Math. J. Okayama Univ. 53 (2011), 39-53

LIFTED CODES OVER FINITE CHAIN RINGS

STEVEN T. DOUGHERTY, HONGWEI LIU AND YOUNG HO PARK

ABSTRACT. In this paper, we study lifted codes over finite chain rings. We use γ -adic codes over a formal power series ring to study codes over finite chain rings.

1. INTRODUCTION

Codes over finite rings have been studied for many years. More recently, codes over a wide variety of rings have been studied.

In this paper, we shall first define a series of chain rings and describe the concept of γ -adic codes. Then we will study these γ -adic codes over this class of chain rings.

We begin with some definitions. Throughout we let R be a finite commutative ring with identity $1 \neq 0$. Let $R^n = \{(x_1, \dots, x_n) | x_j \in R\}$ be an R-module. An R-submodule C of R^n is called a linear code of length n over R. We assume throughout that all codes are linear.

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the inner product of \mathbf{x}, \mathbf{y} is defined as follows: $[\mathbf{x}, \mathbf{y}] = x_1y_1 + \cdots + x_ny_n$. If C is a code of length n over R, we define $C^{\perp} = \{\mathbf{x} \in \mathbb{R}^n \mid [\mathbf{x}, \mathbf{c}] = 0, \forall \mathbf{c} \in C\}$ to be the orthogonal code of C. Notice that C^{\perp} is linear whether or not C is linear.

It is well known that for any linear code C over a finite Frobenius ring, $|C| \cdot |C^{\perp}| = R^n$.

A finite ring is called a *chain ring* if its ideals are linearly ordered by inclusion. In particular, this means that any finite chain ring has a unique maximal ideal.

A finite chain ring is a Frobenius ring, so the identity above holds for codes over finite chain rings. If $C \subseteq C^{\perp}$, then C is called self-orthogonal. Moreover, if $C = C^{\perp}$, then C is called self-dual.

Let R be a finite chain ring, \mathfrak{m} the unique maximal ideal of R, and let γ be the generator of the unique maximal ideal \mathfrak{m} . Then $\mathfrak{m} = \langle \gamma \rangle = R\gamma$,

Mathematics Subject Classification. Primary: 94B05, Secondary: 13A99.

Key words and phrases. Finite chain rings, lifted codes, γ -adic codes.

where $R\gamma = \langle \gamma \rangle = \{\beta \gamma \mid \beta \in R\}$. We have

(1)
$$R = \langle \gamma^0 \rangle \supseteq \langle \gamma^1 \rangle \supseteq \cdots \supseteq \langle \gamma^i \rangle \supseteq \cdots \langle \gamma^e \rangle = \{0\}.$$

Let e be the minimal number such that $\langle \gamma^e \rangle = \{0\}$. The number e is called the nilpotency index of γ .

Let |R| denote the cardinality of R and R^{\times} the multiplicative group of all units in R. Let $\mathbb{F} = R/\mathfrak{m} = R/\langle \gamma \rangle$ be the residue field with characteristic p, where p is a prime number. We know that $|\mathbb{F}| = q = p^r$ for some integers qand r and $|\mathbb{F}^{\times}| = p^r - 1$. The following lemma is well-known (see [10], for example).

Lemma 1.1. Let R be a finite chain ring with maximal ideal $\mathfrak{m} = \langle \gamma \rangle$, where γ is a generator of \mathfrak{m} with nilpotency index e. For any $0 \neq r \in R$ there is a unique integer i, $0 \leq i < e$ such that $r = \mu \gamma^i$, with μ a unit. The unit μ is unique modulo γ^{e-i} . Let $V \subseteq R$ be a set of representatives for the equivalence classes of R under congruence modulo γ . Then

(i) for all $r \in R$ there exist unique $r_0, \dots, r_{e-1} \in V$ such that $r = \sum_{i=0}^{e-1} r_i \gamma^i$;

(ii)
$$|V| = |\mathbb{F}|;$$

(iii) $|\langle \gamma^j \rangle| = |\mathbb{F}|^{e-j}$ for $0 \le j \le e-1.$

By Lemma 1.1, the cardinality of R is:

(2)
$$|R| = |\mathbb{F}| \cdot |\langle \gamma \rangle| = |\mathbb{F}| \cdot |\mathbb{F}|^{e-1} = |\mathbb{F}|^e = p^{er}.$$

Let R be a finite ring. We know from [10] that the generator matrix for a code C over R is permutation equivalent to a matrix of the following form:

The matrix G above is called the standard generator matrix form of the code C. It is immediate that a code C with this generator matrix has cardinality

(4)
$$|C| = |\mathbb{F}|^{\sum_{i=0}^{e-1} (e-i)k_i} = (p^r)^{\sum_{i=0}^{e-1} (e-i)k_i} = (p^{re})^{k_0} (p^{r(e-1)})^{k_1} \cdots (p^r)^{k_{e-1}}.$$

In this case, the code C is said to have type

(5)
$$1^{k_0} (\gamma)^{k_1} (\gamma^2)^{k_2} \cdots (\gamma^{e-1})^{k_{e-1}}.$$

2. LIFTS OF CODES OVER FINITE CHAIN RINGS

Let R be a finite chain ring with the maximal ideal $\langle \gamma \rangle$, where the nilpotency index of γ is e and $R/\langle \gamma \rangle = \mathbb{F}$. We know that for any element a of R, it can be written uniquely as

$$a = a_0 + a_1\gamma + \dots + a_{e-1}\gamma^{e-1}$$

where $a_i \in \mathbb{F}$, see [10] for example. For an arbitrary positive integer *i*, we define R_i as

$$R_{i} = \{a_{0} + a_{1}\gamma + \dots + a_{i-1}\gamma^{i-1} \mid a_{i} \in \mathbb{F}\}$$

where $\gamma^{i-1} \neq 0$, but $\gamma^i = 0$ in R_i , and define two operations over R_i :

(6)
$$\sum_{l=0}^{i-1} a_l \gamma^l + \sum_{l=0}^{i-1} b_l \gamma^l = \sum_{l=0}^{i-1} (a_l + b_l) \gamma^l$$

(7)
$$\sum_{l=0}^{i-1} a_l \gamma^l \cdot \sum_{l'=0}^{i-1} b_{l'} \gamma^{l'} = \sum_{s=0}^{i-1} (\sum_{l+l'=s} a_l b_l') \gamma^s$$

It is easy to get that all the R_i are finite rings. Moreover, we have the following lemma, the proof of which can be found in [9].

•

Lemma 2.1. For any positive integer i, we have

(i)
$$R_i^{\times} = \{\sum_{l=0}^{i-1} a_l \gamma^l \mid 0 \neq a_0 \in \mathbb{F}\};$$

(ii) the ring R_i is a chain ring with maximal ideal $\langle \gamma \rangle$.

We define R_{∞} as the ring of formal power series as follows:

$$R_{\infty} = \mathbb{F}[[\gamma]] = \{\sum_{l=0}^{\infty} a_l \gamma^l \,|\, a_l \in \mathbb{F}\}.$$

The following lemma is well-known.

Lemma 2.2. We have that (i) $R_{\infty}^{\times} = \{\sum_{l=0}^{\infty} a_l \gamma^l | a_0 \neq 0\};$ (ii) the ring R_{∞} is a principal ideal domain.

Lemma 2.3. Let C be a nonzero linear code over R_{∞} of length n, then any generator matrix of C is permutation equivalent to a matrix of the following form:

 $G(S) = \begin{pmatrix} \gamma^{m_0} I_{k_0} & \gamma^{m_0} A_{0,1} & \gamma^{m_0} A_{0,2} & \gamma^{m_0} A_{0,3} & & \gamma^{m_0} A_{0,r} \\ & \gamma^{m_1} I_{k_1} & \gamma^{m_1} A_{1,2} & \gamma^{m_1} A_{1,3} & & \gamma^{m_1} A_{1,r} \\ & & \gamma^{m_2} I_{k_2} & \gamma^{m_2} A_{2,3} & & \gamma^{m_2} A_{2,r} \\ & & \ddots & \ddots & & \\ & & \ddots & \ddots & & \\ & & & \gamma^{m_r-1} I_{k_{r-1}} & \gamma^{m_r-1} A_{r-1,r} \end{pmatrix},$

where $0 \leq m_0 < m_1 < \cdots < m_{r-1}$ for some integer r. The column blocks have sizes k_0, k_1, \dots, k_r and the k_i are nonnegative integers adding to n.

Proof. Before proving the lemma, we note that all nonzero elements in R_{∞} can be written in the form $\gamma^{i}a$, where $a = a_{0} + a_{1}\gamma + \cdots + \cdots$ with $a_0 \neq 0$ and $i \geq 0$. This means that a is a unit in R_{∞} .

Let Ω be an arbitrary set of generators of code \mathcal{C} , a generator matrix Gcan be obtained by eliminating those elements which can be written as a linear combination of other elements in the set Ω . In order to obtain the standard form in this lemma, we do the following operations. First we take one nonzero element with form $\gamma^{m_0}a$, where m_0 is the minimal nonnegative integer such that $m_0 = \min\{i \mid \gamma^i a \text{ is a coordinate in an element of } \Omega\}$. By applying column and row permutations and by dividing a row by a unit, the element in position (1,1) of matrix G can be replaced by γ^{m_0} . Since those nonzero elements which are in the first column of matrix G have the form $\gamma^{j} b$ with $j \geq m_0$ and b a unit, these elements can be replaced by zero when they are added by the first row which multiplied by $-\gamma^{j-m_0}b^{-1}$. Then we continue this process by using elementary operations, and the standard form of G is obtained.

Definition 1. A code C with generator matrix of the form given in Equation (8) is said to be of type

$$(\gamma^{m_0})^{k_0} (\gamma^{m_1})^{k_1} \cdots (\gamma^{m_{r-1}})^{k_{r-1}}$$

where $k = k_0 + k_1 + \cdots + k_{r-1}$ is called its rank and $k_r = n - k$.

A code C of length n with rank k over R_{∞} is called a γ -adic [n, k] code. We call k the rank of C and denote the rank by $\operatorname{rank}(\mathcal{C}) = k$.

(8)

The following lemma and theorem are direct generalization from [3]. The proofs are simply generalizations to those for the p-adic case.

Lemma 2.4. If C is a linear code over R_{∞} then C^{\perp} has type 1^m for some m.

We denote the transpose of a matrix M by M^T .

Theorem 2.5. Let C be a linear code of length n over R_{∞} . If C has a standard generator matrix G as in equation (8), then we have

(i) the dual code \mathcal{C}^{\perp} of \mathcal{C} has a generator matrix

(9)
$$H = \begin{pmatrix} B_{0,r} & B_{0,r-1} & \cdots & B_{0,2} & B_{0,1} & I_{k_r} \end{pmatrix},$$

where
$$B_{0,j} = -\sum_{l=1}^{j-1} B_{0,l} A_{r-j,r-l}^T - A_{r-j,r}^T$$
 for all $1 \le j \le r$;
(*ii*) rank(\mathcal{C}) + rank(\mathcal{C}^{\perp}) = n.

Example 1. Let C be a code of length 5 over R_{∞} with a standard generator matrix as follows:

(10)
$$G = \begin{pmatrix} \gamma^2 & 0 & \gamma^2(1+\gamma) & \gamma^2(1+\gamma+\gamma^2) & \gamma^2 \\ 0 & \gamma^2 & \gamma^2(1+2\gamma) & \gamma^2(1+\gamma^2) & \gamma^2(1+3\gamma^2) \\ 0 & 0 & \gamma^4 & \gamma^4(1+\gamma^2) & \gamma^4(2+\gamma) \end{pmatrix}.$$

Then the dual code \mathcal{C}^{\perp} of \mathcal{C} has a generator matrix

(11)
$$H = \begin{pmatrix} \gamma^3 & 2\gamma + 2\gamma^3 & -(1+\gamma^2) & 1 & 0\\ 1+3\gamma+\gamma^2 & 1+5\gamma-\gamma^2 & -(2+\gamma) & 0 & 1 \end{pmatrix}.$$

This gives that

$$\operatorname{rank}(\mathcal{C}) + \operatorname{rank}(\mathcal{C}^{\perp}) = 3 + 2 = 5.$$

For two positive integers i < j, we define a map as follows:

(12)
$$\Psi_i^j : R_j \quad \to \quad R_i,$$

(13)
$$\sum_{l=0}^{j-1} a_l \gamma^l \quad \mapsto \quad \sum_{l=0}^{i-1} a_l \gamma^l.$$

If we replace R_j with R_{∞} then we denote Ψ_i^{∞} by Ψ_i . Let a, b be two arbitrary elements in R_j . It is easy to get that

(14)
$$\Psi_i^j(a+b) = \Psi_i^j(a) + \Psi_i^j(b), \ \Psi_i^j(ab) = \Psi_i^j(a)\Psi_i^j(b).$$

If $a, b \in R_{\infty}$. We have that

(15)
$$\Psi_i(a+b) = \Psi_i(a) + \Psi_i(b), \ \Psi_i(ab) = \Psi_i(a)\Psi_i(b).$$

We note that the two maps Ψ_i and Ψ_i^j can be extended naturally from R_{∞}^n to R_i^n and R_i^n to R_i^n respectively.

Remark 1. The construction method above gives a series of chain rings (up to the principal ideal domain R_{∞}) as follows:

 $R_{\infty} \rightarrow \cdots \rightarrow R_{e} \rightarrow R_{e-1} \rightarrow \cdots \rightarrow R_{1} = \mathbb{F}$

Definition 2. Let i, j be two integers such that $1 \leq i \leq j < \infty$. We say that an [n,k] code C_1 over R_i lifts to an [n,k] code C_2 over R_j , denoted by $C_1 \leq C_2$, if C_2 has a generator matrix G_2 such that $\Psi_i^j(G_2)$ is a generator matrix of C_1 . It can be proven that $C_1 = \Psi_i^j(C_2)$. If C is a [n,k] γ -adic code, then for any $i < \infty$, we call $\Psi_i(C)$ a projection of C. We denote $\Psi_i(C)$ by C^i .

Lemma 2.6. Let M be a matrix over R_{∞} with type 1^k . If M' is a standard form of M, then for any positive integer $i, \Psi_i(M')$ is a standard form of $\Psi_i(M)$.

Proof. We note that M has type 1^k , hence $\Psi_i(M)$ has type 1^k . We know M' is a standard form of M, this implies that there exist elementary matrices P_1, \dots, P_s and Q_1, \dots, Q_t such that

$$P_1 \cdots P_s M Q_1 \cdots Q_t = M'.$$

Hence for any positive integer i, by Equation (15), we have that

$$\Psi_i(P_1)\cdots\Psi_i(P_s)\Psi_i(M)\Psi_i(Q_1)\cdots\Psi_i(Q_t)=\Psi_i(M').$$

Since the inverse matrices of elementary matrices are the same type of elementary matrices, we have that $\Psi_i(M')$ is a standard form of $\Psi_i(M)$. \Box

Remark 2. In the lemma above we must assume that M has type 1^k . For example, if we take

(16)
$$M = \begin{pmatrix} \gamma^5 & \gamma^5 + \gamma^7 \\ 0 & \gamma^{15} \end{pmatrix}$$

then some of its projections are the zero matrix.

Let \mathcal{C} be a code over R_{∞} , we know that $\mathcal{C} \subseteq (\mathcal{C}^{\perp})^{\perp}$. But in general $\mathcal{C} \neq (\mathcal{C}^{\perp})^{\perp}$. For example, let $\mathcal{C} = \langle \gamma^i \rangle$ be a code of length 1 over R_{∞} for some *i*. Then $\mathcal{C}^{\perp} = \{0\}$ and $(\mathcal{C}^{\perp})^{\perp} = R_{\infty}$ since R_{∞} is a domain. This means that $\mathcal{C} \subseteq (\mathcal{C}^{\perp})^{\perp}$. We have the following proposition.

Proposition 2.7. Let C be a linear code over R_{∞} . Then $C = (C^{\perp})^{\perp}$ if and only if C has type 1^k for some k.

Proof. First we note that $(\mathcal{C}^{\perp})^{\perp} \subseteq \mathcal{C}$. If \mathcal{C} is a linear code then by Lemma 2.4, the code \mathcal{C}^{\perp} is a linear code with type 1^{n-k} for some k. This implies that $(\mathcal{C}^{\perp})^{\perp}$ has type $1^{n-(n-k)} = 1^k$.

Proposition 2.8. Let C be a self-orthogonal code over R_{∞} . Then the code $\Psi_i(C)$ is a self-orthogonal code over R_i for all $i < \infty$.

Proof. We have that $[\mathbf{v}, \mathbf{w}] = 0$ for all $\mathbf{v}, \mathbf{w} \in \mathcal{C}$ since \mathcal{C} is a self-orthogonal code over R_{∞} . This gives that

$$\sum_{l=1}^{n} v_l w_l \equiv \sum_{l=1}^{n} \Psi_i(v_l) \Psi_i(w_l) \pmod{\gamma^i} \equiv \Psi_i([\mathbf{v}, \mathbf{w}]) \pmod{\gamma^i} \equiv 0 \pmod{\gamma^i}.$$

Hence $\Psi_i(\mathcal{C})$ is a self-orthogonal code over R_i .

By Lemma 2.6, we know that for a γ -adic [n, k] code \mathcal{C} of type 1^k , $\mathcal{C}^i = \Psi_i(\mathcal{C})$ is an [n, k] code of type 1^k over R_i . In the following, we consider codes over chain rings that are projections of γ -adic codes.

Note that $\mathcal{C}^i \preceq \mathcal{C}^{i+1}$ for all *i*. Thus if a code \mathcal{C} over R_{∞} of type 1^k is given, then we obtain a series of lifts of codes as follows:

$$\mathcal{C}^1 \preceq \mathcal{C}^2 \preceq \cdots \preceq \mathcal{C}^i \preceq \cdots$$

Conversely, let C be an [n, k] code over $\mathbb{F} = R_e/\langle \gamma \rangle = R_1$, and let $G = G_1$ be its generator matrix. It is clear that we can define a series of generator matrices $G_i \in M_{k \times n}(R_i)$ such that $\Psi_i^{i+1}(G_{i+1}) = G_i$, where $M_{k \times n}(R_i)$ denotes all the matrices with k rows and n columns over R_i . This defines a series of lifts C_i of C to R_i for all i. Then this series of lifts determines a code C such that $C^i = C_i$, the code is not necessarily unique.

Let \mathcal{C} be a γ -adic [n, k] code of type 1^k , and G, H be a generator and parity-check matrices of \mathcal{C} . Let $G_i = \Psi_i(G)$ and $H_i = \Psi_i(H)$. Then G_i and H_i are generator and parity check matrices of \mathcal{C}^i respectively.

Lemma 2.9. Let $i < j < \infty$ be two positive integers, then

(i)
$$\gamma^{j-i}G_i \equiv \gamma^{j-i}G_j \pmod{\gamma^j};$$

(ii) $\gamma^{j-i}H_i \equiv \gamma^{j-i}H_j \pmod{\gamma^j}.$

Proof. Let \mathbf{x}_l be the row vectors of G_i and \mathbf{y}_l be the row vectors of G_j . Since we have that $G_i = \Psi_i^j(G_j)$, this implies that $\mathbf{x}_l \equiv \mathbf{y}_l \pmod{\gamma^i}$. Thus $\gamma^{j-i}\mathbf{x}_l \equiv \gamma^{j-i}\mathbf{y}_l \pmod{\gamma^j}$.

The proof of (ii) is similar.

Lemma 2.10. Let $i < j < \infty$ be two positive integers. Then (i) $\gamma^{j-i} \mathcal{C}^i \subseteq \mathcal{C}^j$; (ii) $\mathbf{v} = \gamma^i \mathbf{v}_0 \in \mathcal{C}^j$ if and only if $\mathbf{v}_0 \in \mathcal{C}^{j-i}$; (iii) $\operatorname{Ker}(\Psi_i^j) = \gamma^i \mathcal{C}^{j-i}$.

Proof. (i) Let \mathbf{v} be an arbitrary codeword of \mathcal{C}^i . By Lemma 2.9 (ii), we have that

$$H_j(\gamma^{j-i}\mathbf{v})^T = \gamma^{j-i}H_j\mathbf{v}^T \equiv \gamma^{j-i}H_i\mathbf{v}^T \equiv \mathbf{0} \,(\,\mathrm{mod}\,\gamma^j).$$

This implies that $\gamma^{j-i} \mathcal{C}^i \subseteq \mathcal{C}^j$.

(ii) We know that $\gamma^i \mathbf{v}_0 \in \mathcal{C}^j$ if and only if $\gamma^i H_j \mathbf{v}_0^T \equiv \mathbf{0} \pmod{\gamma^j}$. By Lemma 2.9(ii), we have that

$$\gamma^{i}H_{j} = \gamma^{j-(j-i)}H_{j} \equiv \gamma^{j-(j-i)}H_{j-i} \equiv \gamma^{i}H_{j-i} \pmod{\gamma^{j}}.$$

This implies that $\gamma^i \mathbf{v}_0 \in \mathcal{C}^j \Leftrightarrow \gamma^i H_{j-i} \mathbf{v}_0^T \equiv \mathbf{0} \pmod{\gamma^j}$. Hence we have that

$$\gamma^i \mathbf{v}_0 \in \mathcal{C}^j \Leftrightarrow H_{j-i} \mathbf{v}_0^T \equiv \mathbf{0} \pmod{\gamma^{j-i}} \Leftrightarrow \mathbf{v}_0 \in \mathcal{C}^{j-i}.$$

(iii) By the definition of Kernel and (ii), we know that the vector $\mathbf{v} \in \text{Ker}(\Psi_i^j)$ if and only if $\mathbf{v} \in \mathcal{C}^j$ and $\mathbf{v} = \gamma^i \mathbf{v}_0$, where $\mathbf{v}_0 \in \mathcal{C}^{j-i}$. Thus the result follows.

Remark 3. Lemma 2.10(iii) shows that the Hamming weight enumerator of $\operatorname{Ker}(\Psi_i^j)$ is equal to the Hamming weight enumerator of \mathcal{C}^{j-i} .

We now study the weights of codewords in the lifts of a code. Suppose i < j. By Lemma 2.10(i), we know that any weight of a codeword in C^i is a weight of a codeword in C^j . This implies that if $\mathbf{v} \in C^i$ then there exists a $\mathbf{w} \in C^j$ such that $w_H(\mathbf{w}) = w_H(\mathbf{v})$, where $w_H(\cdot)$ denotes the Hamming weight of a vector. But in general the converse is not always true. We have the following theorem.

46

Theorem 2.11. Let C be a γ -adic code. Then the following two results hold. (i) the minimum Hamming distance $d_H(C^i)$ of C^i is equal to $d = d_H(C^1)$ for all $i < \infty$;

(ii) the minimum Hamming distance $d_{\infty} = d_H(\mathcal{C})$ of \mathcal{C} is at least $d = d_H(\mathcal{C}^1)$.

Proof. (i) Let \mathbf{v}_0 be a vector of \mathcal{C}^1 with minimal Hamming weight d of \mathcal{C}^1 . By Lemma 2.10(iii), we know that $\gamma^{i-1}\mathbf{v}_0$ is a codeword of \mathcal{C}^i with Hamming weight d. Hence $d_H(\mathcal{C}^i) \leq d$ for all i. Now we use induction on the index number i and assume that $d_H(\mathcal{C}^j) = d$ for all $j \leq i$. Suppose that $d_H(\mathcal{C}^{i+1}) < d$ and there is a non-zero vector $\mathbf{v} \in \mathcal{C}^{i+1}$ such that $w_H(\mathbf{v}) < d$. Then $w_H(\Psi_i^{i+1}(\mathbf{v})) \leq w_H(\mathbf{v}) < d$. Since we have that $d_H(\mathcal{C}^i) = d$ we must have that $\Psi_i^{i+1}(\mathbf{v}) = \mathbf{0}$ in \mathcal{C}^i . This implies that $\mathbf{v} \in \operatorname{Ker}(\Psi_i^{i+1})$. By Lemma 2.10(iii), we get that $\mathbf{v} = \gamma^i \mathbf{v}_0$, where $\mathbf{0} \neq \mathbf{v}_0 \in \mathcal{C}^1$. This means that $0 < w_H(\mathbf{v}) < d$, which is a contradiction.

(ii) If there exists a non-zero codeword $\mathbf{v} \in \mathcal{C}$ such that $w_H(\mathbf{v}) < d$, then let N be a sufficiently large integer such that $\Psi_N(\mathbf{v}) \neq \mathbf{0}$. We would have that $w_H(\Psi_N(\mathbf{v})) \leq w_H(\mathbf{v}) < d$, which is a contradiction.

In the remainder of this section, we focus on MDS and MDR codes. It is well known (see [7]) that for codes C of length n over any alphabet of size m

(17)
$$d_H(C) \le n - \log_m(|C|) + 1.$$

Codes meeting this bound are called MDS (*Maximal Distance Separable*) codes.

For a code C of length n over an finite Quasi-Frobenius ring R, Horimoto and Shiromoto (see [6]) define the following:

 $r_C = \min\{l \mid \text{there exists a monomorphism } C \to R^l \text{ as } R - \text{modules}\}.$

If C is linear, then we have (see [6])

(18)
$$d_H(C) \le n - r_C + 1.$$

Codes meeting this bound are called MDR (*Maximal Distance with respect* to Rank) codes. For codes over R_{∞} we say that an MDR code is MDS if it is of type 1^k for some k. See [4] and [5] for a discussion of this bound for several rings. A linear code C over R is called free if C is isomorphic as a module to R^t for some t. This implies that if C is free then $r_C = \operatorname{rank}(C)$. We have the following two theorems.

Theorem 2.12. Let C be a linear code over R_{∞} . If C is an MDR or MDS code then C^{\perp} is an MDS code.

Proof. Assume \mathcal{C} is a code of length n and rank k with $d_H(\mathcal{C}) = n - k + 1$. Then we know that \mathcal{C}^{\perp} is type 1^{n-k} . Since R_{∞} is a domain, we get that any n-k columns of the generator matrix of \mathcal{C}^{\perp} are linearly independent. This gives that the minimum Hamming weight of \mathcal{C}^{\perp} is n-(n-k)+1=k+1. \Box

Theorem 2.13. Let C be a linear code over R_i , and \tilde{C} be a lift code of C over R_j , where j > i. If C is an MDS code over R_i then the code \tilde{C} is an MDS code over R_j .

Proof. Assume C is a [n, k] code with minimum Hamming distance d_H . We have that $d_H = n - k + 1$ since C is an MDS code. Let \mathbf{v} be a codeword of C such that $w_H(\mathbf{v}) = d_H$. Then for any nonzero codeword $\mathbf{v}' \in C$, we have that $w_H(\mathbf{v}') \ge w_H(\mathbf{v})$. We know that \tilde{C} is a [n, k] code, and that \mathbf{v} can be viewed as a codeword of \tilde{C} since we can write $\mathbf{v} = (v_1, \dots, v_n)$ where

$$v_l = a_0^l + a_1^l \gamma + \dots + a_{i-1}^l \gamma^{i-1} + 0\gamma^i + \dots + 0\gamma^{j-1}.$$

Let \mathbf{w} be any lifted codeword of \mathbf{v} . Then we have that $w_H(\mathbf{w}) \ge w_H(\mathbf{v})$. On the other hand, for any lift codeword \mathbf{w}' of \mathbf{v}' , where $\mathbf{v}' \in C$, we also have that $w_H(\mathbf{w}') \ge w_H(\mathbf{v}') \ge w_H(\mathbf{v})$. This means that the minimum Hamming weight of \tilde{C} is d_H and this implies that \tilde{C} is an MDS code for all j > i. \Box

3. Self-Dual γ -adic Codes

In this section, we describe self-dual codes over R_{∞} . We fix the ring R_{∞} with

$$R_{\infty} \to \cdots \to R_i \to \cdots \to R_2 \to R_1$$

and $R_1 = \mathbb{F}_q$ where $q = p^r$ for some prime p and nonnegative integer r. The field \mathbb{F}_q is said to be the underlying field of the rings. The following theorem can be found from [7].

Theorem 3.1. (i) If p = 2 or $p \equiv 1 \pmod{4}$, then a self-dual code of length n exists over \mathbb{F}_q if and only if $n \equiv 0 \pmod{2}$;

(ii) If $p \equiv 3 \pmod{4}$, then a self-dual code of length n exists over \mathbb{F}_q if and only if $n \equiv 0 \pmod{4}$.

Theorem 3.2. If i is even, then self-dual codes of length n exist over R_i for all n.

Proof. Let C be the code with generator matrix $G = \gamma^{\frac{i}{2}} I_n$. It is clear that C is self-orthogonal over R_i since $\gamma^{\frac{i}{2}} \gamma^{\frac{i}{2}} = \gamma^i = 0$ in R_i . We have that $|C| = (q^{\frac{i}{2}})^n = (q^i)^{\frac{n}{2}} = |R_i|^{\frac{n}{2}}$. Therefore C is self-dual.

Theorem 3.3. Let *i* be odd and *C* be a code over R_i with type $1^{k_0}(\gamma)^{k_1}(\gamma^2)^{k_2}\cdots(\gamma^{i-1})^{k_{i-1}}$. Then *C* is a self-dual code if and only if *C* is self-orthogonal and $k_j = k_{i-j}$ for all *j*.

Proof. We know that C^{\perp} has type $1^{k_i}(\gamma)^{k_{i-1}}(\gamma^2)^{k_{i-2}}\cdots(\gamma^{i-1})^{k_1}$. Hence the only if part follows. Now assume that C is a self-orthogonal code of length n and $k_j = k_{i-j}$ for all j. Let $l = \lfloor \frac{i}{2} \rfloor$, where $\lfloor \rfloor$ denotes the greatest integer function. Since i is odd, we have

(19)
$$n = \sum_{j=0}^{i} k_j = 2 \sum_{j=0}^{\frac{i-1}{2}} k_j = 2 \sum_{j=0}^{l} k_j.$$

Since C is self-orthogonal, C is self-dual if and only if $|C| = (q^i)^{\frac{n}{2}}$. We have that

$$\log_q |C| = \sum_{j=0}^{i-1} (i-j)k_j = i\sum_{j=0}^{i-1} k_j - \sum_{j=0}^{i-1} jk_j = in - \sum_{j=0}^{i} jk_j = in - S,$$

where $S = \sum_{j=0}^{i} jk_j$. By Equation (19), we have that

$$S = \sum_{j=0}^{i-1} jk_j + i(n - \sum_{j=0}^{i-1} k_j) = in - \sum_{j=0}^{i} (i-j)k_j$$
$$= in - \sum_{j=0}^{i} (i-j)k_{i-j} = in - \sum_{j=0}^{i} jk_j = in - S.$$

This implies that $S = \frac{in}{2}$ and $\log_q |C| = in - \frac{in}{2} = \frac{in}{2}$. Therefore C is self-dual.

Theorem 3.4. If C is a self-dual code of length n over R_{∞} then $\Psi_i(C)$ is a self-dual code of length n over R_i for all $i < \infty$.

Proof. Since \mathcal{C} is a self-dual, we have that $\mathcal{C} = \mathcal{C}^{\perp}$. This gives that $\mathcal{C} = \mathcal{C}^{\perp} = (\mathcal{C}^{\perp})^{\perp}$. By Proposition 2.7, the code \mathcal{C} has type 1^k for some k. Hence we have that k = n - k, this gives that $k = \frac{n}{2}$. It is easy to get that $\operatorname{rank}(\Psi_i(\mathcal{C})) = \frac{n}{2}$ and so $\Psi_i(\mathcal{C})$ has $(p^{ri})^{\frac{n}{2}}$ elements. By Proposition 2.8, $\Psi_i(\mathcal{C})$ is self-orthogonal. Therefore $\Psi_i(\mathcal{C})$ is a self-dual code. \Box

Corollary 3.5. Let C be a self-dual code of length n over R_{∞} . Recall that p is the characteristic of the underlying field \mathbb{F} . We have

- (i) If p = 2 or $p \equiv 1 \pmod{4}$, then $n \equiv 0 \pmod{2}$;
- (ii) If $p \equiv 3 \pmod{4}$, then $n \equiv 0 \pmod{4}$.

Proof. This result follows by Theorem 3.4 and Theorem 3.1. \Box The following theorem gives a method to construct a self-dual code over

 \mathbb{F} from a self-dual code over R_i .

Theorem 3.6. Let *i* be odd. A self-dual code of length *n* over R_i induces a self-dual code of length *n* over \mathbb{F}_q .

Proof. Let C be a code over R_i of type $1^{k_0}(\gamma)^{k_1}(\gamma^2)^{k_2}\cdots(\gamma^{i-1})^{k_{i-1}}$ with standard generator matrix G as follows:

Let

where $l = \lfloor \frac{i}{2} \rfloor$. By Equation (19), \tilde{G} is a $(\frac{n}{2}) \times n$ matrix over R_i . Let $\tilde{\tilde{G}} = \Psi_1^i(\tilde{G})$ be the matrix over \mathbb{F}_q and let $\tilde{\tilde{C}}$ be the code over \mathbb{F}_q with generator matrix $\tilde{\tilde{G}}$. It is clear that rank $(\tilde{\tilde{C}}) = \frac{n}{2}$, and thus it remains to

show that $\tilde{\tilde{C}}$ is self-orthogonal. Let $\mathbf{v}'', \mathbf{w}''$ be any two row vectors of $\tilde{\tilde{G}}$, suppose $\mathbf{v}'' = \Psi_1^i(\mathbf{v}')$ and $\mathbf{w}'' = \Psi_1^i(\mathbf{w}')$, where $\mathbf{v} = \gamma^s \mathbf{v}'$ and $\mathbf{w} = \gamma^t \mathbf{w}'$ are row vectors of G with $s, t \leq l$. We have that

$$0 = [\mathbf{v}, \mathbf{w}] = [\gamma^s \mathbf{v}', \gamma^t \mathbf{w}'] = \gamma^{s+t} [\mathbf{v}', \mathbf{w}'].$$

This implies that $[\mathbf{v}', \mathbf{w}'] = 0$ since s+t < i. In particular, the constant term in their inner product is zero. This means that $[\mathbf{v}'', \mathbf{w}''] = [\mathbf{v}', \mathbf{w}'] = 0$. \Box

Theorem 3.7. Let $R = R_e$ be a finite chain ring, $\mathbb{F} = R/\langle \gamma \rangle$, where $|\mathbb{F}| = q = p^r, 2 \neq p$ a prime. Then any self-dual code C over \mathbb{F} can be lifted to a self-dual code over R_{∞} .

Proof. Let $G_1 = (I | A_1)$ be a generator matrix of C over $R_1 (= \mathbb{F})$. Since C is self-orthogonal, we have that

$$I + A_1 A_1^T \equiv 0 \pmod{\gamma}.$$

We show in the following by induction that there exist matrices $G_i = (I \mid A_i)$ such that $\Psi_i^{i+1}(G_{i+1}) = G_i$ and $I + A_i A_i^T \equiv 0 \pmod{\gamma^i}$ for all *i*. Suppose we have that $I + A_i A_i^T = \gamma^i S_i$. Let $A_{i+1} = A_i + \gamma^i M$, we want to find a matrix *M* such that

(20)
$$I + A_{i+1}A_{i+1}^T \equiv 0 \pmod{\gamma^{i+1}}.$$

We know

$$I + A_{i+1}A_{i+1}^{T} = I + A_{i}A_{i}^{T} + \gamma^{i}(A_{i}M^{T} + MA_{i}^{T})$$

= $\gamma^{i}(S_{i} + A_{i}M^{T} + MA_{i}^{T}).$

This gives that the matrix M should satisfy

(21)
$$S_i + A_i M^T + M A_i^T \equiv 0 \pmod{\gamma}.$$

In order to find all solutions to this equation, we consider the map η : $M_n(\mathbb{F}) \to M_n(\mathbb{F})$ defined by $\eta(M) = A_i M^T + M A_i^T$. It is easy to get that η is linear and the kernel of η is

 $\operatorname{Ker}(\eta) = \{ KA_i \mid \text{where } K \text{ is skew-symmetric} \}.$

It follows since $A_i M^T + M A_i^T = 0$ if and only if $(M A_i^T)^T + M A_i^T = 0$ if and only if $M A_i^T = K$ is skew-symmetric if and only if $M = K(A_i^T)^{-1} = -KA_i$.

Note that $A_i A_i^T = -I$ over \mathbb{F} and gcd(2, p) = 1. This implies that 2 is a unit in \mathbb{F} . Hence

$$\eta(2^{-1}S_iA_i) = 2^{-1}(A_iA_i^tS_i^T + S_iA_iA_i^T) = 2^{-1}(-2)S_i = -S_i.$$

Therefore the solutions to (20) exist and they are given by

$$A_{i+1} = A_i + \gamma^i M,$$

where $M \equiv 2^{-1}(S_i + K)A_1 \pmod{\gamma}$ with any skew-symmetric K.

References

- Dougherty S. T., Kim S. Y., Park Y. H., Lifted codes and their weight enumerators, Discrete Math., 305, 2005, 123–135.
- [2] Dougherty S. T., Liu H., Independence of Vectors in Codes over Rings, to appear in Des. Codes and Cryptogr.
- [3] Dougherty S.T., Park Y.H., Codes over the p-adic integers, Des. Codes and Cryptogr., 39, 2006, 65–80.
- [4] Dougherty S.T., Shiromoto K., *MDR Codes over* Z_k , IEEE Trans. Inform. Theory, **46**, 2000, 265–269.
- [5] Dougherty S.T., Shiromoto K., Maximum Distance Codes over Rings of Order 4, IEEE-IT, 47, No 1, January 2001.
- [6] Horimoto, H. and Shiromoto, K., A Singleton bound for linear codes over quasi-Frobenius rings, Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Hawaii (USA), 1999, 51–52.
- [7] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (with W. C. Huffman), Cambridge University Press, 2003.
- [8] Hungerford T.W., Algebra, Springer-Verlag, New York, 1974.
- [9] McDonald B. R., Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
- [10] Norton G. H., Sălăgean A., On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory, 46, 2000, 1060–1067.

STEVEN T. DOUGHERTY DEPARTMENT OF MATHEMATICS UNIVERSITY OF SCRANTON SCRANTON, PA 18510, USA *e-mail address*: doughertys1@scranton.edu

Hongwei Liu Department of Mathematics Huazhong Normal University Wuhan, Hubei 430079, P. R. China *e-mail address*: h_w_liu@yahoo.com.cn

LIFTED CODES OVER FINITE CHAIN RINGS

Young Ho Park Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *e-mail address*: yhpark@kangwon.ac.kr

> (Received December 10, 2008) (Revised November 10, 2009)