Math. J. Okayama Univ. 53 (2011), 39-53

# LIFTED CODES OVER FINITE CHAIN RINGS 

Steven T. Dougherty, Hongwei Liu and Young Ho Park


#### Abstract

In this paper, we study lifted codes over finite chain rings. We use $\gamma$-adic codes over a formal power series ring to study codes over finite chain rings.


## 1. Introduction

Codes over finite rings have been studied for many years. More recently, codes over a wide variety of rings have been studied.

In this paper, we shall first define a series of chain rings and describe the concept of $\gamma$-adic codes. Then we will study these $\gamma$-adic codes over this class of chain rings.

We begin with some definitions. Throughout we let $R$ be a finite commutative ring with identity $1 \neq 0$. Let $R^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{j} \in R\right\}$ be an $R$-module. An $R$-submodule $C$ of $R^{n}$ is called a linear code of length $n$ over $R$. We assume throughout that all codes are linear.

For $\mathbf{x}, \mathbf{y} \in R^{n}$, the inner product of $\mathbf{x}, \mathbf{y}$ is defined as follows: $[\mathbf{x}, \mathbf{y}]=$ $x_{1} y_{1}+\cdots+x_{n} y_{n}$. If $C$ is a code of length $n$ over $R$, we define $C^{\perp}=\{\mathbf{x} \in$ $\left.R^{n} \mid[\mathbf{x}, \mathbf{c}]=0, \forall \mathbf{c} \in C\right\}$ to be the orthogonal code of $C$. Notice that $C^{\perp}$ is linear whether or not $C$ is linear.

It is well known that for any linear code $C$ over a finite Frobenius ring, $|C| \cdot\left|C^{\perp}\right|=R^{n}$.

A finite ring is called a chain ring if its ideals are linearly ordered by inclusion. In particular, this means that any finite chain ring has a unique maximal ideal.

A finite chain ring is a Frobenius ring, so the identity above holds for codes over finite chain rings. If $C \subseteq C^{\perp}$, then $C$ is called self-orthogonal. Moreover, if $C=C^{\perp}$, then $C$ is called self-dual.

Let $R$ be a finite chain ring, $\mathfrak{m}$ the unique maximal ideal of $R$, and let $\gamma$ be the generator of the unique maximal ideal $\mathfrak{m}$. Then $\mathfrak{m}=\langle\gamma\rangle=R \gamma$,

[^0]Key words and phrases. Finite chain rings, lifted codes, $\gamma$-adic codes.
where $R \gamma=\langle\gamma\rangle=\{\beta \gamma \mid \beta \in R\}$. We have

$$
\begin{equation*}
R=\left\langle\gamma^{0}\right\rangle \supseteq\left\langle\gamma^{1}\right\rangle \supseteq \cdots \supseteq\left\langle\gamma^{i}\right\rangle \supseteq \cdots\left\langle\gamma^{e}\right\rangle=\{0\} \tag{1}
\end{equation*}
$$

Let $e$ be the minimal number such that $\left\langle\gamma^{e}\right\rangle=\{0\}$. The number $e$ is called the nilpotency index of $\gamma$.

Let $|R|$ denote the cardinality of $R$ and $R^{\times}$the multiplicative group of all units in $R$. Let $\mathbb{F}=R / \mathfrak{m}=R /\langle\gamma\rangle$ be the residue field with characteristic $p$, where $p$ is a prime number. We know that $|\mathbb{F}|=q=p^{r}$ for some integers $q$ and $r$ and $\left|\mathbb{F}^{\times}\right|=p^{r}-1$. The following lemma is well-known (see [10], for example).

Lemma 1.1. Let $R$ be a finite chain ring with maximal ideal $\mathfrak{m}=\langle\gamma\rangle$, where $\gamma$ is a generator of $\mathfrak{m}$ with nilpotency index $e$. For any $0 \neq r \in R$ there is a unique integer $i, 0 \leq i<e$ such that $r=\mu \gamma^{i}$, with $\mu$ a unit. The unit $\mu$ is unique modulo $\gamma^{e-i}$. Let $V \subseteq R$ be a set of representatives for the equivalence classes of $R$ under congruence modulo $\gamma$. Then
(i) for all $r \in R$ there exist unique $r_{0}, \cdots, r_{e-1} \in V$ such that $r=$ $\sum_{i=0}^{e-1} r_{i} \gamma^{i}$;
(ii) $|V|=|\mathbb{F}|$;
(iii) $\left|\left\langle\gamma^{j}\right\rangle\right|=|\mathbb{F}|^{e-j}$ for $0 \leq j \leq e-1$.

By Lemma 1.1, the cardinality of $R$ is:

$$
\begin{equation*}
|R|=|\mathbb{F}| \cdot|\langle\gamma\rangle|=|\mathbb{F}| \cdot|\mathbb{F}|^{e-1}=|\mathbb{F}|^{e}=p^{e r} . \tag{2}
\end{equation*}
$$

Let $R$ be a finite ring. We know from [10] that the generator matrix for a code $C$ over $R$ is permutation equivalent to a matrix of the following form:
(3) $\quad G=\left(\begin{array}{ccccccc}I_{k_{0}} & A_{0,1} & A_{0,2} & A_{0,3} & & & A_{0, e} \\ & \gamma I_{k_{1}} & \gamma A_{1,2} & \gamma A_{1,3} & & & \gamma A_{1, e} \\ & & \gamma^{2} I_{k_{2}} & \gamma^{2} A_{2,3} & & & \gamma^{2} A_{2, e} \\ & & & \ddots & \ddots & & \\ & & & & \ddots & \ddots & \\ & & & & & \gamma^{e-1} I_{k_{e-1}} & \gamma^{e-1} A_{e-1, e}\end{array}\right)$.

The matrix $G$ above is called the standard generator matrix form of the code $C$. It is immediate that a code $C$ with this generator matrix has cardinality

$$
\begin{equation*}
|C|=|\mathbb{F}|^{\sum_{i=0}^{e-1}(e-i) k_{i}}=\left(p^{r}\right)^{\sum_{i=0}^{e-1}(e-i) k_{i}}=\left(p^{r e}\right)^{k_{0}}\left(p^{r(e-1)}\right)^{k_{1}} \cdots\left(p^{r}\right)^{k_{e-1}} \tag{4}
\end{equation*}
$$

In this case, the code $C$ is said to have type

$$
\begin{equation*}
1^{k_{0}}(\gamma)^{k_{1}}\left(\gamma^{2}\right)^{k_{2}} \cdots\left(\gamma^{e-1}\right)^{k_{e-1}} \tag{5}
\end{equation*}
$$

## 2. Lifts of Codes over Finite Chain Rings

Let $R$ be a finite chain ring with the maximal ideal $\langle\gamma\rangle$, where the nilpotency index of $\gamma$ is $e$ and $R /\langle\gamma\rangle=\mathbb{F}$. We know that for any element $a$ of $R$, it can be written uniquely as

$$
a=a_{0}+a_{1} \gamma+\cdots+a_{e-1} \gamma^{e-1}
$$

where $a_{i} \in \mathbb{F}$, see [10] for example. For an arbitrary positive integer $i$, we define $R_{i}$ as

$$
R_{i}=\left\{a_{0}+a_{1} \gamma+\cdots+a_{i-1} \gamma^{i-1} \mid a_{i} \in \mathbb{F}\right\}
$$

where $\gamma^{i-1} \neq 0$, but $\gamma^{i}=0$ in $R_{i}$, and define two operations over $R_{i}$ :

$$
\begin{align*}
& \sum_{l=0}^{i-1} a_{l} \gamma^{l}+\sum_{l=0}^{i-1} b_{l} \gamma^{l}=\sum_{l=0}^{i-1}\left(a_{l}+b_{l}\right) \gamma^{l}  \tag{6}\\
& \sum_{l=0}^{i-1} a_{l} \gamma^{l} \cdot \sum_{l^{\prime}=0}^{i-1} b_{l^{\prime}} \gamma^{l^{\prime}}=\sum_{s=0}^{i-1}\left(\sum_{l+l^{\prime}=s} a_{l} b_{l}^{\prime}\right) \gamma^{s} \tag{7}
\end{align*}
$$

It is easy to get that all the $R_{i}$ are finite rings. Moreover, we have the following lemma, the proof of which can be found in [9].

Lemma 2.1. For any positive integer $i$, we have
(i) $R_{i}^{\times}=\left\{\sum_{l=0}^{i-1} a_{l} \gamma^{l} \mid 0 \neq a_{0} \in \mathbb{F}\right\}$;
(ii) the ring $R_{i}$ is a chain ring with maximal ideal $\langle\gamma\rangle$.

We define $R_{\infty}$ as the ring of formal power series as follows:

$$
R_{\infty}=\mathbb{F}[[\gamma]]=\left\{\sum_{l=0}^{\infty} a_{l} \gamma^{l} \mid a_{l} \in \mathbb{F}\right\} .
$$

The following lemma is well-known.
Lemma 2.2. We have that (i) $R_{\infty}^{\times}=\left\{\sum_{l=0}^{\infty} a_{l} \gamma^{l} \mid a_{0} \neq 0\right\}$;
(ii) the ring $R_{\infty}$ is a principal ideal domain.

Lemma 2.3. Let $\mathcal{C}$ be a nonzero linear code over $R_{\infty}$ of length $n$, then any generator matrix of $\mathcal{C}$ is permutation equivalent to a matrix of the following form:
(8)

$$
G=\left(\begin{array}{ccccccc}
\gamma^{m_{0}} I_{k_{0}} & \gamma^{m_{0}} A_{0,1} & \gamma^{m_{0}} A_{0,2} & \gamma^{m_{0}} A_{0,3} & & & \gamma^{m_{0}} A_{0, r} \\
& \gamma^{m_{1}} I_{k_{1}} & \gamma^{m_{1}} A_{1,2} & \gamma^{m_{1}} A_{1,3} & & & \gamma^{m_{1}} A_{1, r} \\
& & \gamma^{m_{2}} I_{k_{2}} & \gamma^{m_{2}} A_{2,3} & & & \gamma^{m_{2}} A_{2, r} \\
& & & \ddots & \ddots & & \\
& & & & \ddots & \ddots & \\
& & & & & \gamma^{m_{r-1} I_{k_{r-1}}} & \gamma^{m_{r-1}} A_{r-1, r}
\end{array}\right),
$$

where $0 \leq m_{0}<m_{1}<\cdots<m_{r-1}$ for some integer $r$. The column blocks have sizes $k_{0}, k_{1}, \cdots, k_{r}$ and the $k_{i}$ are nonnegative integers adding to $n$.

Proof. Before proving the lemma, we note that all nonzero elements in $R_{\infty}$ can be written in the form $\gamma^{i} a$, where $a=a_{0}+a_{1} \gamma+\cdots+\cdots$ with $a_{0} \neq 0$ and $i \geq 0$. This means that $a$ is a unit in $R_{\infty}$.

Let $\Omega$ be an arbitrary set of generators of code $\mathcal{C}$, a generator matrix $G$ can be obtained by eliminating those elements which can be written as a linear combination of other elements in the set $\Omega$. In order to obtain the standard form in this lemma, we do the following operations. First we take one nonzero element with form $\gamma^{m_{0}} a$, where $m_{0}$ is the minimal nonnegative integer such that $m_{0}=\min \left\{i \mid \gamma^{i} a\right.$ is a coordinate in an element of $\left.\Omega\right\}$. By applying column and row permutations and by dividing a row by a unit, the element in position $(1,1)$ of matrix $G$ can be replaced by $\gamma^{m_{0}}$. Since those nonzero elements which are in the first column of matrix $G$ have the form $\gamma^{j} b$ with $j \geq m_{0}$ and $b$ a unit, these elements can be replaced by zero when they are added by the first row which multiplied by $-\gamma^{j-m_{0}} b^{-1}$. Then we continue this process by using elementary operations, and the standard form of $G$ is obtained.

Definition 1. A code $\mathcal{C}$ with generator matrix of the form given in Equation (8) is said to be of type

$$
\left(\gamma^{m_{0}}\right)^{k_{0}}\left(\gamma^{m_{1}}\right)^{k_{1}} \cdots\left(\gamma^{m_{r-1}}\right)^{k_{r-1}}
$$

where $k=k_{0}+k_{1}+\cdots+k_{r-1}$ is called its rank and $k_{r}=n-k$.
A code $\mathcal{C}$ of length $n$ with rank $k$ over $R_{\infty}$ is called a $\gamma$-adic $[n, k]$ code. We call $k$ the rank of $\mathcal{C}$ and denote the $\operatorname{rank}$ by $\operatorname{rank}(\mathcal{C})=k$.

The following lemma and theorem are direct generalization from [3]. The proofs are simply generalizations to those for the $p$-adic case.

Lemma 2.4. If $\mathcal{C}$ is a linear code over $R_{\infty}$ then $\mathcal{C}^{\perp}$ has type $1^{m}$ for some $m$.

We denote the transpose of a matrix $M$ by $M^{T}$.
Theorem 2.5. Let $\mathcal{C}$ be a linear code of length $n$ over $R_{\infty}$. If $\mathcal{C}$ has a standard generator matrix $G$ as in equation (8), then we have
(i) the dual code $\mathcal{C}^{\perp}$ of $\mathcal{C}$ has a generator matrix

$$
H=\left(\begin{array}{cccccc}
B_{0, r} & B_{0, r-1} & \cdots & B_{0,2} & B_{0,1} & I_{k_{r}} \tag{9}
\end{array}\right)
$$

where $B_{0, j}=-\sum_{l=1}^{j-1} B_{0, l} A_{r-j, r-l}^{T}-A_{r-j, r}^{T}$ for all $1 \leq j \leq r$;
(ii) $\operatorname{rank}(\mathcal{C})+\operatorname{rank}\left(\mathcal{C}^{\perp}\right)=n$.

Example 1. Let $\mathcal{C}$ be a code of length 5 over $R_{\infty}$ with a standard generator matrix as follows:

$$
G=\left(\begin{array}{ccccc}
\gamma^{2} & 0 & \gamma^{2}(1+\gamma) & \gamma^{2}\left(1+\gamma+\gamma^{2}\right) & \gamma^{2}  \tag{10}\\
0 & \gamma^{2} & \gamma^{2}(1+2 \gamma) & \gamma^{2}\left(1+\gamma^{2}\right) & \gamma^{2}\left(1+3 \gamma^{2}\right) \\
0 & 0 & \gamma^{4} & \gamma^{4}\left(1+\gamma^{2}\right) & \gamma^{4}(2+\gamma)
\end{array}\right)
$$

Then the dual code $\mathcal{C}^{\perp}$ of $\mathcal{C}$ has a generator matrix

$$
H=\left(\begin{array}{ccccc}
\gamma^{3} & 2 \gamma+2 \gamma^{3} & -\left(1+\gamma^{2}\right) & 1 & 0  \tag{11}\\
1+3 \gamma+\gamma^{2} & 1+5 \gamma-\gamma^{2} & -(2+\gamma) & 0 & 1
\end{array}\right)
$$

This gives that

$$
\operatorname{rank}(\mathcal{C})+\operatorname{rank}\left(\mathcal{C}^{\perp}\right)=3+2=5
$$

For two positive integers $i<j$, we define a map as follows:

$$
\begin{align*}
\Psi_{i}^{j}: R_{j} & \rightarrow R_{i},  \tag{12}\\
\sum_{l=0}^{j-1} a_{l} \gamma^{l} & \mapsto \sum_{l=0}^{i-1} a_{l} \gamma^{l} \tag{13}
\end{align*}
$$

If we replace $R_{j}$ with $R_{\infty}$ then we denote $\Psi_{i}^{\infty}$ by $\Psi_{i}$. Let $a, b$ be two arbitrary elements in $R_{j}$. It is easy to get that

$$
\begin{equation*}
\Psi_{i}^{j}(a+b)=\Psi_{i}^{j}(a)+\Psi_{i}^{j}(b), \Psi_{i}^{j}(a b)=\Psi_{i}^{j}(a) \Psi_{i}^{j}(b) \tag{14}
\end{equation*}
$$

If $a, b \in R_{\infty}$. We have that

$$
\begin{equation*}
\Psi_{i}(a+b)=\Psi_{i}(a)+\Psi_{i}(b), \Psi_{i}(a b)=\Psi_{i}(a) \Psi_{i}(b) \tag{15}
\end{equation*}
$$

We note that the two maps $\Psi_{i}$ and $\Psi_{i}^{j}$ can be extended naturally from $R_{\infty}^{n}$ to $R_{i}^{n}$ and $R_{j}^{n}$ to $R_{i}^{n}$ respectively.

Remark 1. The construction method above gives a series of chain rings (up to the principal ideal domain $R_{\infty}$ ) as follows:

$$
R_{\infty} \rightarrow \cdots \quad \rightarrow \quad R_{e} \rightarrow R_{e-1} \quad \rightarrow \cdots \rightarrow \quad R_{1}=\mathbb{F}
$$

Definition 2. Let $i, j$ be two integers such that $1 \leq i \leq j<\infty$. We say that an $[n, k]$ code $C_{1}$ over $R_{i}$ lifts to an $[n, k]$ code $C_{2}$ over $R_{j}$, denoted by $C_{1} \preceq C_{2}$, if $C_{2}$ has a generator matrix $G_{2}$ such that $\Psi_{i}^{j}\left(G_{2}\right)$ is a generator matrix of $C_{1}$. It can be proven that $C_{1}=\Psi_{i}^{j}\left(C_{2}\right)$. If $\mathcal{C}$ is a $[n, k] \gamma$-adic code, then for any $i<\infty$, we call $\Psi_{i}(\mathcal{C})$ a projection of $\mathcal{C}$. We denote $\Psi_{i}(\mathcal{C})$ by $\mathcal{C}^{i}$.

Lemma 2.6. Let $M$ be a matrix over $R_{\infty}$ with type $1^{k}$. If $M^{\prime}$ is a standard form of $M$, then for any positive integer $i, \Psi_{i}\left(M^{\prime}\right)$ is a standard form of $\Psi_{i}(M)$.

Proof. We note that $M$ has type $1^{k}$, hence $\Psi_{i}(M)$ has type $1^{k}$. We know $M^{\prime}$ is a standard form of $M$, this implies that there exist elementary matrices $P_{1}, \cdots, P_{s}$ and $Q_{1}, \cdots, Q_{t}$ such that

$$
P_{1} \cdots P_{s} M Q_{1} \cdots Q_{t}=M^{\prime}
$$

Hence for any positive integer $i$, by Equation (15), we have that

$$
\Psi_{i}\left(P_{1}\right) \cdots \Psi_{i}\left(P_{s}\right) \Psi_{i}(M) \Psi_{i}\left(Q_{1}\right) \cdots \Psi_{i}\left(Q_{t}\right)=\Psi_{i}\left(M^{\prime}\right)
$$

Since the inverse matrices of elementary matrices are the same type of elementary matrices, we have that $\Psi_{i}\left(M^{\prime}\right)$ is a standard form of $\Psi_{i}(M)$.

Remark 2. In the lemma above we must assume that $M$ has type $1^{k}$. For example, if we take

$$
M=\left(\begin{array}{cc}
\gamma^{5} & \gamma^{5}+\gamma^{7}  \tag{16}\\
0 & \gamma^{15}
\end{array}\right)
$$

then some of its projections are the zero matrix.

Let $\mathcal{C}$ be a code over $R_{\infty}$, we know that $\mathcal{C} \subseteq\left(\mathcal{C}^{\perp}\right)^{\perp}$. But in general $\mathcal{C} \neq\left(\mathcal{C}^{\perp}\right)^{\perp}$. For example, let $\mathcal{C}=\left\langle\gamma^{i}\right\rangle$ be a code of length 1 over $R_{\infty}$ for some $i$. Then $\mathcal{C}^{\perp}=\{0\}$ and $\left(\mathcal{C}^{\perp}\right)^{\perp}=R_{\infty}$ since $R_{\infty}$ is a domain. This means that $\mathcal{C} \subsetneq\left(\mathcal{C}^{\perp}\right)^{\perp}$. We have the following proposition.

Proposition 2.7. Let $\mathcal{C}$ be a linear code over $R_{\infty}$. Then $\mathcal{C}=\left(\mathcal{C}^{\perp}\right)^{\perp}$ if and only if $\mathcal{C}$ has type $1^{k}$ for some $k$.

Proof. First we note that $\left(\mathcal{C}^{\perp}\right)^{\perp} \subseteq \mathcal{C}$. If $\mathcal{C}$ is a linear code then by Lemma 2.4, the code $\mathcal{C}^{\perp}$ is a linear code with type $1^{n-k}$ for some $k$. This implies that $\left(\mathcal{C}^{\perp}\right)^{\perp}$ has type $1^{n-(n-k)}=1^{k}$.

Proposition 2.8. Let $\mathcal{C}$ be a self-orthogonal code over $R_{\infty}$. Then the code $\Psi_{i}(\mathcal{C})$ is a self-orthogonal code over $R_{i}$ for all $i<\infty$.

Proof. We have that $[\mathbf{v}, \mathbf{w}]=0$ for all $\mathbf{v}, \mathbf{w} \in \mathcal{C}$ since $\mathcal{C}$ is a self-orthogonal code over $R_{\infty}$. This gives that
$\sum_{l=1}^{n} v_{l} w_{l} \equiv \sum_{l=1}^{n} \Psi_{i}\left(v_{l}\right) \Psi_{i}\left(w_{l}\right)\left(\bmod \gamma^{i}\right) \equiv \Psi_{i}([\mathbf{v}, \mathbf{w}])\left(\bmod \gamma^{i}\right) \equiv 0\left(\bmod \gamma^{i}\right)$.
Hence $\Psi_{i}(\mathcal{C})$ is a self-orthogonal code over $R_{i}$.
By Lemma 2.6, we know that for a $\gamma$-adic $[n, k]$ code $\mathcal{C}$ of type $1^{k}, \mathcal{C}^{i}=$ $\Psi_{i}(\mathcal{C})$ is an $[n, k]$ code of type $1^{k}$ over $R_{i}$. In the following, we consider codes over chain rings that are projections of $\gamma$-adic codes.

Note that $\mathcal{C}^{i} \preceq \mathcal{C}^{i+1}$ for all $i$. Thus if a code $\mathcal{C}$ over $R_{\infty}$ of type $1^{k}$ is given, then we obtain a series of lifts of codes as follows:

$$
\mathcal{C}^{1} \preceq \mathcal{C}^{2} \preceq \cdots \preceq \mathcal{C}^{i} \preceq \cdots
$$

Conversely, let $C$ be an $[n, k]$ code over $\mathbb{F}=R_{e} /\langle\gamma\rangle=R_{1}$, and let $G=G_{1}$ be its generator matrix. It is clear that we can define a series of generator matrices $G_{i} \in M_{k \times n}\left(R_{i}\right)$ such that $\Psi_{i}^{i+1}\left(G_{i+1}\right)=G_{i}$, where $M_{k \times n}\left(R_{i}\right)$ denotes all the matrices with $k$ rows and $n$ columns over $R_{i}$. This defines a series of lifts $C_{i}$ of $C$ to $R_{i}$ for all $i$. Then this series of lifts determines a code $\mathcal{C}$ such that $\mathcal{C}^{i}=C_{i}$, the code is not necessarily unique.

Let $\mathcal{C}$ be a $\gamma$-adic $[n, k]$ code of type $1^{k}$, and $G, H$ be a generator and parity-check matrices of $\mathcal{C}$. Let $G_{i}=\Psi_{i}(G)$ and $H_{i}=\Psi_{i}(H)$. Then $G_{i}$ and $H_{i}$ are generator and parity check matrices of $\mathcal{C}^{i}$ respectively.

Lemma 2.9. Let $i<j<\infty$ be two positive integers, then
(i) $\gamma^{j-i} G_{i} \equiv \gamma^{j-i} G_{j}\left(\bmod \gamma^{j}\right)$;
(ii) $\gamma^{j-i} H_{i} \equiv \gamma^{j-i} H_{j}\left(\bmod \gamma^{j}\right)$.

Proof. Let $\mathbf{x}_{l}$ be the row vectors of $G_{i}$ and $\mathbf{y}_{l}$ be the row vectors of $G_{j}$. Since we have that $G_{i}=\Psi_{i}^{j}\left(G_{j}\right)$, this implies that $\mathbf{x}_{l} \equiv \mathbf{y}_{l}\left(\bmod \gamma^{i}\right)$. Thus $\gamma^{j-i} \mathbf{x}_{l} \equiv \gamma^{j-i} \mathbf{y}_{l}\left(\bmod \gamma^{j}\right)$.

The proof of (ii) is similar.
Lemma 2.10. Let $i<j<\infty$ be two positive integers. Then
(i) $\gamma^{j-i} \mathcal{C}^{i} \subseteq \mathcal{C}^{j}$;
(ii) $\mathbf{v}=\gamma^{i} \mathbf{v}_{0} \in \mathcal{C}^{j}$ if and only if $\mathbf{v}_{0} \in \mathcal{C}^{j-i}$;
(iii) $\operatorname{Ker}\left(\Psi_{i}^{j}\right)=\gamma^{i} \mathcal{C}^{j-i}$.

Proof. (i) Let $\mathbf{v}$ be an arbitrary codeword of $\mathcal{C}^{i}$. By Lemma 2.9 (ii), we have that

$$
H_{j}\left(\gamma^{j-i} \mathbf{v}\right)^{T}=\gamma^{j-i} H_{j} \mathbf{v}^{T} \equiv \gamma^{j-i} H_{i} \mathbf{v}^{T} \equiv \mathbf{0}\left(\bmod \gamma^{j}\right)
$$

This implies that $\gamma^{j-i} \mathcal{C}^{i} \subseteq \mathcal{C}^{j}$.
(ii) We know that $\gamma^{i} \mathbf{v}_{0} \in \mathcal{C}^{j}$ if and only if $\gamma^{i} H_{j} \mathbf{v}_{0}^{T} \equiv \mathbf{0}\left(\bmod \gamma^{j}\right)$. By Lemma 2.9(ii), we have that

$$
\gamma^{i} H_{j}=\gamma^{j-(j-i)} H_{j} \equiv \gamma^{j-(j-i)} H_{j-i} \equiv \gamma^{i} H_{j-i}\left(\bmod \gamma^{j}\right)
$$

This implies that $\gamma^{i} \mathbf{v}_{0} \in \mathcal{C}^{j} \Leftrightarrow \gamma^{i} H_{j-i} \mathbf{v}_{0}^{T} \equiv \mathbf{0}\left(\bmod \gamma^{j}\right)$. Hence we have that

$$
\gamma^{i} \mathbf{v}_{0} \in \mathcal{C}^{j} \Leftrightarrow H_{j-i} \mathbf{v}_{0}^{T} \equiv \mathbf{0}\left(\bmod \gamma^{j-i}\right) \Leftrightarrow \mathbf{v}_{0} \in \mathcal{C}^{j-i} .
$$

(iii) By the definition of Kernel and (ii), we know that the vector $\mathbf{v} \in$ $\operatorname{Ker}\left(\Psi_{i}^{j}\right)$ if and only if $\mathbf{v} \in \mathcal{C}^{j}$ and $\mathbf{v}=\gamma^{i} \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathcal{C}^{j-i}$. Thus the result follows.

Remark 3. Lemma 2.10(iii) shows that the Hamming weight enumerator of $\operatorname{Ker}\left(\Psi_{i}^{j}\right)$ is equal to the Hamming weight enumerator of $\mathcal{C}^{j-i}$.

We now study the weights of codewords in the lifts of a code. Suppose $i<j$. By Lemma 2.10(i), we know that any weight of a codeword in $\mathcal{C}^{i}$ is a weight of a codeword in $\mathcal{C}^{j}$. This implies that if $\mathbf{v} \in \mathcal{C}^{i}$ then there exists a $\mathbf{w} \in \mathcal{C}^{j}$ such that $w_{H}(\mathbf{w})=w_{H}(\mathbf{v})$, where $w_{H}(\cdot)$ denotes the Hamming weight of a vector. But in general the converse is not always true. We have the following theorem.

Theorem 2.11. Let $\mathcal{C}$ be a $\gamma$-adic code. Then the following two results hold.
(i) the minimum Hamming distance $d_{H}\left(\mathcal{C}^{i}\right)$ of $\mathcal{C}^{i}$ is equal to $d=d_{H}\left(\mathcal{C}^{1}\right)$ for all $i<\infty$;
(ii) the minimum Hamming distance $d_{\infty}=d_{H}(\mathcal{C})$ of $\mathcal{C}$ is at least $d=$ $d_{H}\left(\mathcal{C}^{1}\right)$.

Proof. (i) Let $\mathbf{v}_{0}$ be a vector of $\mathcal{C}^{1}$ with minimal Hamming weight $d$ of $\mathcal{C}^{1}$. By Lemma 2.10(iii), we know that $\gamma^{i-1} \mathbf{v}_{0}$ is a codeword of $\mathcal{C}^{i}$ with Hamming weight $d$. Hence $d_{H}\left(\mathcal{C}^{i}\right) \leq d$ for all $i$. Now we use induction on the index number $i$ and assume that $d_{H}\left(\mathcal{C}^{j}\right)=d$ for all $j \leq i$. Suppose that $d_{H}\left(\mathcal{C}^{i+1}\right)<d$ and there is a non-zero vector $\mathbf{v} \in \mathcal{C}^{i+1}$ such that $w_{H}(\mathbf{v})<d$. Then $w_{H}\left(\Psi_{i}^{i+1}(\mathbf{v})\right) \leq w_{H}(\mathbf{v})<d$. Since we have that $d_{H}\left(\mathcal{C}^{i}\right)=d$ we must have that $\Psi_{i}^{i+1}(\mathbf{v})=\mathbf{0}$ in $\mathcal{C}^{i}$. This implies that $\mathbf{v} \in \operatorname{Ker}\left(\Psi_{i}^{i+1}\right)$. By Lemma 2.10(iii), we get that $\mathbf{v}=\gamma^{i} \mathbf{v}_{0}$, where $\mathbf{0} \neq \mathbf{v}_{0} \in \mathcal{C}^{1}$. This means that $0<w_{H}\left(\mathbf{v}_{0}\right)=w_{H}(\mathbf{v})<d$, which is a contradiction.
(ii) If there exists a non-zero codeword $\mathbf{v} \in \mathcal{C}$ such that $w_{H}(\mathbf{v})<d$, then let $N$ be a sufficiently large integer such that $\Psi_{N}(\mathbf{v}) \neq \mathbf{0}$. We would have that $w_{H}\left(\Psi_{N}(\mathbf{v})\right) \leq w_{H}(\mathbf{v})<d$, which is a contradiction.

In the remainder of this section, we focus on MDS and MDR codes. It is well known (see [7]) that for codes $C$ of length $n$ over any alphabet of size m

$$
\begin{equation*}
d_{H}(C) \leq n-\log _{m}(|C|)+1 \tag{17}
\end{equation*}
$$

Codes meeting this bound are called MDS (Maximal Distance Separable) codes.

For a code $C$ of length $n$ over an finite Quasi-Frobenius ring $R$, Horimoto and Shiromoto (see [6]) define the following:

$$
r_{C}=\min \left\{l \mid \text { there exists a monomorphism } C \rightarrow R^{l} \text { as } R-\text { modules }\right\}
$$

If $C$ is linear, then we have (see [6])

$$
\begin{equation*}
d_{H}(C) \leq n-r_{C}+1 \tag{18}
\end{equation*}
$$

Codes meeting this bound are called MDR (Maximal Distance with respect to Rank) codes. For codes over $R_{\infty}$ we say that an MDR code is MDS if it is of type $1^{k}$ for some $k$. See [4] and [5] for a discussion of this bound for several rings.

A linear code $C$ over $R$ is called free if $C$ is isomorphic as a module to $R^{t}$ for some $t$. This implies that if $C$ is free then $r_{C}=\operatorname{rank}(C)$. We have the following two theorems.

Theorem 2.12. Let $\mathcal{C}$ be a linear code over $R_{\infty}$. If $\mathcal{C}$ is an $M D R$ or $M D S$ code then $\mathcal{C}^{\perp}$ is an MDS code.

Proof. Assume $\mathcal{C}$ is a code of length $n$ and rank $k$ with $d_{H}(\mathcal{C})=n-k+1$. Then we know that $\mathcal{C}^{\perp}$ is type $1^{n-k}$. Since $R_{\infty}$ is a domain, we get that any $n-k$ columns of the generator matrix of $\mathcal{C}^{\perp}$ are linearly independent. This gives that the minimum Hamming weight of $\mathcal{C}^{\perp}$ is $n-(n-k)+1=k+1$.

Theorem 2.13. Let $C$ be a linear code over $R_{i}$, and $\tilde{C}$ be a lift code of $C$ over $R_{j}$, where $j>i$. If $C$ is an MDS code over $R_{i}$ then the code $\tilde{C}$ is an MDS code over $R_{j}$.

Proof. Assume $C$ is a $[n, k]$ code with minimum Hamming distance $d_{H}$. We have that $d_{H}=n-k+1$ since $C$ is an $M D S$ code. Let $\mathbf{v}$ be a codeword of $C$ such that $w_{H}(\mathbf{v})=d_{H}$. Then for any nonzero codeword $\mathbf{v}^{\prime} \in C$, we have that $w_{H}\left(\mathbf{v}^{\prime}\right) \geq w_{H}(\mathbf{v})$. We know that $\tilde{C}$ is a $[n, k]$ code, and that $\mathbf{v}$ can be viewed as a codeword of $\tilde{C}$ since we can write $\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$ where

$$
v_{l}=a_{0}^{l}+a_{1}^{l} \gamma+\cdots+a_{i-1}^{l} \gamma^{i-1}+0 \gamma^{i}+\cdots+0 \gamma^{j-1} .
$$

Let $\mathbf{w}$ be any lifted codeword of $\mathbf{v}$. Then we have that $w_{H}(\mathbf{w}) \geq w_{H}(\mathbf{v})$. On the other hand, for any lift codeword $\mathbf{w}^{\prime}$ of $\mathbf{v}^{\prime}$, where $\mathbf{v}^{\prime} \in C$, we also have that $w_{H}\left(\mathbf{w}^{\prime}\right) \geq w_{H}\left(\mathbf{v}^{\prime}\right) \geq w_{H}(\mathbf{v})$. This means that the minimum Hamming weight of $\tilde{C}$ is $d_{H}$ and this implies that $\tilde{C}$ is an $M D S$ code for all $j>i$.

## 3. Self-Dual $\gamma$-Adic Codes

In this section, we describe self-dual codes over $R_{\infty}$. We fix the ring $R_{\infty}$ with

$$
R_{\infty} \rightarrow \cdots \rightarrow R_{i} \rightarrow \cdots \rightarrow R_{2} \rightarrow R_{1}
$$

and $R_{1}=\mathbb{F}_{q}$ where $q=p^{r}$ for some prime $p$ and nonnegative integer $r$. The field $\mathbb{F}_{q}$ is said to be the underlying field of the rings. The following theorem can be found from [7].

Theorem 3.1. (i) If $p=2$ or $p \equiv 1(\bmod 4)$, then a self-dual code of length $n$ exists over $\mathbb{F}_{q}$ if and only if $n \equiv 0(\bmod 2)$;
(ii) If $p \equiv 3(\bmod 4)$, then a self-dual code of length $n$ exists over $\mathbb{F}_{q}$ if and only if $n \equiv 0(\bmod 4)$.

Theorem 3.2. If $i$ is even, then self-dual codes of length $n$ exist over $R_{i}$ for all $n$.

Proof. Let $C$ be the code with generator matrix $G=\gamma^{\frac{i}{2}} I_{n}$. It is clear that $C$ is self-orthogonal over $R_{i}$ since $\gamma^{\frac{i}{2}} \gamma^{\frac{i}{2}}=\gamma^{i}=0$ in $R_{i}$. We have that $|C|=\left(q^{\frac{i}{2}}\right)^{n}=\left(q^{i}\right)^{\frac{n}{2}}=\left|R_{i}\right|^{\frac{n}{2}}$. Therefore $C$ is self-dual.

Theorem 3.3. Let $i$ be odd and $C$ be a code over $R_{i}$ with type $1^{k_{0}}(\gamma)^{k_{1}}\left(\gamma^{2}\right)^{k_{2}} \cdots\left(\gamma^{i-1}\right)^{k_{i-1}}$. Then $C$ is a self-dual code if and only if $C$ is self-orthogonal and $k_{j}=k_{i-j}$ for all $j$.

Proof. We know that $C^{\perp}$ has type $1^{k_{i}}(\gamma)^{k_{i-1}}\left(\gamma^{2}\right)^{k_{i-2}} \cdots\left(\gamma^{i-1}\right)^{k_{1}}$. Hence the only if part follows. Now assume that $C$ is a self-orthogonal code of length $n$ and $k_{j}=k_{i-j}$ for all $j$. Let $l=\left\lfloor\frac{i}{2}\right\rfloor$, where $\rfloor$ denotes the greatest integer function. Since $i$ is odd, we have

$$
\begin{equation*}
n=\sum_{j=0}^{i} k_{j}=2 \sum_{j=0}^{\frac{i-1}{2}} k_{j}=2 \sum_{j=0}^{l} k_{j} \tag{19}
\end{equation*}
$$

Since $C$ is self-orthogonal, $C$ is self-dual if and only if $|C|=\left(q^{i}\right)^{\frac{n}{2}}$. We have that

$$
\log _{q}|C|=\sum_{j=0}^{i-1}(i-j) k_{j}=i \sum_{j=0}^{i-1} k_{j}-\sum_{j=0}^{i-1} j k_{j}=i n-\sum_{j=0}^{i} j k_{j}=i n-S,
$$

where $S=\sum_{j=0}^{i} j k_{j}$. By Equation (19), we have that

$$
\begin{aligned}
S & =\sum_{j=0}^{i-1} j k_{j}+i\left(n-\sum_{j=0}^{i-1} k_{j}\right)=i n-\sum_{j=0}^{i}(i-j) k_{j} \\
& =i n-\sum_{j=0}^{i}(i-j) k_{i-j}=i n-\sum_{j=0}^{i} j k_{j}=i n-S .
\end{aligned}
$$

This implies that $S=\frac{i n}{2}$ and $\log _{q}|C|=i n-\frac{i n}{2}=\frac{i n}{2}$. Therefore $C$ is self-dual.

Theorem 3.4. If $\mathcal{C}$ is a self-dual code of length $n$ over $R_{\infty}$ then $\Psi_{i}(\mathcal{C})$ is a self-dual code of length $n$ over $R_{i}$ for all $i<\infty$.

Proof. Since $\mathcal{C}$ is a self-dual, we have that $\mathcal{C}=\mathcal{C}^{\perp}$. This gives that $\mathcal{C}=\mathcal{C}^{\perp}=\left(\mathcal{C}^{\perp}\right)^{\perp}$. By Proposition 2.7, the code $\mathcal{C}$ has type $1^{k}$ for some $k$. Hence we have that $k=n-k$, this gives that $k=\frac{n}{2}$. It is easy to get that $\operatorname{rank}\left(\Psi_{i}(\mathcal{C})\right)=\frac{n}{2}$ and so $\Psi_{i}(\mathcal{C})$ has $\left(p^{r i}\right)^{\frac{n}{2}}$ elements. By Proposition 2.8, $\Psi_{i}(\mathcal{C})$ is self-orthogonal. Therefore $\Psi_{i}(\mathcal{C})$ is a self-dual code.

Corollary 3.5. Let $\mathcal{C}$ be a self-dual code of length $n$ over $R_{\infty}$. Recall that $p$ is the characteristic of the underlying field $\mathbb{F}$. We have
(i) If $p=2$ or $p \equiv 1(\bmod 4)$, then $n \equiv 0(\bmod 2)$;
(ii) If $p \equiv 3(\bmod 4)$, then $n \equiv 0(\bmod 4)$.

Proof. This result follows by Theorem 3.4 and Theorem 3.1.
The following theorem gives a method to construct a self-dual code over $\mathbb{F}$ from a self-dual code over $R_{i}$.

Theorem 3.6. Let $i$ be odd. A self-dual code of length $n$ over $R_{i}$ induces a self-dual code of length $n$ over $\mathbb{F}_{q}$.

Proof. Let $C$ be a code over $R_{i}$ of type $1^{k_{0}}(\gamma)^{k_{1}}\left(\gamma^{2}\right)^{k_{2}} \cdots\left(\gamma^{i-1}\right)^{k_{i-1}}$ with standard generator matrix $G$ as follows:

$$
G=\left(\begin{array}{ccccccc}
I_{k_{0}} & A_{0,1} & A_{0,2} & A_{0,3} & & & A_{0, i} \\
& \gamma I_{k_{1}} & \gamma A_{1,2} & \gamma A_{1,3} & & & \gamma A_{1, i} \\
& & \gamma^{2} I_{k_{2}} & \gamma^{2} A_{2,3} & & & \gamma^{2} A_{2, i} \\
& & & \ddots & \ddots & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & & \gamma^{i-1} I_{k_{i-1}} & \gamma^{i-1} A_{i-1, i}
\end{array}\right) .
$$

Let

$$
\tilde{G}=\left(\begin{array}{ccccccc}
I_{k_{0}} & A_{0,1} & A_{0,2} & A_{0,3} & & & A_{0, i} \\
& I_{k_{1}} & A_{1,2} & A_{1,3} & & & A_{1, i} \\
& & I_{k_{2}} & A_{2,3} & & & A_{2, i} \\
& & & \ddots & \ddots & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & & I_{k_{l}} & A_{l, i}
\end{array}\right)
$$

where $l=\left\lfloor\frac{i}{2}\right\rfloor$. By Equation (19), $\tilde{G}$ is a $\left(\frac{n}{2}\right) \times n$ matrix over $R_{i}$. Let $\tilde{\tilde{G}}=\Psi_{1}^{i}(\tilde{G})$ be the matrix over $\mathbb{F}_{q}$ and let $\tilde{\tilde{C}}$ be the code over $\mathbb{F}_{q}$ with generator matrix $\tilde{\tilde{G}}$. It is clear that $\operatorname{rank}(\tilde{\tilde{C}})=\frac{n}{2}$, and thus it remains to
show that $\tilde{\tilde{C}}$ is self-orthogonal. Let $\mathbf{v}^{\prime \prime}, \mathbf{w}^{\prime \prime}$ be any two row vectors of $\tilde{\tilde{G}}$, suppose $\mathbf{v}^{\prime \prime}=\Psi_{1}^{i}\left(\mathbf{v}^{\prime}\right)$ and $\mathbf{w}^{\prime \prime}=\Psi_{1}^{i}\left(\mathbf{w}^{\prime}\right)$, where $\mathbf{v}=\gamma^{s} \mathbf{v}^{\prime}$ and $\mathbf{w}=\gamma^{t} \mathbf{w}^{\prime}$ are row vectors of $G$ with $s, t \leq l$. We have that

$$
0=[\mathbf{v}, \mathbf{w}]=\left[\gamma^{s} \mathbf{v}^{\prime}, \gamma^{t} \mathbf{w}^{\prime}\right]=\gamma^{s+t}\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]
$$

This implies that $\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]=0$ since $s+t<i$. In particular, the constant term in their inner product is zero. This means that $\left[\mathbf{v}^{\prime \prime}, \mathbf{w}^{\prime \prime}\right]=\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]=0$.

Theorem 3.7. Let $R=R_{e}$ be a finite chain ring, $\mathbb{F}=R /\langle\gamma\rangle$, where $|\mathbb{F}|=$ $q=p^{r}, 2 \neq p$ a prime. Then any self-dual code $C$ over $\mathbb{F}$ can be lifted to a self-dual code over $R_{\infty}$.

Proof. Let $G_{1}=\left(I \mid A_{1}\right)$ be a generator matrix of $C$ over $R_{1}(=\mathbb{F})$. Since $C$ is self-orthogonal, we have that

$$
I+A_{1} A_{1}^{T} \equiv 0 \quad(\bmod \gamma)
$$

We show in the following by induction that there exist matrices $G_{i}=\left(I \mid A_{i}\right)$ such that $\Psi_{i}^{i+1}\left(G_{i+1}\right)=G_{i}$ and $I+A_{i} A_{i}^{T} \equiv 0\left(\bmod \gamma^{i}\right)$ for all $i$. Suppose we have that $I+A_{i} A_{i}^{T}=\gamma^{i} S_{i}$. Let $A_{i+1}=A_{i}+\gamma^{i} M$, we want to find a matrix $M$ such that

$$
\begin{equation*}
I+A_{i+1} A_{i+1}^{T} \equiv 0 \quad\left(\bmod \gamma^{i+1}\right) \tag{20}
\end{equation*}
$$

We know

$$
\begin{aligned}
I+A_{i+1} A_{i+1}^{T} & =I+A_{i} A_{i}^{T}+\gamma^{i}\left(A_{i} M^{T}+M A_{i}^{T}\right) \\
& =\gamma^{i}\left(S_{i}+A_{i} M^{T}+M A_{i}^{T}\right)
\end{aligned}
$$

This gives that the matrix $M$ should satisfy

$$
\begin{equation*}
S_{i}+A_{i} M^{T}+M A_{i}^{T} \equiv 0 \quad(\bmod \gamma) \tag{21}
\end{equation*}
$$

In order to find all solutions to this equation, we consider the map $\eta$ : $M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ defined by $\eta(M)=A_{i} M^{T}+M A_{i}^{T}$. It is easy to get that $\eta$ is linear and the kernel of $\eta$ is

$$
\operatorname{Ker}(\eta)=\left\{K A_{i} \mid \text { where } K \text { is skew-symmetric }\right\} .
$$

It follows since $A_{i} M^{T}+M A_{i}^{T}=0$ if and only if $\left(M A_{i}^{T}\right)^{T}+M A_{i}^{T}=0$ if and only if $M A_{i}^{T}=K$ is skew-symmetric if and only if $M=K\left(A_{i}^{T}\right)^{-1}=-K A_{i}$.

Note that $A_{i} A_{i}^{T}=-I$ over $\mathbb{F}$ and $\operatorname{gcd}(2, p)=1$. This implies that 2 is a unit in $\mathbb{F}$. Hence

$$
\eta\left(2^{-1} S_{i} A_{i}\right)=2^{-1}\left(A_{i} A_{i}^{t} S_{i}^{T}+S_{i} A_{i} A_{i}^{T}\right)=2^{-1}(-2) S_{i}=-S_{i} .
$$

Therefore the solutions to (20) exist and they are given by

$$
A_{i+1}=A_{i}+\gamma^{i} M
$$

where $M \equiv 2^{-1}\left(S_{i}+K\right) A_{1}(\bmod \gamma)$ with any skew-symmetric $K$.

## References

[1] Dougherty S. T., Kim S. Y., Park Y. H., Lifted codes and their weight enumerators, Discrete Math., 305, 2005, 123-135.
[2] Dougherty S. T., Liu H., Independence of Vectors in Codes over Rings, to appear in Des. Codes and Cryptogr.
[3] Dougherty S.T., Park Y.H., Codes over the p-adic integers, Des. Codes and Cryptogr., 39, 2006, 65-80.
[4] Dougherty S.T., Shiromoto K., MDR Codes over $Z_{k}$, IEEE Trans. Inform. Theory, 46, 2000, 265-269.
[5] Dougherty S.T., Shiromoto K., Maximum Distance Codes over Rings of Order 4, IEEE-IT, 47, No 1, January 2001.
[6] Horimoto, H. and Shiromoto, K., A Singleton bound for linear codes over quasiFrobenius rings, Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Hawaii (USA), 1999, 51-52.
[7] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (with W. C. Huffman), Cambridge University Press, 2003.
[8] Hungerford T.W., Algebra, Springer-Verlag, New York, 1974.
[9] McDonald B. R., Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
[10] Norton G. H., Sălăgean A., On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory, 46, 2000, 1060-1067.

Steven T. Dougherty<br>Department of Mathematics<br>University of Scranton<br>Scranton, PA 18510, USA<br>e-mail address: doughertys1@scranton.edu<br>Hongwei Liu<br>Department of Mathematics<br>Huazhong Normal University<br>Wuhan, Hubei 430079, P. R. China<br>e-mail address: h_wliu@yahoo.com.cn

Young Ho Park
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
e-mail address: yhpark@kangwon.ac.kr
(Received December 10, 2008)
(Revised November 10, 2009)


[^0]:    Mathematics Subject Classification. Primary: 94B05, Secondary: 13A99.

