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Chondrocyte differentiation is the fundamental process in skeletal development.  From the mesenchy-
mal condensation of chondroprogenitors to the hypertrophic maturation of chondrocytes,  chondro-
genesis is sequentially regulated by cross-talk among transcription factors,  growth factors,  and 
chromatin structure.  The master transcription factor Sry-type HMG box (Sox) 9 has an essential role 
in the expression of chondrogenic genes through the association with Sox9-binding sites on its target 
genes.  Several transcription factors and coactivators,  such as Scleraxis/E47 and p300,  cooperatively 
modulate the Sox9-dependent transcription by interacting with Sox9.  The Sox9-related transcriptional 
apparatus activates its target gene expression through p300-mediated histone acetylation on chromatin.  
The transforming growth factor (TGF)-ｹ superfamily also plays a key role in chondrocyte differentia-
tion.  The TGF-ｹ-regulated Smad3/4 complex activates Sox9-dependent transcription on chromatin by 
associating with Sox9 itself,  and by recruiting p300 onto Sox9.  These findings suggest that the epige-
netic status including histone modification and chromatin structure,  directly influences Sox9-regulated 
chondrocyte differentiation.  In this article,  we review the regulators of Sox9 expression itself,  modu-
lators of posttranslational Sox9 function,  and Sox9-associating factors in the Sox9-dependent epige-
netic regulation during chondrogenesis.
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esenchymal differentiation regulates the devel-
opment of musculoskeletal systems such as 

endochondral ossification and synovial joint formation.  
Chondrogenesis originating from the condensation of 
pluripotent mesenchymal stem cells (MSCs) has an 
essential role in skeletal development and articular 
cartilage formation.  The steps of sequential differen-

tiation and maturation from chondroprogenitors to 
hypertrophic chondrocytes are regulated by transcrip-
tion factors and growth factors such as the Sry-type 
high-mobility group box (Sox) genes,  the basic helix-
loop-helix (bHLH) transcription factor Scleraxis 
(Scx),  the runt-related Runx genes,  and the trans-
forming growth factor (TGF)-β superfamily [1-4].  
The Sox E protein Sox9,  which encodes a high-
mobility group (HMG) DNA-binding domain,  has been 
identified as the master transcription factor in chon-
drogenesis [5,  6].  Sox9 regulates the expression of 
its target genes through association with the Sox9-
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binding DNA sequences (WWCAAWG) on promoters 
or enhancers of cartilage-specific genes such as α1(II) 
collagen (Col2a1),  α1(IX),  α2(XI) collagen,  aggrecan,  
cartilage link protein, cartilage oligomeric matrix protein 
(COMP),  and Cd-rap [7-13].  Heterozygous mutations 
in the SOX9 gene cause the congenital dwarfism syn-
drome,  campomelic dysplasia [14].  Mouse embryonic 
stem cells derived from Sox9 (-/-) chimeras are unable 
to express the Col2a1 gene [15].  In the genital ridge,  
however,  the Sox9-regulated gene Col2a1 is not 
expressed despite abundant Sox9 expression [16].  In 
addition,  Sox9 overexpression in chondrocytes pro-
duces a phenotype of dwarfism [17].  These reports 
suggest that additional mechanisms cooperatively 
regulate Sox9-dependent transcription during chon-
drogenesis,  and that chondrocyte differentiation is not 
controlled by Sox9 alone.
　 The posttranslational modification of Sox9 also 
affects the Sox9-dependent transcription in chondro-
genesis [18,  19].  Phosphorylation,  sumoylation,  and 
ubiquitination of the Sox9 protein influence the func-
tional activity of Sox9.  Protein kinase A-induced 
phosphorylation of Sox9 enhances Sox9-dependent 
transcription by increasing the DNA-binding affinity of 
Sox9 [20].  On the other hand,  Sox9 activity is sup-
pressed by PIAS1-mediated sumoylation of Sox9 
[21].  The ubiquitin-proteasome pathway also inhibits 
Sox9 transcriptional activity by inducing the degrada-
tion of Sox9 [22].  These findings suggest that the 
expression and stability of Sox9 are regulated by many 
factors at each developmental stage during chondro-
genesis.  The group D Sox5 and Sox6,  which possess 
a leucine zipper and a coiled-coil domain,  cooperate 
with Sox9 to activate the expression of Col2a1 and 
aggrecan genes [23].  Whereas Sox5 and Sox6 single-
null mice are born with mild skeletal abnormalities,  
Sox5/6 double mutants die with severe,  generalized 
chondrodysplasia [24].  The transactivation of Sox5/6 
is necessary for the sequential chondrocyte differen-
tiation in Sox9-expressing chondroprogenitors [25].  
In the absence of Sox5/6,  sclerotome MSCs are 
prevented from differentiating into chondrocytes,  and 
switch their fate to Scx-expressing tendon/ligament 
progenitors [25].  However,  the Sox5/6-dependent 
modulation of Sox9 function is not fully understood.  
The association between Sox9 and Sox5/6 has not 
been detected either.  The gene transactivation by 
Sox5/6 and Sox9 is much stronger than the activation 

by Sox9 alone,  while Sox5 and Sox6 do not influence 
the activity of gene expression in the absence of Sox9.  
The MYST family coactivator Tip60,  which mainly 
acetylates H4,  increases Sox9/Sox5-dependent Col2a1 
transcription by associating with Sox9 on chromatin 
[26].  Sox5/6 may stabilize Sox9 on its binding site 
through the bending of DNA and thereby stimulate 
Sox9-regulated gene expression [18,  19,  27].
　 The transforming growth factor (TGF)-β super-
family,  including 2 major families,  TGF-β and bone 
morphogenetic protein (BMP),  comprises multifunc-
tional growth factors for many cellular processes such 
as proliferation,  differentiation,  and apoptosis [28].  
In chondrocyte differentiation,  TGF-β stimulation is 
necessary for MSC-derived primary chondrogenesis 
[29].  On the other hand,  chondrocyte maturation in 
the hypertrophic stage is inhibited by TGF-β [30].  
Several pathways following the activation of TGF-β 
receptors such as Smad2,  Smad3,  and mitogen-acti-
vated protein kinase (MAPK) have been identified as 
key intracellular signals in response to TGF-β treat-
ments [28,  31].  We have previously demonstrated 
that TGF-β-regulated Smad3 induces primary chon-
drogenesis through the association with Sox9 [32].  
Smad3 also associates with other transcription fac-
tors,  such as the osteogenic inducer Runx2,  the 
myogenic factor MyoD,  and the coactivator p300 [33-
35].  In addition to the TGF-β-regulated Smad2/3 
pathways,  the MAPK pathway stimulates the expres-
sion of Sox9 and Col2a1 during chondrogenesis [36-
38].  The Smad and MAPK pathways cooperatively 
regulate the expression of the Sox9-regulated aggrecan 
gene [39].  From these findings,  chondrogenesis is 
considerably regulated by the transcriptional cross-
talk between transcription factors and growth factor 
signals.  However,  the epigenetic cross-talk between 
Sox9 and TGF-β signaling has not been elucidated in 
the transactivation of chondrogenic genes on chroma-
tin.
　 Epigenetics is defined as gene-regulating activity 
that does not involve changes in the underlying DNA 
information.  Epigenetic regulation such as DNA meth-
ylation,  histone modification,  and chromatin remodel-
ing has been highlighted.  The fundamental unit of 
eukaryotic chromatin,  the nucleosome,  consists of 
146 bp of genomic DNA wrapped around a histone 
octamer (2 sets each of H2A,  H2B,  H3,  and H4 core 
histones) [40].  Posttranslational histone modification 
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including acetylation,  methylation,  phosphorylation,  
ubiquitination,  and ADP-ribosylation determines the 
stability and/or instability of the chromatin structure 
[41,  42].  In condensed chromatin (heterochromatin),  
the expression of the transcription factor-regulated 
gene is inactivated.  On the other hand,  transcription 
factors and coactivators activate their target gene 
expressions in relaxed chromatin (euchromatin).  The 
degree of chromatin folding directly influences the 
activity of DNA in transcription,  replication,  and 
recombination [43].  In this review,  we focus on 
Sox9-dependent transcription and epigenetic regula-
tion during chondrogenic differentiation.

The TGF-ｹ Superfamily Regulates the Gene 
Expression of Sox9 and Scx in Chondrogenesis

　 The expression of Sox9 itself is modulated by 
transcription-related factors,  growth factors,  and 
cytokines [18,  19].  Several molecules have been 
reported to regulate the promoter activity of Sox9.  
Sonic Hedgehog,  the key inductive signal in the pat-
terning of the anterior-posterior limb axis,  increases 
Sox9 promoter activity [44].  Sp1 and CREB tran-
scription factors enhance Sox9 expression by associat-
ing with the Sp-1 and CRE sites in the Sox9 proximal 
promoter on chromatin,  respectively [45].  In addi-
tion,  hypoxia-inducible factor 1α is necessary for 
mesenchymal chondrogenesis by the direct induction of 
Sox9 transcription [46].  Sox9 expression also depends 
on complicated regulatory mechanisms in response to 
growth factors,  cytokines,  and organic compounds.  
Fibroblast growth factor (FGF) 1,  FGF2,  and insu-
lin-like growth factor 1 up-regulate the expression of 
Sox9 [36,  47].  Histone deacetylase (HDAC) inhibi-
tors,  including trichostatin A (TSA) and FK228,  have 
the synergistic potential to induce Sox9 expression via 
enhanced recruitment of nuclear factor Y (NF-Y) to 
the proximal promoter of Sox9 [48].  On the other 
hand,  Sox9 expression is inhibited by inflammatory 
cytokines such as interleukin (IL)-1β and tumor necro-
sis factor α in chondrocytes [45,  49].  IL-1β treat-
ment down-regulates Sox9 transactivation by a reduc-
tion of Sp1 binding to the Sox9 promoter [45].
　 Recent studies have revealed that the TGF-β 
superfamily has 2 contrary effects in chondrocyte dif-
ferentiation.  TGF-β treatments up-regulate Sox9 
expression in the developing limb mesenchyme,  but the 

simultaneous induction of transcriptional repressor 
TGF-interacting factor 1 (Tgif1) inhibits this role 
[50].  BMP-2,  an osteochondrogenic factor,  stimu-
lates Sox9 expression by increasing the association 
between the NF-Y-p300 complex and the Sox9 pro-
moter.  BMP-2 also induces histone hyperacetylation 
at the Sox9 gene on chromatin [51].  On the other 
hand,  the BMP-2 inhibitor Noggin represses Sox9 
expression in limb bud chondrogenic precursors while 
inducing the ligament/tendon-specific transcription 
factor Scx [52].  In micromass cultures of undifferen-
tiated mesodermal cells,  the TGF-β/Smad signal is a 
direct inducer of Sox9 and Scx,  but transcriptional 
repressors of the TGF-β signal such as Tgif1 and 
SnoN modulate the expression of Sox9 and Scx [50].  
In our previous studies,  TGF-β3 and BMP-2 coop-
eratively regulated the expression of Sox9 and Scx 
along with chondrogenesis [53].  The expression vol-
ume of Sox9 and Scx also influenced Col2a1 expression 
and the progress of chondrogenesis [4,  53].  Recent 
studies and our findings suggest that Sox9 induction is 
positively regulated by TGF-β and BMP-2 in the 
early step of chondrocyte differentiation.  On the other 
hand,  Sox9 expression is concurrently inhibited by 
TGF-β-induced negative signals.  The TGF-β super-
family might modulate the expression balance between 
Sox9 and Scx,  partly by recruiting TGF-β-induced 
repressors of Sox9 expression,  according to each dif-
ferentiation stage of chondrogenesis.

TGF-ｹ-regulated Smad3,  p300,  and Scx/E47 
Cooperatively Stimulate Sox9-dependent Tran-
scription by a Direct Association with Sox9

　 The multifunctional coactivator p300 has an impor-
tant role in gene expression and cellular differentia-
tion.  p300 acts as a protein scaffold and a bridging 
factor for the assembly of the transcriptional appa-
ratus; in addition,  the histone acetyltransferase 
(HAT) activity of p300 has the potential to facilitate 
transcriptional activity by modulating the chromatin 
structure [54].  In chondrogenesis,  p300 stimulates 
transcription factor-mediated chromatin disruption.  
The CH3 domain of coactivator p300 directly associ-
ates with the C-terminal PQ-rich transactivation 
domain of Sox9,  and activates Sox9-dependent tran-
scription in chondrogenesis [55].  We have demon-
strated that Sox9-dependent transactivation is induced 
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by p300-mediated histone acetylation of chromatin 
[56].  HAT analyses revealed that the histone acetyla-
tion of a chromatinized DNA template,  which included 
multiple Sox9-binding sequences,  was activated under 
the presence of Sox9 and p300 [56].  In vitro tran-
scription and S1 nuclease assays also showed that 
Sox9-dependent transcription on assembled chromatin 
was up-regulated by a Sox9-p300 transcriptional 
complex [56].  These findings suggest that the Sox9-
related coactivator p300 is necessary in the epigenetic 
initiation of chondrogenesis.
　 In our previous studies,  TGF-β-regulated Smad3,  
but not Smad2,  promoted MSC-derived primary 
chondrogenesis through the activation of the Sox9 
function via p300 recruitment [32].  The MH2 domain 
of Smad3 interacted with the PQ-rich domain of Sox9 
and the C-terminal transactivation domain of p300.  
Smad3 also stabilized the association between Sox9 
and p300 by forming a transcriptional apparatus with 
Sox9 and p300 [32].  The transactivation of Sox9-
regulated reporter genes was synergistically increased 
in the presence of Sox9,  TGF-β,  Smad3,  and p300,  
but was suppressed by Smad3 si-RNA and Smad7,  the 
main inhibitor of Smad2/3 phosphorylation [32,  57].  
In addition,  the bHLH transcription factor Scx and its 
partner E47 cooperatively stimulated Sox9-dependent 
transcription through the formation of a transcrip-
tional complex with Sox9 and p300 [4].  The Scx/E47 
heterodimer also associated with the conserved E-box 
sequence (CAGGTG) in the Col2a1 promoter on chro-
matin [4].  These results indicate that the Sox9-
associating coregulators such as TGF-β-activated 
Smad3,  p300,  and Scx/E47 have an essential role in 
Sox9-dependent chondrogenesis.
　 On the other hand,  Sox9-induced Sox5/6 inhibited 
the expression of Scx in the middle stage of chondro-
genesis [25].  In valvulogenesis,  Sox9 and Scx were 
shown to be involved in heart valve compartmentaliza-
tion [52].  BMP-2-induced Sox9 regulates the devel-
opment of valve leaflets [52].  Although both Sox9 and 
Scx are expressed in heart valve precursors,  Scx 
regulates the differentiation of valve supporting struc-
tures [52].  These findings suggest that the cross-talk 
between Sox9 and Scx might be influenced by different 
developmental stages in chondrogenesis and valvulo-
genesis.  Scx and E47 modulated the primary chondro-
genic status by associating with the Sox9-related 
transcriptional apparatus,  and by binding to the con-

served E-box on the Col2a1 promoter [4] (Fig.  1).  
After the induction of Sox5/6 (at the proliferation 
stage in chondrocyte differentiation),  Scx might shift 
its transcriptional ability from a chondrogenic factor 
to a tendon/ligament differentiation factor.
　 Other Sox9-associating molecules have been inves-
tigated.  Sox9 interacts with the Med12/Trap230 
subunit of the mediator complex to stimulate RNA 
polymerase II-dependent transcription in chondrocytes 
[58].  Med12/Trap230 acts as an essential bridging 
factor between Sox9 and the RNA polymerase II 
transcriptional machinery.  Peroxisome proliferator-
activated receptor γ coactivator 1α (Pgc1α),  which is 
involved in gluconeogenesis,  stimulates Sox9-
dependent transcription including Col2a1 and COMP 
expression via direct association with Sox9 [59].  
Sox9 and the homeobox transcription factor Barx2 
cooperatively bind to adjacent sites in the Col2a1 
enhancer,  and regulate chondrogenesis during limb 
development [60].  These reports suggest that the 
balance of Sox9-related factors,  involved in the tran-
scriptional complex formation and its DNA-binding 
activity,  has an important role in Sox9-dependent 
transcription during chondrocyte differentiation (Fig.  
1) [61].

Sox9,  Smad3,  and p300 Cooperatively Activate 
the Gene Expression Derived from Chromatin 

during Chondrogenesis

　 Epigenetics is an essential mechanism to control 
gene expression and fundamental cellular processes 
such as proliferation and differentiation [62-64].  
Recent studies have revealed that multifunctional HAT 
complexes modulate the condensed chromatin structure 
by inducing histone acetylation [43,  65].  The acety-
lation of lysine residues in histone tails neutralizes 
their positive charge,  thereby relaxing the chromatin 
structure.  HAT complexes increase the accessibility 
of transcription factors to their target genes,  and 
have a key role in epigenetic regulation [66,  67].  We 
previously reported that p300 potentiates Sox9-
dependent transcription on a chromatinized DNA 
template and is associated with histone acetylation 
[56].  In addition,  histone hyperacetylation using the 
HDAC inhibitor TSA enhanced Sox9-regulated carti-
lage matrix gene expressions (COL2A1 and aggrecan) 
in human chondrocytes [56].  We have further ana-
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lyzed the cross-talk between Sox9-dependent tran-
scription and TGF-β-regulated Smad3 in epigenetic 
regulation using an in vitro chromatin assembly model 
[57,  68].  The TGF-β-activated Smad3/4 complex 
directly associates with purified Sox9 and p300.  In 
vitro transcription and S1 nuclease analyses revealed 
that Smad3/4,  Sox9,  and p300 cooperatively acti-
vated Sox9-dependent transcription on a chromati-
nized DNA template [57].  Our results suggest that 
the TGF-β signal Smad3 plays a key role in epigenetic 
regulation of chondrogenesis via its association with 
the Sox9/p300 transcriptional apparatus,  and indicate 
that TGF-β treatment may be necessary for the trans-
activation of Sox9-regulated genes from the region of 
the inactivated (condensed) chromatin structure.  From 
these studies,  we consider that Sox9 may activate the 
transcription of its target genes in a multistep fashion,  
first inducing coactivator-dependent histone acetylation 
around Sox9-binding sites,  then relaxing the chroma-
tin structure and recruiting the Sox9-interacting 
activators and transcription apparatus for specific 
gene expression during chondrogenesis (Fig.  1) [69].
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