ppm and 572ppm Respectively. 

 Figure 5b Global Mean temperature change in 
2100 from 2000 levels with a mean rise of 3.1 
degrees centigrade and 5% and 95% 
confidence levels at 1.8 and 4.6 Respectively.
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4.2.  CO2 abatement costs for the ‘450ppm’ scenario 

Figure 6 shows the inputs that have the biggest positive and negative influence on the total 

preventative costs. The importance of the learning coefficient (for added cost cutbacks) and 

the elasticity of utility, which contributes to the discount rate, are evident. They are even 

more important than present day unit costs of CO2 abatement for low and added-cost 

cutbacks or initial knowledge stock and autonomous technical change coefficients. 

Due to their evident importance, future versions of the PAGE2002 model would greatly 

benefit from more accurate distributions. With the existing model, the total preventative costs 

discounted to today in year 2000 dollars is between 2 and 13 Trillion dollars, with a mean 

value of 6 trillion dollars.  

Figure 6 Correlation sensitivity analysis of Total Preventative Costs for the ‘450 ppm’ 
stabilisation scenario. 

 

@RISK Student Version-0.237

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 Learning coeff. B2
 Initial CO2 cheap cutback costs

 Elasticity of utility
Pure time preference 

 Latin America CO2 range 
 Initial CO2 added cost cutback costs

 Learning coeff. B1
 Uncertainty in CO2 emissions

 Autonomous technical change
 Initial experience stock 1

  

 Correlation Coefficients 

@RISK Student Version
For Academic Use Only

@RISK Student Version
For Academic Use Only

@RISK Student Version
For Academic Use Only

@RISK Student Version
For Academic Use Only

@RISK Student Version
For Academic Use Only

@RISK Student Version
For Academic Use Only

@RISK Student Version
For Academic Use OnlyFor Academic Use OnlyFor Academic Use Only



   

Stephan Alberth & Chris Hope  Page 25 of 36 

 

 

Figure 6 Distribution of Total Preventative Costs for the ‘450 ppm’ stabilisation 
scenario. 

 

Despite the many differences in the way in which the original PAGE2002 model and the 

revised PAGE model with learning deal with abatement costs, the distribution of total 

preventative costs is remarkably similar. Not only is this true with the ‘450 stabilisation’ 

scenario, but similar results are found for the 500 and 550 scenarios. The third line 

representing the revised model with no learning (neither autonomous nor learning by doing) 

uses the costs of abatement if renewable technologies were to remain fixed at 2000 prices. 

Unsurprisingly, these costs are well above the model with endogenous technical change. 

4.3. The cost of prevention and global warming impacts. 

In terms of comparative costs, the average cost impacts including large scale discontinuities 

far outweigh the relatively minor costs of abatement, as shown in Figure 8. However, due to 

the effect of discounting, these two costs become comparable in present terms, with the NPV 

of abatement highly dependant on the abatement levels chosen. 

 The 450 ppm stabilisation scenario for example returns an NPV of $0.45 Trillion, whereas 

the 500 stabilisation rises to an NPV of $1.8 Trillion and the 550 stabilisation level falls 

again to $1.4 Trillion. Similar values were found for the PAGE2002 model with implicit 

technical learning, showing once again the similarity of the two models.  
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Figure 8 Cost of impacts versus preventative measures for 450ppm scenario 

 

The sensitivity analysis in Figure 9 reveals the importance of learning for the sum of total 

abatement and impact costs, with the added cost (BH) learning coefficient in 4th place.  

Figure 7. Correlation sensitivity analysis  of total impacts and costs 
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4.4. Cost of abatement over time for the ‘450 ppm’ scenario 

Figure 10a Unit CO2 abatement costs for 
cheap cutbacks – 450ppm 
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Figure 10b Unit CO2 abatement costs for 
added cost cutbacks – 450ppm 
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With the 450 emission levels, both the cheap and added cost cutbacks, as shown in Figure 

10a and Figure 10b, benefit from major cost reductions. Costs for the expensive cutbacks are 

quick to come down due to their relative newness as technologies and thus their existing 

position low down on the learning curve. This allows large cost reductions for relatively 

minor levels of technology deployment. As expected, this initial drop in costs slows down 

substantially as the technology moves further up the experience curve, and is less dramatic 

for the higher stabilisation levels. The variation in future costs is also substantial. As shown 

in Figure 10b, expensive cutbacks in the year 2050 may cost as much as $50/tCO2 at the 

95% level or as little as $3/tCO2 at the 5% level depending on the parameters chosen at 

random from the given ranges. The mean value was $15.7/tCO2.  
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Figure 11 gives perhaps the clearest representation of how the implementation of explicit 

learning has affected the PAGE2002 model. Due to higher initial costs, cutbacks over the 

first part of the century actually cost more than in the standard model. These cost increases 

are gradually reduced to the point where the two models predict similar outcomes around the 

year 2040. After this point, costs in the revised model remain well below the levels in the 

standard model as technology continues to advance. 

4.5. Comparison of the 450, 500 and 550 ppm scenarios 

Due to the large emission reductions required for all of the stabilisation scenarios it is found 

that the mean unit costs of CO2 cutbacks remained similar across the scenarios. For example, 

the mean added cost cutbacks in the year 2100 varied from $15.7/tCO2 for the 450ppm 

scenario to $18.3/tCO2 for the 550 scenario, down from over $200/tCO2 before learning 

occurred. For all three of the scenarios, the total abatement costs closely match those found 

in the standard PAGE2002 model where only implicit learning is used. 

 

 

0 

500000 

1000000 

1500000 

2000000 

2500000 

2000 2050 2100 2150 2200

$million 

95% explicit learning 

mean explicit learning 

5% explicit learning 

95% implicit learning 

mean implicit learning 

  5% implicit learning 

 

Figure 7.   Preventative Cost Comparison of implicit and explicit 
learning models – 450 ppm scenario 
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Chapter 5. Discussion and Conclusion 

5.1.  Main findings 

Despite a number of important changes in the way abatement costs were modelled and the 

addition of technical learning, the discounted cost results for the three abatement scenarios in 

question remained very similar to those in the standard PAGE2002 model. This was found to 

be the result of a relatively small increase in immediate abatement costs traded off against a 

much larger reduction in heavily discounted future abatement costs. It is important to note 

however that these results are highly sensitive to both the learning rate as well as the discount 

rate used. 

A clear advantage of using explicit learning within the model was the supplementary 

information that it provided, such as the distribution of unit abatement costs as a function of 

time. Another exercise that may prove interesting for the revised PAGE2002 model would be 

an optimisation scenario. Here the subtle differences in abatement cost structures may lead to 

results that diverge more from the standard model. Furthermore, the revised model should 

allow for more accurate optimisation predictions.  

5.2. Limitations and areas of future research 

Clearly there are limitations in the accuracy of the data as well as limitations of the learning 

model itself, due to a relative neglect in the literature of the ability for aggregate variables to 

perform in learning curve analysis. In our case, CO2 cutbacks represent extremely complex 

systems, and even the measurement of abatement costs poses interesting and new problems. 

However, part of the solution has been to use relatively broad distributions for all input 

values, and then to test the importance of the variables as part of the sensitivity analysis 

incorporated in the results. This highlights one of the practical advantages of stochastic 

modelling in areas of great uncertainty. 

The key areas for improvement, as described by the sensitivity analysis, would be to gather 

further data on the aggregate values of abatement learning rates, or to define and implement a 

more precise energy model system within the PAGE2002 model. Another important area of 

further research would be the comparison of abatement costs to the shadow price of CO2, 

particularly to move towards optimisation scenarios. 
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Annexe 1 

Table 4 –Descriptions of learning variables used 

         

Page 2002 modified formulas 

[41a]                                                    
{ }rgrgrg ZCCB ,,1,,1,,1 ER,0max −=

        %     Equation 17 

70 ,31 −=−= rg   

[41b]                                                    
{ }rgirgirgirgi ZCCBCB ,,,,,,1,, ER,max −= −        %     Equation 18     

     102 ,70 ,31 −=−=−= irg .  

[41c] 

( )( ) ( )( )
∑

−

=

−⋅⋅
+

−⋅⋅
=

1
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,2,0,2,,2,0,2,
,2, 100

E
100

E i

i

iirCOrCOiiirCOrCOi
rCOi

YloYhiCBYloYCB
CCB

%  Equation 19 

 

PC  Preventative Cost 
ptp Pure rate of time preference 
r  Region indices 
RC Regional Cross-over rate 
Y Representative Year
Yhi Last year of period given
Ylo First year of period given
ZC Zero Cost emissions

  

                      List of new variables used 
AH Autonomous learning (expensive cutbacks)
AL Autonomous learning (cheap cutbacks)  
BH Learning parameter for added cost cutbacks  
BL Learning parameter for cheap cutbacks
CB Cutbacks made 
CBHT Cumulative expensive cutbacks made for all region  
CBT Cumulative Cutbacks made for all region  
CCB  Cumulative Cutbacks made for region given  
CCBH  Cumulative expensive cutbacks made for region given  
CH Cost of added-cost control measures 
CL Cost of cheapest control measures  
CPF Regi onal cost factor as compared to region 0 (EU)  
E Base year emissions made 
EH Existing added-costs abatements made prior to period 1  
EL Existing low cost abatements made prior to period 1
g Gas type indices
i Time period indices
MAX  Abatements made before added costs begin to occur  
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[41d]         
{ }0,max ,2,,2,2,,2, rCOirCOrCOirCOi ZCMAXCBCBH ⋅−=

           %  Equation 20 

 

[41e]  
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r = 0 – 7, i  = 1 – 10 MTonnes Equation 21 

[41f]         
∑

=

=
7

0
,2,2,

r
rCOiCOi CCBCBT

   MTonnes Equation 22 

 

[41g]                      
∑

=

=
7

0
,2,2,

r
rCOiCOi CCBHCBHT

       MTonnes Equation 23 

 

[42] 0)1(
)1( ,2,2,

2,0,2,
YY

BL
rCOiCOi

rCOrCOi
iAL

EL
CCBRCCBTRCEL −

−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−+⋅+
⋅⋅= CPFCLCL

      101,70 ),2(1 −=−== irCOg  US$(2000)/tonne  Equation 24 

 

[43]  0)1(
)1( ,2,2,

2,0,2,
YY

BH
rCOiCOi

rCOrCOi
iAH

EH
CCBHRCCBHTRCEH −

−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−+⋅+
⋅⋅= CPFCHCH

                     US$(2000)/tonne  Equation 25 

 

[44]  {  E} ,2,0,2,,2,,2,,2,,2, rCOrCOirCOirCOirCOirCOi CBHCBPC ⋅⋅+⋅= CHCL     

US$(2000)                Equation 26   

 

Wind  - Cheap cutbacks     
2CO

Cost

Δ

Δ
 =    

kWhCO

kWht

/2

/cos

Δ

Δ
 

                                              =    6 (Wind power11) – 5 (Fossil fuel12) cents/kWh 

                                                            ((450g (gas) + 950g (coal) /2)-10 (wind))/kWh 

                                                =    14.5 US$(2000)/tonne CO2 saved                Equation 27 

 
                                                      
11 Cost estimates used for wind are within the range but on the lower end of those found by Neuhoff (2005) 

12 Year 2000 European average electricity wholesale price, down by 40% from 1995 levels according to IEA 
“Prices and taxes” data. 
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Solar  - Added-cost     
2CO

Cost

Δ

Δ
 =   

hkWCO

kWht

/2

/cos

Δ

Δ
 

=  22(solarPV13 / distribution)–5(Fossil)–1(wind) cents/kWh 

                                                                     ((450g (gas) + 950g (coal) /2)-60 (solar))/kWh 

                                                =   250 US$(2000)/tonne CO2 abated      Equation 28 

Cheap cutbacks - Wind14 

  Cumulative CO2 Reduction  = kW*Years*360*24 * CO2 saved/kWh * %load * 3 sectors 

    = 60 000 000*24*360*.0007*0.3*3 

    =327 m Tonnes of CO2 saved            Equation 29 

 

Added-cost cutbacks – Solar 

  Cumulative CO2 Reduction  = kW*Years*360*24 * CO2/kWh * %load * 3(other sectors) 

    = 2 500 000*360*24*0.0006*0.2*3 

                  =8 m Tonnes of CO2 saved                           Equation 30
   

                                                      
13 For solar PV, similar values have been used by other authors including Neuhoff (2005) and Zwaan & Rabi 
(2004) that include grid connecting technologies. 

14 Load factor of 0.3 of peak power for wind and 0.2 for solar has also been used by Neuhoff (2005) 


