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MIXED EXPANSION FORMULA FOR THE RECTANGULAR
SCHUR FUNCTIONS AND THE AFFINE LIE ALGEBRA A"

TAKESHI IKEDA, HIROSHI MIZUKAWA, TATSUHIRO NAKAJIMA
AND
HIRO-FUMI YAMADA

ABSTRACT. Formulas are obtained that express the Schur S-functions indexed by
Young diagrams of rectangular shape as linear combinations of “mixed” products
of Schur’s S- and @-functions. The proof is achieved by using representations of
the affine Lie algebra of type A(ll). A realization of the basic representation that is

of “DéQ)”—type plays the central role.

1. INTRODUCTION

We derive formulas of combinatorial nature that express the Schur S-functions
indexed by Young diagrams of rectangular shape, the rectangular S-functions for
short, as linear combinations of “mixed” products of S- and @Q-functions.

The rectangular S-functions are studied in [4, 7] from a viewpoint of representations
of the affine Lie algebra of type Agl) and AQZ). These functions appear as certain
distinguished weight vectors in the so called homogeneous realization of the basic
representation L(Ag) of Agl) (see [5]). On the other hand, the Schur @-functions arise
naturally in the representation of Déi)l—type Lie algebras ([8]). In the subsequent
pursuit of various realizations of L(Ag), our formula has come out as an application
of the isomorphism Déz) = Agl). Roughly speaking, we can realize the space L(Ag)
as a tensor product of the spaces of the Schur S- and @-functions. We call such a
“mixed” realization as the homogeneous realization of type DéQ).

Let us describe our main result in more detail. Let p be a partition and S, (t) be the
corresponding Schur S-function, where t = (¢1,%,t3,...), and each t; (j = 1,2,...) is
the j-th power sum p; divided by j. Let @\ (t) denote the Schur @-function indexed by
a strict partition A\, where t = (1,13, 15,...). Let O(m,n) denote the Young diagram
of the rectangular shape (n™). Set also S, (t?)) = S, (t2, %4, ts, .. .). Note that the set

{QA(1)S,.(t?); X is a strict partition and  is a partition}

forms a basis of the space of the symmetric functions.
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Let m,n be non-negative integers. Our formula (Theorem 3.1), called "mixed

expansion formula”, reads:

(1) 25 )Quio) (1) Sy () = Stmm (1),

where the summation runs over a certain finite set of strict partitions determined by
m and n. For each strict partition u, one associates a strict partition p[0], a partition
p[l] and a sign 6(u) = £1 in a combinatorial way. We prove the formula (1) by
comparing two realizations of L(Ag) mentioned above. The left hand side stems from
combinatorial descriptions of actions of Chevalley generators in the homogeneous
realization of type DgQ), whereas the right hand side is obtained via “vertex operator
calculus” (as employed in [4]) in the homogeneous realization of type A§1)

Here we explain the background of our study of rectangular Schur functions. As
written in the above, our formula arose from a study of the homogeneous realization
of the basic Agl)—module. We have two pictures of the principal realization of the basic
Agl)-module; one is described in terms of the 2-reduced Schur functions and is relevant
to the KAV hierarchy; the other is the twisted version, which is best described by the
@-functions and is relevant to the 4-reduced BKP hierarchy. On the other hand, the
homogeneous realization of that module is connected with the nonlinear Schrédinger
(NLS) hierarchy. Using an intertwining operator between the (non twisted) principal
and the homogeneous realizations, one can derive an expression of the rectangular
Schur functions and certain 7-functions of the NLS hierarchy ([4]).

The paper is organized as follows. In Section 2 we recall some combinatorial ma-
terials related to partitions. In Section 3 we state our main theorem on rectangular
Schur functions. In Section 4 we recall the spin representation of Agl) and describe the
action of Agl) in terms of Young diagrams. In Section 5 through the boson-fermion
correspondence, we obtain weight vectors as a sum of products of S- and - func-
tions. In Section 6 we consider f;-action (i = 0,1) and obtain the rectangular Schur
functions appearing in the right hand side of our formula through a vertex operator
calculus. Section 7 is devoted to the proof of the main theorem.

2. COMBINATORICS OF PARTITIONS

2.1. Partition. A partition is any non-increasing sequence of non-negative integers
A = (A1, Ag,...) containing only finitely many non-zero terms. We regard two parti-
tions as the same that differ only by a string of zeros at the end. The non-zero \;
are called the parts of A. The number of parts is the length of A, denoted by ¢(\).
A partition is strict if all parts are distinct. Denote by P (resp. SP) the set of all
partitions (resp. strict partitions).
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2.2. 1-addable node. Let A € SP. To each node x € X in the j-th column, we assign

a color ¢(z) by the following rule:

0 (=0,1 mod4)
co(x) =
1

(7=2,3 mod4)
For example, the nodes of A = (5,4,2,1) is colored as

1 100
110
1

o O O O

We say that a node z is i-addable to A, if AU {z} is a strict partition and c(x) = i.
The following nodes indicated by dots are the 1-addable nodes:

1 0 0 e
10

—_ = =

o o O O

Set
FN)={peSPudX |ul=\+0 Voep— cx) =i}

It is the set of strict partitions obtained from A\ by adding i-nodes ¢ times in succession.
Put

Cm=0@m-=3,...,5,1)  (m>0)
Cm =0 (m=0)
Cm=(—4m—1,...,7,3) (m<0).

If m > 0, we have I{(c,,) = 0 for £ > 2m and I{(c_,,) = () for £ > 2m + 1.
The strict partitions ¢, (m € Z) are called 4-bar cores, introduced in [1, 8].

Example 2.1. For m = —2 and i = 0 we have
I&(C—2> = {(87 3)7 (77 4)7 (77 3, 1)}7

[02(072) = {(97 3)? (87 4)7 (87 3, 1)> (77 4, 1)7 (77 5)}
and

IB(c_s) = {(9,4),(8,5),(9,3,1),(8,4,1),(7,5,1)}.
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2.3. 4-bar quotient. Let us introduce the notion of 4-bar quotient. We shall give a
bijection
SP—=ZxSPxP, X (m,A0],A1]).

For A € SP, the pair (A[0], A[1]) is called the 4-bar quotient of .

Let us identify the strict partition A with the subset A = {Aq,...,A\s} of N. For
a=0,1,2,3, weset A@ = {)\; € \|\; =a mod 4}. Namely

MY =Xn(dN+a) (a=0,1,2,3)

and we have A = L3_, A). The even part A® UX® C 2N of A gives a strict partition
A[0] via the inclusion

AOUAND coN — N, 2k k.

From the odd parts A", A we define a partition A[1] in the following way: First
consider two bijections

t:4N+1—Z5y (Ak+1—k), ":4AN+3 —Z o (4k+3— —k—1).

Then define a subset

M) = A U (Zeg — *(AD))
of Z. This is a “Maya diagram” in the sense that, if we express M(\) as an descending
sequence i > iy > ig > - - - , then the integer m = A — 4AG) satisfies i, = —k +m
for £ < 0. Then we can define

AL = (i +1—myis+2—mis+3—m,...)€P.
The integer m is called the charge of M()).
Lemma 2.2. (¢f. [1]) The map
SP—ZxS8PxP, X (m,A0],\[1])
15 a bijection.

We can illustrate the above construction. Let us look at a particular example,
A= (11,9,6,2,1,0). We draw a “4-bar abacus”:

0 @ 3
@
4 5 7
©
8 ® ©
10

12 13 15
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Here we do not put a bead on 0. We can read A” |JAY from the first column. Then
we have A\[0] = (3,1). From the second and the third columns, we can read

Then we obtain
M=(2,0,-1,-2,—4,-5,--+)

and draw a Maya diagram;

54 210 2
oo oo o | | |

Finally we have A\[1] = (2,1,1,1) and m = 1.

2.4. Sign. Each strict partition u in I{(c,,) or I§(c,,) has its own sign determined by
bead configuration.

Definition 2.3. Put a bead on 0 of the 4-bar abacus of X € If(c,,) (i = 0,1), if and
only if m < 0 and A\_,,.1 = 0. Let g(\) be the number of pair of beads on the central
runner at the positions bigger than that of each bead on the leftmost runner. For a
strict partition X\ € IX(c,,), we define the sign by
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We have 6(\) = (=1)' = —1. In the case of i = 0,m = —4,4 = 5 and \ =
(15,13,8,5), we have to put a bead on 0.

©® 1 3

2

4 @ 7

6

0 11

10

12 ® ®

We have 6(\) = (—1)*T1 = —1.

3. MAIN RESULT
Define hy,(t) by exp (Do, t,2") = > " hy(t)2". Let X be a partition. The Schur
S-function with shape A is defined as

Sa(8) = det (1 i-(0).

o) = 3 qu(t)2". For m > n > 0, we put

Define ¢,,(t) by exp (3 ton—12

Qm,n(t) = + ZZ Qm—H Qn z( )

If m < n we define Q,,,(t) = —Qum(t). Let A = (A1,..., Agy,) be a strict partition,
where Ay > -+ > Ay, > 0. Then the 2n x 2n matrix My = (Qx,,»,;) is skew-symmetric.

The Q-function @), is defined as
Qa(t) = PI(M)).

We can now state our main result which we call the mized expansion formulas.

Theorem 3.1. For non-negative integers m and n, we have

Y 5(1)Qua (DS () = Stam—nm (1),

,LLEI" Cm)

Z 5 Qu 0] ( (2)) - SD(n,2m+l—n) (t>7
ely

c—m)

I
where t = (t1,ta,t3,++) and S,(t®) = S, (W)|ujty;- If IM(cam) = 0, we agree that

both sides are equal to 0.
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Example 3.2. For m = 3 and n = 2, we have

Spa(t@) + Sp12 (1P + Sp2 (1) + Qs3(t) — Qs1(1)S1 (1) + Q31(£) Sa () = Spyany(t).

For m = -2 and n = 2, we have

—S3(t®) — Sy (t@) + S12(t@)Qa(t) + S1(tP)Qu(t) + Qua(t) = Stz (1).

1
4. THE SPIN REPRESENTATION OF Ag )

We consider the associative C-algebra B defined by the generators (3, (n € Z) and

the anti-commutation relations:

[ﬁma Bn]+ = ﬁmﬁn + ﬁnﬁm = (_1)m m+n,0-

These generators are often called the neutral free fermions. Note that 82 = 1/2.
Let F be the Fock module which is a left B-module generated by the vacuum |(}) with

Buldy =0 (n<0).

Similarly we consider the right B-module F' which is generated by the vacuum ({)|
with

@018, =0 (n>0).
Elements of F and F' are sometimes called “states”. We have a bilinear pairing

FlopF —C, (0uegsv|d) — (Dluv|d).

This pairing is called the vacuum expectation value. The vacuum expectation value
is uniquely determined by putting (#|0) = 1 and (0|5,|0) = 0.

Definition 4.1. Let X\ be a strict partition, which we may write in the form A\ =
(A, ..oy Agg) where Ay >« -+ > Aoy > 0. Here

Let |\) denote the state
|)‘> = /6)\1 e ﬁA2k|®> e F.
For A\ =0, we define |0) = |0).

Set f2° = (=1)'B;415_; (i > 0). They have the following combinatorial property
whose proof is left to the reader.
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Proposition 4.2. Let )\ be a strict partition. If i > 0, then we have

foo’)\> . |N> if 1 is a part of X and v+ 1 is not,

0 otherwise,
where p is obtained from X\ by replacing its part i by i + 1. If 1 is not a part of A,
then we have
27Yu) 1 ids not a part of X and £(A) =1 (mod 2),
o 1A =S | 1 is not a part of X and {(A\) =0 (mod 2),
0 otherwise,
where w is obtained from X by adding a part 1.
We shall use standard notation of the affine Lie algebra Agl) ([5]). Let e, fi, hi(i =
0,1) be the Chevalley generators, ag,; are the simple roots, § = ag + «; is the

fundamental imaginary root, A;(i = 0, 1) are the fundamental weights. The affine Lie
algebra Agl) acts on F by

fO = \/52 ﬁf4n+1ﬂ4n7 fl = \/§Zﬁf4nflﬁ4n+27

nez nez
€0 = \/52 BanB-an-1, €1 = \/52 ﬁ4n72ﬁ74n+1;
nez nez
hy=—hy+1=2 Z : Ban—1B-an+1
neZ

where we define the normal ordering for the quadratic elements by

Let Fo be the Agl)—submodule of F generated by |0} . Fy is isomorphic to the
irreducible highest weight module L(Ap).
Note the following expressions:
fo= VR ST VY fie h=VEY fFa+V2Y fFe
Jj=0 Jj=20 Jj=0 Jj=0

We need the following combinatorial lemmas:

Lemma 4.3. [8] A weight vector of the weight Ag — m*§ + may is given by |c,,) in
Fo.

The weight diagram of L(Ay) looks as follows. Maximal weights correspond to the
lattice points on the parabola, and other weights are on the lattice points under this
parabola.
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e—1) le1)

|e—2) |e2)

le_3) |es)
Lemma 4.4.
fe 3 \/—a()\)
rlem) = V2 > V2T,
' Al (em)

where a(A) = #{j | A; =0 mod 2} for A = (A1, A2, Aen)teyy) With € =1 if m
is odd, and €, = 0 if m is even.

Proof. Firstly we consider the case of i = 1. For A € I{(c,,) (m > 0), put
)\ — Cm = (Tl,TQ,‘ o ,Tm).
We compute

rolrg) o | = ofdir;=2}
— ole=t{jrj=1})/2

_ 9(-a(\+em)/2

b

where we note that a(\) counts a 0 if m =1 (mod 2). Then the coefficient of |\) is

4
\/§ f' o \/Ea(k)—&‘m
! = .

0 rylrgleeory,

Secondary we consider the case of i = 0. In this case we have to take 3;(y-part into
account. Let

)\ — Cp = (7’1,7"2, e ,Tm,rm+1)



10 IKEDA, MIZUKAWA, NAKAJIMA AND YAMADA

for X € I{(c_,,) (m > 0). Then the coefficient of |)\) is

1 V2 /!

2rm+16m | 7’1!7"2! s Tm! )

(2)

A computation similar to the case i = 1 above

7”1!7"2' . fr-m! — 2ﬁ{j§7'j:2} — 2(@7ﬁ{j§7‘j=1,j§m}*7“m+1)/2'

Here we divide our argument into two cases. First we assume that m is even. We
have

a(A) (Am41 =0)

ETHE T -1 =)

Secondly we assume that m is odd. We have

t{jiry =1Lj<m}=

By substituting these four results into (2) we obtain

£
1 \/§ g' a(/\)_Em
=2 :

2rmt1gm fl oyl

Example 4.5. folc_o) = /2 Bs85]0) + V2 3:64]0) + V2 323351 30]0).

5. BOSONIZATION

In this section we will establish the bozon-fermion correspondence and see the
states as the polynomials. In the course, products of Schur’s S- and @-functions arise
naturally.

We introduce the operators ¢, 1y, " (n € Z) by

(3) ﬁ4n = ¢2n7 ﬂ4n+1 = \/__1¢n7 ﬁ4n+2 == \/__1¢2n+17 B4n+3 == \/__1¢in_1,

which satisfy the anti-commutation relations:

[¢m7¢;]+ = 5m,n7 [¢;’¢Z]+ = [wm7¢n]+ =0,
[gbmv gbn]-ﬁ- = (_1)m5m+n,07
[w:w gbn]-ﬁ- = [l/fm, ¢n]+ = 0.
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Let us introduce the bosonic current operators

1

Hon =3 i i s Hamin =5 32 (“) 000 omen

keZ keZ

These operators generate an infinite-dimensional Heisenberg algebra
'57) — @n;ﬁOCHn @ CC,

where ¢ denotes the central element of $. One has
m

[Hrm Hn] = 5 6m+n,0 C.

We have a canonical $-module S[$)_], where $_ = @,,.(CH,, and S stands for
the symmetric algebra. Let ¢, = %H,n (n > 0). Then we can identify S[$)_] with

the ring C[t] = C[ty,ta,t3,...] of polynomials in infinitely many variables t,,. The
representation of $ on C[¢] is described as follows:
0
H,P(t) = 5-P(t), H_.P(t) =5 t.P(t) (n>0, P(t) € Clt]),

and c acts as identity.
If we introduce the space of highest weight vectors with respect to $ by

Q={lv) e F; Hylv) =0(Vm >0)},

then Q has a basis {|o,m); m € Z, 0 =0, 1}, where

U1+ o|0)  (m > 0) V200t - ¥o|0) (m > 0)
10,m) = q 10) (m=0), [L,m)=1qv2¢00) (m=0).
Yt [0)  (m < 0) V20005, -5, |0)  (m < 0)

Note that
Onlo,m) =0 (n<0), Yylo,m)=0 (n<m), Y:o,m)=0 (n>m).
Lemma 5.1.
em) = (V=17 V2 g, m).
Proof. We can easily obtain the equation by direct calculation. ([l

We introduce formal symbols 6 and e™® which satisfies 2 = 1 and define
Q= fH coem
meZ,o=0,1

Then H,, act on C[t] ® Q by H, ® id.
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Proposition 5.2. [2, 3] There exists a canonical isomorphism of $-modules
Q:F — C[t]@c0Q
such that ®(|o,m)) = 07¢"*(m € Z,0 =0, 1).

We will see C[t] ® Q as an Agl)-module via @ (cf. Proposition 6.1).
When we write ®(|v)) =3, Pno(t)07e™ for [v) € F, the coefficient P, ,(t) €
C[t] can be expressed in terms of the vacuum expectation value on B as follows:

Po(t) = (m,ole" D),  H(t) =Y t,H,
n=1
Introduce the states (m,o| € F' (m € Z,0 = 0,1) which are characterized by
(m,olo’,n) = 0mnbse (M,n € Z,0,0' =0,1) and
(m,0l60 =0 (n>0), (m,olgn=0 (n>m), (moli=0 (n<m)
We denote by W, the linear subspace of B spanned by ¢, (n € Z).

Lemma 5.3. If (u| € F',|v) € F be such that (u|¢, =0 (n > 0), ¢,|v) =0 (n <0),
then for w; € Wy, (i =1,...,2k) we have

(ulws - - waklv) = (ulv) PE((Dfwiw;]0))

Proof. A bilinear form on Wy is defined by (a,b) — (u|ablv), which has all the
properties of vacuum expectation value on W, except for the normalization condition.
Obviously, the normalization factor is given by (u|v). Hence the lemma follows. [

Lemma 5.4. [2, 3] We have
D(thiy -+ -y,

07 m)) = S(i1—m,i2—m ,,,,, is—m)—0ds (t(Q)) e(ers)a (Zl > > is > m)7

,,,,,

where 6, = (s — 1,5 —2,...,1,0) and t® = (t3,ty,...).
Lemma 5.3 and 5.4 give us
Lemma 5.5. Let j; > --- > j, >0, iy > --- > 1, >m. We have
B(s, -+ Djatliy - 1i]0,m)) = V27" Qsyju (1) Siy—am iy, (1)

Consequently we obtain the following proposition.

Proposition 5.6. Let A € If(c,,). There exists a 4-th root of unity Cpei(A\) such that

a(A . i
o(v2 )|,\)) = Cmei(A) Qx[o](t)S,\[l}(t(Q))H + o (m+(=1)"0a
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6. VERTEX OPERATORS

In this section we realize f; on B in terms of vertex operators. We introduce the

formal generating functions

= ZCan", P(z) = Z¢n22", V*(2) = Z¢in22 -

nez neEZ neL
For t = (t1,ts,t3,...), set

o0
= Ztnzn, &l(t, 2) Zt2nz §i(t, 2) Zth 12"
n=1

On the space Q, we define the operators 6, e*® and z°by

0.0 ™) = ™, f.em = eme,

eia.<0 ema) = _0 e(mil)&) eiaiema — e(mil)a

Y

and
0 (fem™) = 2m(0e™) (0=0,1).
Proposition 6.1. [2, 3] One has
D p(2)0 ! = \/5*1651(t,z)e—2§1(§t7zfl)97
O Y(2)0! = oE0(t,2) o260 (Dr,2~ Yo 2Ho.
DY (2)0 ! = e—fo(tvz)6260(@@*1)6—042—21{07
where 0, = (2,324,400,

Lemma 6.2. [2, 3] Let Vi(z) = V2 ® ¢(—2)0*(2) 71, Vo (2) = V2 ® ¢(2)ah(z) D!

Then we have

Vi(z) = e 602 2€@e D ggmay, =20 7 () f(02) o=2E@00 ) e 200

Due to Lemma 6.2, we can write the actions of f; on C[t] ®¢ Q in terms of formal

contour integrals
R R e AL
where we set ¢ A(z)dz = A_; for A(z) =), Ap2".
Lemma 6.3.
Vi(ze) - Vilza)Vi(z1) = (—1) T A(2)2el -0 55 602) 20152, 600z D gle(-Dita o )21 Ho,
Here A(2) = det(2] ") 1< <0
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Proof. By V°(2), we denote the “zero mode” fe(~D"@22(-1"Ho of V(). Then by using

*20 and z;[QHOeia = 2. et 20 o have

the relations fe™ = —e : ;

y4
V;O(Zz) .. ViO(ZQ)V;O(Zl) _ (_1)e(e2—1) (H jzj 2> 93 lza(21 o 24)2(_1)1110.

j=1
On the other hand, by the standard calculus of vertex operators, we have
2
VGV ) = (1= 2) V) o),
22
where we set V™ (z) = e(7V'€®2) V() = e(=D"120=")  Then the lemma follows
immediately. 0
For A € P, we denote by
SM(2) = det(2" 1) / det (227

the Schur function with respect to z = (z1,...,2¢). We use the well-known orthogo-
nality relation

1 N pdzr dz
Gy LS CFEAR T T =,

where we denote by T¢ = {z = (z;) € C*; |z;| = 1}, the (-dimensional torus. Since
Su(z) =SH(zh) = SH(2 Y, ..., 2 Y) for 2 € T, we can rewrite this relation as

@) o PSS T A ) e o = 08
We also utilize the following form of the Cauchy identity:
(5) Y El03) Z S*(2)Sx(t)
LM<
We remark
e i1 €(tz) Z (—1)PISA(2) S ().
(N)<e

Here X is the conjugate of \.
Put

1
/ .
F = Eff (i=0,1).
Lemma 6.4. For m > 0, we have
féz)emefma = C/_m,g715D(f,2m+l—€) (t) emﬁe(km)a,

where
o =V —eme (1<e<2m-—1).
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Similarly we have
FO07 ™ = ¢ 1 S (1) 07 0%,
where
Cyln,m = (_1)m€'
Proof. In view of the relation e - §™ = (—1)0™ . ¢** we have by Lemma 6.3

£(0—1)

Vo(ze) -+ Vo(z1) 0me™ ™ = (_1)4””(_1) 2 A(z)262jé(t,Zj)gmMe(me)a(Zl . Zl,)ﬂm_

Using this, we have

féf)emefma
T
,/ f j{ é(é 1) 2(21 o Zg>_2m_162j g(t’zj)dzl . ng . (_1>£m‘9m+€6(—m+€)o¢

—E
— ./ ( ) SD t2mt1—0) ( )Hm-i-e —m—+£)a

where we carried out the contour integral by using (4) and (5). Here we remark that

In a similar way, we have ¢, ,, = (—1)™f. We just note that Soem—re(—t) =
(=1) =9854 2m—g)(t). Detail of the calculation is left to the reader. O

The following pictures express the fo- and fi-action to each maximal weight.
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7. PROOF OF THE MAIN THEOREM

First we have
—Em a(A
@ (£0en) =V 3 e (V2™ )
XEIf (em)

= V2T GV Qapg (D) S (¢7)) 7 el e

AEIf(cm)
Second we have seen in the previous section that
A0(ew)) =v2 " \/—_1_m§/n,é,15D(2m—e,z) (t)gmtielm=e
and
FOD(lelm)) =v2 VT 0 SOam— i (DI,

for m > 0. Therefore all we have to show is the following:
Lemma 7.1. For \ € I{(c,,), we have

Cm,e,z'(/\) =V _1_|m|C;n,€,i6(/\)'
We prove this lemma together with looking at some examples for help. We set

|>‘> = ﬁh e B)\23|®>7

where A\ > -+ > Ay > 0. If we ignore the factor v/—1 in (3), the set {8y, .., O}

is decomposed into the three parts

I:{wila--'vwn\]}a «7:{7?;7---7@9;1“}7 K:{¢k17"'7¢ka}a

where a, N and N* the number of ¢’s, 1’s and ©*’s respectively and i; > ---

in > 0> 741 > > gne, kg > - >k, > 0. Actually, I = {iy,...,in} ( resp.
J = {j1,...,jn-}) is nothing but t(AM) (resp. *(A®)), and K = {ky,..., k,}
corresponds to A(® UX®) . According to the following operations, we shall rewrite |\)

into its “normal form” such as in Lemma 5.5.
{OP. 0} Rewrite §’s into ¢’s, ¢’s and ¢*’s according to (3).
{OP. 1} Rewrite the vacuum |0) into ¢_19_s- - - 1;,. 10, jn=), i.e.,

0) = Y_19_g -y,

{OP. 2} Repeat the following operations in order of m = ji, jo, -+, jn+:

OajN*>'

Move ¢}, to the left side of v, and remove ¢ by using the relation
{OP. 3} Move ¢;’s to the left of ¢’s in order of j = ki, ky- - - , k.
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We divide our argument into four cases.
Case 1: We consider the case of i = 1 and m = 2n > 0. We have

C;n,Z,l = (_sz =L

Our purpose is to rewrite |A) into its normal form and compute a factor ¢, ¢;(A). We
employ the following example for our understanding;

m =6, =06 and u = (21,19,13,10,7,2) € I{(cs).

In this case, since all elements of K are odd, {OP. 0} gives a factor y/—1". In our

example, we have

Bo1 BroBrsBrofrBal0) ' VT hs” s st 50 ]0).

We neglect the factor «/—1 for the moment. After rewriting the vacuum according
to {OP. 1}, we move 97 to the left side of ¢;,. Then 95 jumps —j; — 1 elements of
ZUK and 9_1,--- ,%;,11. Therefore this operation gives a factor

(_1)(*j1*1)+(*j1*1) — 1.

*

We apply this operation to ¢} in oder of m = 2,3,---, N*. Then we have a factor

(—1)(=Im=m)+(gm=m) _
for each m. Therefore {OP. 2} gives a factor
()N —

In our example, we have
VLU sthadat 5o l0) 2 VT s hadnt it g5 0, —5)

O () T s tsdsdrts1batr-atr-s0, —5)
(~ 1) 1PV T stsdadn b v-gibal0, =5)
= VT Usthadadn a0, —5).

From the Definition 2.3, the factor occurred by {OP. 3} is §(\). We see this fact
through our example. We compute

{oP.2}

VT sadsortd_s_al0, —5) 27 V=T (1) gtsuadnt1y_sa0, —5)
OB /10 (1) 251t tstd_1th_5tb_4]0, —5)
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and obtain §(u) = (—1)?*2 from 4-bar abacus of y;

0 1 3
®

4 5 ®
6

8 9 11
.
12 @ 15
14

18 17 ©
20

22 @ 23

Now we obtain
IA) = SOV=T" By - Bty - i ity gy

and Cpe1(A) = 0(A)v/—1". Since m is even, we have (. e1(A) = 5()\)\/—1_m§,’n7m,
Case 2: We consider the case of i =1 and m = 2n + 1 > 0. Then we have

Cea = (=)™ = (=1)"

The only difference from the case 1 is the existence of ¢g = [y in the right end

OajN*>

of B’s. The element ¢y causes a factor (—1)V™V"  because ¢y is jumped by the
elements of J ({OP. 2}) and jump the elements of Z ({OP. 3}). For example, if
p=(19,13,10,7,2) € I{(cs), then we have

1) = BrgBrsBr0620010)
O 210" s 161 60]0)
O T st b1 Y_at_gth_sp_5]0, =5).
In this example ¢y causes a factor (—1)2™3. Therefore we have
IA) = SOV=L " ()N e Bty - i by gy et

By using the relations

07.7]\/*)

m=N+N*"+a
{=a+2N*,

we have (—1)V+N" is equal to (—1)™%. Thus we have (. 1(A) = 6(A)y/—1 " (=1)™*
and Gp,ei(A) = (5()\)\/—1_|m| ! since m is odd.

m,l,1)
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The following case 3 and case 4 are for ¢ = 0. In these cases, we should put a bead
on 0 of the 4-bar abacus when A,,;1 = 0 (m > 0). If we take care of this point, we
can rewrite |\) into its normal form and determine (,¢0(\) as same as the case 1
and case 2.

Case 3: We consider the case of ¢ =0 and m = 2n + 1 > 0. Then we have

2m—1)¢ £
C/—m,Z,O =V _1( : =V —1.

Take an element A\ € I{(c_,,). Remark that A, = 0 or 1. We further divide this
case into subcases:

(a) Apy1 =0, i.e., |c_,) has the end term By = ¢,
(b) Ams1 =1, ie., |c_y,) does not have the end term [y = ¢o.

Let us first consider the subcase (a). We have

) = SO )Y G Gy i g U e

OujN*>

and
Comeo(N) = V=TT ()N

Here we remark the factor (—1)" caused by ¢y ({OP. 2}) and the factor (—1)" caused
by ¢ is included by 6(\) ({OP. 3}). For example, set u = (12,9, 3,0) € Ij(c_3). Then

we compute

1) = Br2Bo33/%]0)
O T 00t 160/ 0)
O T deat® b [0, 1)
O 212 (—1) Gatbaciol 0, 1)
OB /T (1) (=1) deutial0, —1)

and §(u) = (—1)*Y from the 4-bar abacus of p

©@ 1 ®
2
4 5 7
6
8§ ® 11
10
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Now we have the relations

N-—N*=-m+/
a+N+N*"=m+1.

We eliminate N from these equations to get a +2N* = 2m — ¢ + 1. Then we have

ComeoN) = S(NV=T ™",

which is equal to §(A\)v/—1 ¢ m.o- For subcase (b), we have vy instead of the
absence of ¢y. So the same factor (—1)"" occurs when we exchange 1, and *’s.
Then the formula is the same as (a). The readers can check this fact by using an
example p = (12,9, 3,1) € I}(c_3).

Case 4: We consider the case of i = 0 and m = 2n > 0. Then we have

2m—1)¢ 4
Comgo = V1"V =y

Consider A € I§(c_,,). We further divide this case into the subcases:

(¢) Apy1 = 1ie., |A) ends with ¢
(d) Apmy1 = 01i.e., |A) does not contain ¢y nor .

In the case (c), we remark, by the similar argument of the case 1, {OP. 2} does not
cause any sign change and {OP. 3} causes (\)(—1)". We have

A = VoIS O ()N By bty - itz By - U U

0, jn+)
and
Cmeo(N) = V15 () (- 1N
For example, if pn = (15,13,9,4,1) € I$(c_4), then we compute
1) = BisBi35016150/0)
OLM T atbadatbodotr—1$-at_gih_4|0, —4)

{op.2} VT 1)3+2+3@/}3¢2@¢0¢0¢—1¢—2¢—3|O’ —4)
{OE3} \/—_14(—1)2¢2¢3¢2¢0@¢—1¢—2¢—3|0’ —4)
O VT =121 hadotsthatiot 1thath5]0, —4)
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and 6(p) = (—1)? from the 4-bar abacus:

0 @ 3
2
@ 5 7
6 }
8 (9 11
10
12 ® O
Since we have
a+2N =/0+2
m is odd,

we can see (_m 0 = 6(/\)\/—1*"1(’_%&0. The subcase (d) is the most cumbersome
one. By the definition, we include the sign (—1)" in 6(\) arising from the exchanges
of the dummy “¢y” and v’s. So we have to compensate the same factor to get

Comeo(N) = V=1""5(0) (=",

The readers can check this fact by using an example y = (15,13,9,4) € I3(c_y4).
Now using a + 2N = ¢, we have (_,,, 10(A) = §(A)v/—1 ‘. Since m is even, we have
/—m_l —L _ /—_1—m—f _ \/_—1—m<_;n7€70.
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