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PROJECTIVE STRUCTURES AND AUTOMORPHIC

PSEUDODIFFERENTIAL OPERATORS

Min Ho Lee

Abstract. Automorphic pseudodifferential operators are pseudodiffer-
ential operators that are invariant under an action of a discrete subgroup
Γ of SL(2, R), and they are closely linked to modular forms. In partic-
ular, there is a lifting map from modular forms to automorphic pseu-
dodifferential operators, which can be interpreted as a lifting morphism
of sheaves over the Riemann surface X associated to the given discrete
subgroup Γ. One of the questions raised in a paper by Cohen, Manin,
and Zagier is whether the difference in the images of a local section of
a sheaf under such lifting morphisms corresponding to two projective
structures on X can be expressed in terms of certain Schwarzian deriva-
tives. The purpose of this paper is to provide a positive answer to this
question for some special cases.

1. Introduction

Pseudodifferential operators are formal Laurent series in the formal in-
verse ∂−1 of the derivative operator ∂ whose coefficients are complex-valued
functions, and they have been studied extensively over the years in connec-
tion with various topics in pure and applied mathematics. For example, they
play a critical role in the theory of nonlinear integrable partial differential
equations, also known as soliton equations (see e.g. [3]). In this paper we
consider pseudodifferential operators that are invariant under a naturally
defined action of a discrete subgroup of SL(2,R).

Given a discrete subgroup Γ of SL(2,R), assuming that the coefficients of
a pseudodifferential operator ψ are holomorphic functions on the Poincaré
upper half plane H, the usual linear fractional action of Γ on H induces
an operation of the same group on ψ. Pseudodifferential operators that are
invariant under such an operation may be called automorphic pseudodiffer-
ential operators for Γ, and they are closely linked to classical modular forms.
Indeed, given an automorphic pseudodifferential operator ψ for Γ, a certain
linear combination of derivatives of coefficients of ψ determines a modular
form for Γ, and conversely, each coefficient of ψ can be expressed as a linear
combination of derivatives of modular forms for Γ of various weights. These
relations can be used to establish a one-to-one correspondence between au-
tomorphic pseudodifferential operators and certain sequences of modular
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forms. One of the application of this correspondence is the construction
of a lifting map from modular forms to automorphic pseudodifferential op-
erators. Various aspects of automorphic pseudodifferential operators were
studied systematically by Cohen, Manin, and Zagier in [2] (see also [8]).
Similar results involving Hilbert modular forms can also be obtained by
considering pseudodifferential operators of several variables (cf. [6]).

It is well-known that modular forms for Γ can be interpreted geometrically
as sections of a sheaf or a line bundle over the Riemann surface X = Γ\H
corresponding to Γ. Similarly, automorphic pseudodifferential operators for
Γ can be identified with sections of a sheaf or a vector bundle overX (see [7]).
In particular, we can consider a morphism of sheaves over X corresponding
to the lifting from modular forms to automorphic pseudodifferential opera-
tors mentioned above. This lifting morphism depends on the structure of the
Riemann surface X. A projective structure on a Riemann surface is a max-
imal atlas of charts in which the transition functions are linear fractional
transformations, and it is an important object in the theory of Riemann
surfaces. Since each automorphism of the Poincaré upper half plane H can
be given by a linear fractional transformation, the above Riemann surface

X has a natural projective structure P. If P̃ is another projective struc-
ture on X, then we are interested in the difference between the two lifting

morphisms of sheaves corresponding to the projective structures P and P̃.
One of the questions asked by Cohen, Manin, and Zagier in [2] is whether

the difference in the images of a local section of a sheaf under those two
lifting sheaf morphisms described above can be expressed in terms of certain
Schwarzian derivatives. The purpose of this paper is to provide a positive
answer to this question for some special cases.

I would like to thank the referee for various highly helpful comments and
suggestions.

2. Pseudodifferential operators

In this section we review some basic properties of automorphic pseudodif-
ferential operators including their connections with modular forms studied
by Cohen, Manin, and Zagier. More details and some other aspects of au-
tomorphic pseudodifferential operators can be found in [2] and [8] (see also
[1]).

Let R denote the ring of holomorphic functions on the Poincaré upper
half plane H, and let ∂ be the derivative operator d/dz acting on the ring
R. A pseudodifferential operator over R is a formal Laurent series in the
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formal inverse ∂−1 of ∂ with coefficients in R, that is, an element of the form

k0∑

k=−∞

ξk(z)∂
k

for some k0 ∈ Z with ξk ∈ R for each integer k ≤ k0. We denote by ΨDO
the set of all pseudodifferential operators over R. Then it has the structure
of an algebra over C whose multiplication is given by the Leibniz rule, that
is,

( k0∑

k=−∞

ξk(z)∂
k
)( ℓ0∑

ℓ=−∞

ηℓ(z)∂
ℓ
)

=

k0∑

k=−∞

ℓ0∑

ℓ=−∞

∞∑

r=0

(
k

r

)
ξk(z)η

(r)
ℓ (z)∂k+ℓ−r,

where η
(r)
ℓ denotes the derivative of ηℓ of order r with respect to z, and

(
k

0

)
= 1,

(
k

r

)
=
k(k − 1) · · · (k − r + 1)

r!

for r > 0. For each integer m, we denote by ΨDOm the subspace of ΨDO
given by

ΨDOm =

{ ∞∑

k=0

ξk(z)∂
m−k

∣∣∣∣ ξk ∈ R

}
.

If m ≥ 0, then ΨDOm contains the subspace

DOm =

{ m∑

k=0

ξk(z)∂
m−k

∣∣∣∣ ξk ∈ R

}

consisting of differential operators of order at most m. We define the symbol
map Ξm : ΨDOm → R by

(2.1) Ξm

( ∞∑

k=0

ξk(z)∂
m−k

)
= ξ0(z).

Since Ξm is a complex linear map whose kernel is ΨDOm−1, we see easily
that there is a short exact sequence

(2.2) 0 → ΨDOm−1 → ΨDOm
Ξm−−→ R→ 0

of complex vector spaces.
We now describe the action of SL(2,R) on pseudodifferential operators

induced by its linear fractional action on H. If ∂̃ denotes the differentiation
operator with respect to the transformed coordinate γz of z by an element
γ =

(
a b
c d

)
∈ SL(2,R), then we see that

∂̃ =
(d(γz)

dz

)−1
∂ = (cz + d)2∂.
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More generally, we have

(2.3) ∂̃k = ((cz + d)2∂)k =
∞∑

ℓ=0

ℓ!

(
k

ℓ

)(
k − 1

ℓ

)
cℓ(cz + d)2k−ℓ∂k−ℓ

for all k ∈ Z and z ∈ H (see (1.7) in [2]). Thus the map

∂ 7→ ∂ ◦ γ = ∂̃

induces a right action ψ 7→ ψ ◦ γ of SL(2,R) on ΨDOm for each m ∈ Z;
hence, in particular, SL(2,R) acts on ΨDO on the right.

Definition 1. An element ψ ∈ ΨDO is an automorphic pseudodifferential

operator for Γ if it is invariant under the action of Γ, that is,

ψ ◦ γ = ψ

for all γ ∈ Γ. We denote by ΨDOΓ the space of all automorphic pseudodif-
ferential operators for Γ.

Definition 2. Given an integer m, a modular form of weight m for Γ is a
holomorphic function f : H → C satisfying

(2.4) (f |mγ)(z) := (cz + d)−mf(γz) = f(z)

for all z ∈ H and γ =
(

a b
c d

)
∈ Γ. We denote by Mm(Γ) the space of all

modular forms of weight m for Γ.

Remark. The usual definition of modular forms also contains the finiteness
condition at the cusps. However, we have suppressed this condition in order
to allow modular forms of negative weight.

If Ξ−w is the symbol map given by (2.1) for m = −w ∈ Z, we see from
(2.3) that the image Ξ−w(ψ) of an automorphic pseudodifferential operator
ψ ∈ ΨDOΓ

−w under Ξ−w is a modular form belonging to M2w(Γ). Thus the
sequence (2.2) induces the short exact sequence

(2.5) 0 → ΨDOΓ
−w−1 → ΨDOΓ

−w
Ξ
−w

−−−→ M2w(Γ) → 0

for each w ∈ Z. In fact, this sequence splits as can be seen below.
Given a positive integer p and an element f ∈ R, we set

Lp(f) =
∞∑

ℓ=0

(−1)ℓ (ℓ+ p)!(ℓ+ p− 1)!

ℓ!(ℓ+ 2p− 1)!
f (ℓ)∂−p−ℓ,

L−p(f) =

p−1∑

ℓ=0

(2p− ℓ)!

ℓ!(p− ℓ)!(p− ℓ− 1)!
f (ℓ)∂p−ℓ.

Then the maps f 7→ Lp(f) and f 7→ L−p(f) determine the linear maps

Lp : R→ ΨDO−p, L−p : R→ DOp
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for each p ≥ 1. Thus, if we denote the identity map on R by L0, we obtain
a complex linear map

(2.6) Lw : R→ ΨDO−w

for each integer w.

Proposition 2.1. Each linear map Lw : R → ΨDO−w in (2.6) satisfies the
condition

Lw(f |2w γ) = Lw(f) ◦ γ

for all f ∈ R and γ ∈ SL(2,C).

Proof. See Proposition 1 in [2]. �

If f ∈ M2w(Γ) with w ∈ Z for some discrete subgroup Γ of SL(2,R), then
it follows from Proposition 2.1 that Lw(f) is an automorphic pseudodiffer-
ential operator belonging to ΨDOΓ

−w; hence the map Lw in (2.6) induces the
linear map

(2.7) Lw : M2w(Γ) → ΨDOΓ
−w.

Since we see easily that (Ξ−w ◦ Lw)f = f , the short exact sequence (2.5)
splits and the linear map Lw in (2.7) may be regarded as a lifting from
modular forms of weight 2w to automorphic pseudodifferential operators for
Γ.

3. Projective structures

There are two important structures on each Riemann surface that are finer
than the complex structure, namely, the affine and projective structures.
The projective structure is closely linked to the differential operator known
as the Schwarzian derivative. In this section we review some basic properties
of the projective structure and its relation with the Schwarzian derivative
(see, e.g., [4, Section 9] for more details). We also describe one of the
questions asked by Cohen, Manin, and Zagier in [2] and state our main
theorem in this paper which provide a partial answer to that question for
some special cases.

Definition 3. Let U and V be open subdomains of C, and let f : U → V
be a complex analytic local homeomorphism. The Schwarzian derivative of
f is the function Sf defined by

(3.1) Sf =
(f ′′
f ′

)′

−
1

2

(f ′′
f ′

)2
=

2f ′f ′′′ − 3(f ′′)2

2(f ′)2
.

Lemma 3.1. Let f : U → V be a complex analytic local homeomorphism of

open subdomains U and V of C. Then Sf = 0 if and only if f is a linear

fractional transformation.
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Proof. If f : U → V is a linear fractional transformation given by

f(z) =
az + b

cz + d

with
(

a b
c d

)
∈ SL(2,C), then we have

f ′′(z)

f ′(z)
= −2c(cz + d)−1;

hence we see that

(Sf)(z) = 2c2(cz + d)−2 −
1

2
(−2c(cz + d)−1)2 = 0

for all z ∈ U . To verify the converse, we now assume that f satisfies Sf = 0.
Then, using the fact that Sf(z) can be written in the form

(Sf)(z) = −2f ′(z)1/2 d
2

dz2

(
f ′(z)−1/2

)
,

we obtain
d2

dz2
f ′(z)−1/2 = 0.

This shows that

f ′(z)−1/2 = cz + d, f ′(z) = (cz + d)−2, f(z) =
az + b

cz + d

for some a, b, c, d ∈ C. Since f is a local homeomorphism, we have f ′(z) 6= 0,
which implies that ad−bc 6= 0; hence f is a linear fractional transformation.

�

If f = h ◦ g is the composite of complex analytic local homeomorphisms
g : U → V and h : V → W for some open subdomains U , V and W of C,
then it can be easily shown that

(3.2) (Sf)(z) = (Sh)(g(z)) · g′(z)2 + (Sg)(z)

for all z ∈ U . In particular, if g is a linear fractional transformation of the
form

g(z) = γz =
az + b

cz + d

for some γ =
(

a b
c d

)
∈ SL(2,C), then we have

(3.3) (Sf)(z) = (Sh)(g(z)) · g′(z)2 = (Sh)(γz)(cz + d)−4.

Since d(γz) = (cz + d)−2dz, we see from (3.3) that

(3.4) (Sh)(γz)d(γz)2 = (Sh)(z)dz2;

hence the quadratic differential (Sh)(z)dz2 is invariant under linear frac-
tional transformations.
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Example 3.2. Let Γ be a discrete subgroup of SL(2,R), which acts on H by
linear fractional transformations. If f is a holomorphic function on H, then
by (3.4) the associated quadratic differential Sf(z)dz2 on H is Γ-invariant;
hence it induces a quadratic differential form on the Riemann surface X =
Γ\H. On the other hand, given a holomorphic quadratic differential hdz2

on X, by solving locally the differential equation Sf(z) = h in f we can
recover the charts of a projective structure on X. Here we need to use the
fact that any two local solutions of Sf(z) = h differ by composition with a
linear fractional transformation (see [5, Proposition 1]).

Definition 4. A projective structure on a Riemann surface X is a maximal
atlas of charts on X such that each transition function is a linear fractional
transformation.

Remark. Let X be a Riemann surface equipped with a projective structure.
Then by Lemma 3.1 the Schwarzian derivative of each transition function
is equal to zero. Furthermore, by (3.2) the Schwarzian derivative of the
composite of two transition functions is also zero. In fact, a projective
structure can also be defined to be a maximal atlas of charts in which the
Schwarzian derivative of each transition function is equal to zero.

Let OX be the sheaf of germs of holomorphic functions on a Riemann
surface X. If an open subset U of X has a local coordinate z and if m is an
integer, we set

(3.5) Em
X (U) =

{ ∞∑

k=0

hk(z)∂
m−k
z

∣∣∣ hk ∈ OX(U) for each k ≥ 1
}
,

where ∂z = ∂/∂z and OX(U) is the ring of holomorphic functions on U . We
denote by Em

X the sheaf on X associated to the presheaf U 7→ Em
X (U). Let

ωX be the sheaf of holomorphic differentials on X. Then it is an invertible
sheaf, and we can consider its tensor power ω⊗m

X for each integer m. If (U, z)

is an open chart and if ω⊗m
X (U) denotes the space of sections of ω⊗m

X , then an

element of ω⊗m
X (U) can be written in the form f(dz)m for some f ∈ OX(U).

We now consider the case where X = Γ\H is the quotient of H by a
discrete subgroup Γ of SL(2,R), where the quotient is taken with respect
to the linear fractional action of Γ on H. If Uα is an open subset of X, then

there is an isomorphism zα : Uα → Ũα of Uα onto an open subset Ũα of H
such that (Uα, zα) is a chart. Using this and the fact that automorphisms of
H are given by linear fractional transformations, we can consider a natural
maximal atlas (Uα, zα)α∈I whose transition functions are linear fractional.
We shall call this the natural projective structure on X and denote it by P.
Sections of the sheaf ω⊗m

X are Γ-invariant forms of the form f(dz)m with

f ∈ OX(H). Since d(γz) = (cz + d)−2dz for γ =
(

a b
c d

)
∈ Γ, we see that
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sections of ω⊗m
X on X can be identified with modular forms belonging to

M2m(Γ). On the other hand, by (3.5) sections of the sheaf Em
X may be

regarded as automorphic pseudodifferential operators belonging to ΨDOΓ
m.

Thus the sequence (2.5) induces the short exact sequence of the type

(3.6) 0 → E−m−1
X → E−m

X → ω⊗m
X → 0.

In particular, there is a canonical isomorphism

E−m
X /E−m−1

X
∼= ω⊗m

X

of sheaves on X for each m ≥ 0.
If (Uα, zα) is a chart on X belonging to the projective structure P, we set

ΛP
0 (f) = f(3.7)

ΛP
k (f(dzα)k) =

∞∑

ℓ=0

(−1)ℓ (ℓ+ k)!(ℓ+ k − 1)!

ℓ!(ℓ+ 2k − 1)!
f (ℓ)∂−k−ℓ

zα

,(3.8)

ΛP
−k(f(dzα)−k) =

k−1∑

ℓ=0

(2k − ℓ)!

ℓ!(k − ℓ)!(k − ℓ− 1)!
f (ℓ)∂k−ℓ

zα

(3.9)

for each positive integer k and an element f ∈ OX(Uα), where ∂zα
= ∂/∂zα

.
The next lemma shows that the short exact sequence (3.6) splits.

Lemma 3.3. Let P be the natural projective structure on X described above.

Then the formulas (3.7), (3.8) and (3.9) determine a morphism

(3.10) ΛP
m : ω⊗m

X → E−m
X

of sheaves on X for each m ∈ Z.

Proof. First, to see that ΛP
m is well-defined we consider two charts (Uα, zα)

and (Uβ, zβ). Since transition functions are linear fractional transformations,
zα = γαβzβ for some γαβ =

(
a b
c d

)
∈ SL(2,R), so that dzα = (czβ + d)−2zβ.

Hence, if f ∈ OX(Uα), we have

(3.11) f(dzα)m = (f |2m γαβ)(dzβ)m

on Uα ∩ Uβ . We note that

(3.12) ΛP
m(f(dzα)m) = Lm(f),

where Lm is as in (2.6). Thus the fact that ΛP
m is well-defined follows

from (3.11), (3.12) and Proposition 2.1. By (3.7) the map ΛP
0 is simply

the inclusion morphism of OX = ω0
X into E0

X . On the other hand, given a
positive integer k and a chart (Uα, zα) in the projective structure P onX, the

sections of the sheaves ω⊗k
X and ω

⊗(−k)
X over Uα are generated by elements
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of the form f(dzα)k and h(dzα)−k, respectively, for some f, h ∈ OX(Uα).
Hence the lemma follows from this and (3.5). �

We now consider another projective structure P̃ corresponding to a local
coordinate z̃ on X, and set

(3.13) J =
dz̃

dz
.

By (3.1) the Schwarzian derivative of the coordinate transformation map
z 7→ z̃ can be written as

(3.14) Sez
z =

2JJ ′′ − 3(J ′)2

2J2
= J−1J ′′ −

3

2
J−2(J ′)2.

One of the questions asked by Cohen, Manin, and Zagier in [2, Section 8]
may be paraphrased as follows.

Question 3.4. Let (U, z) and (Ũ , z̃) be charts on X with U∩Ũ 6= ∅ belonging

to the projective structures P̃ and P, respectively, with U ∩ Ũ 6= ∅, and let

f ∈ OX(U ∩ Ũ). Is it true that

(Λ
eP
m − ΛP

m)(f(dz)m)

can be expressed in terms of f and the Schwarzian derivative Sez
z for each

m ∈ Z?

It was pointed out by Cohen, Manin, and Zagier in [2, Section 8] that

Λ
eP
m − ΛP

m = 0

for m = 1, 0,−1,−2. To see the cases of m = 0,−1,−2, note that

∂ez =
d

dz̃
=

1

dz̃/dz

d

dz
= J−1∂,(3.15)

∂2
ez = J−1∂(J−1∂) = J−1(−J−2J ′∂ + J−1∂2) = J−2∂2 − J ′J−3∂.

On the other hand, since dz̃ = Jdz, we have

(3.16) f(dz)m = f(J−1dz̃)m = J−mf(dz̃)m,

so that

(3.17) (Λ
eP
m − ΛP

m)(f(dz)m) = Λ
eP
m(J−mf(dz̃)m) − ΛP

m(f(dz)m)

for each m ∈ Z. For m = 0, we have

Λ
eP
0 (f(dz̃)0) = ΛP

0 (f(dz)0) = f ;

hence we see that

(Λ
eP
0 − ΛP

0 )(f) = 0.
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For m = −1, from (3.9) we obtain

ΛP
−1(f(dz)−1) =

0∑

n=0

(2 − n)!

n!(1 − n)!(−n)!
f (n)∂1−n = 2f∂.

Thus we have

(Λ
eP
−1 − ΛP

−1)(f(dz)−1) = 2(Jf(z)∂ez − f∂) = 2(Jf(z)J−1∂ − f(z)) = 0

For m = −2, we see from (3.9) that

ΛP
−2(f(dz)−2) =

1∑

n=0

(4 − n)!

n!(2 − n)!(1 − n)!
f (n)(z)∂2−n = 12f(z)∂2 + 6f ′(z)∂,

and therefore we have

(Λ
eP
−2 − ΛP

−2)(f(dz)−2) = 12(J2f∂2
ez − f∂2) + 6

(
d

dz̃
(J2f)∂ez − f ′(z)∂

)
,

where

d

dz̃
(J2f) = J−1 d

dz
(J2f) = J−1(2JJ ′f + J2f ′) = 2J ′f + Jf ′.

From this and (3.15) it follows that

(Λ
eP
−2 − ΛP

−2)(f(dz)−2) = 12(J2f(J−2∂2 − J ′J−3) − f∂2)

+ 6((J−1(2J ′f + Jf ′ − f ′∂)J−1∂ − f ′∂) = 0.

Cohen, Manin, and Zagier also gave a formula for Λ
eP
m − ΛP

m in the case of
m = −3, which we show in the next lemma using our notation.

Lemma 3.5. Given charts (U, z) and (Ũ , z̃) belonging to the projective

structures P̃ and P, respectively, on X with U ∩ Ũ 6= ∅, we have

(3.18) (Λ
eP
−3 − ΛP

−3)(f(dz)−3) = −24Sez
z f∂

for f ∈ OX(U ∩ Ũ).

Proof. Using (3.9), we obtain

ΛP
−3(f(dz)−3) =

2∑

n=0

(6 − n)!

n!(3 − n)!(2 − n)!
f (n)∂3−n

= 60f∂3 + 60f ′∂2 + 12f ′′∂;

hence from (3.17) we see that

(Λ
eP
−3 − ΛP

−3)(f(dz)−3) = 60(J3f∂3
ez − f∂3)(3.19)
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+ 60

(
d

dz̃
(J3f)∂2

ez − f ′∂2)

)

+ 12

(
d2

dz̃2
(J3f)∂ez − f ′′(z)∂

)
.

Here ∂ez and ∂2
ez satisfy (3.15), and

∂3
ez = J−1∂(J−2∂2 − J ′J−3∂)(3.20)

= J−1(−2J−3J ′∂2 + J−2∂3

− (J ′′J−3 − 3(J ′)2J−4)∂ − J ′J−3∂2)

= J−3∂3 − 3J ′J−3∂2 + (3(J ′)2 − JJ ′′)J−5∂.

On the other hand, we have

d

dz̃
(J3f) = J−1(J3f)′

= J−1(3J2J ′f + J3f ′) = 3JJ ′f + J2f ′,

d2

dz̃2
(J3f) = J−1(3JJ ′f + J2f ′)′

= J−1(3(J ′)2 + 3JJ ′′)f + 3JJ ′f ′ + 2JJ ′f ′ + J2f ′′)

= (3(J ′)2J−1 + 3J ′′)f + 5J ′f ′ + Jf ′′.

Thus we obtain

1

60
Λ

eP
−3(f(dz)−3) = J3f∂3

ez +
d

dz̃
(J3f)∂2

ez +
1

5

d2

dz̃2
(J3f)∂ez

= J3f(J−3∂3 − 3J ′J−4∂2 + (3(J ′)2 − JJ ′′)J−5∂)

+ (3JJ ′f + J2f ′)(J−2∂2 − J ′J−3∂)

+
1

5
((3(J ′)2J−1 + 3J ′′)f + 5J ′f ′ + Jf ′′)J−1∂

= f∂3 − 3J ′J−1f∂2 + (3(J ′)2J−2 − J ′′J−1f)∂

+ (3J ′J−1f + f ′)∂2 − (3(J ′)2J−2f + J ′J−1f ′)∂

+
1

5
(3(J ′)2J−2f + 3J ′′J−1f + 5J ′J−1f ′ + f ′′)∂

= (f∂3 + f ′∂2 + f ′′∂) +
1

5
(3(J ′)2J−2 − 2J ′′J−1)f∂,

which implies that

1

60
(Λ

eP
−3 − ΛP

−3)(f(dz)−3) =
1

5
(3(J ′)2J−2 − 2J ′′J−1)f∂.

Thus (3.18) follows from this and (3.14). �
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Remark. The formula given Cohen, Manin and Zagier in [2] has the right
hand side of (3.18) in the form

1

5

(
2
J ′′

J
− 3

(J ′)2

J2

)
f∂ =

1

5
Sez

z f∂

in our notation. The right hand side of (3.18) would coincide with this if
the formula (3.19) is normalized by dividing its right hand side by the the
coefficient of f∂3.

We now state our main theorem in this paper, which provides a positive
answer to Question 3.4 for some special cases. The proof of this theorem
will be given in the next two sections.

Theorem 3.6. Let (U, z) and (Ũ , z̃) be charts belonging to the projective

structures P̃ and P, respectively, on X with U ∩ Ũ 6= ∅, and let f ∈ OX(U ∩

Ũ). Then we have

(Λ
eP
−4 − ΛP

−4)(f(dz)−4) = −800Sez
z f∂

2 − 400(Sez
z f)′∂,(3.21)

(Λ
eP
−5 − ΛP

−5)(f(dz)−5) = −210Sez
z f∂

3 − 210(Sez
z f)′∂2(3.22)

− 30
(
37(Sez

z )′′f + 16(Sez
z )2f

+ 65(Sez
z )′f ′ + 30Sez

z f
′′
)
∂

for f ∈ OX(U ∩ Ũ), where ΛP
m and Λ

eP
m for m = −4,−5 are morphisms of

sheaves on X in (3.10) and Sez
z is the Schwarzian derivative of the coordinate

transformation map z 7→ z̃ given by (3.14).

4. Degree four case

In this section we prove the relation (3.21) in Theorem 3.6. Let f ∈

OX(U∩Ũ), where (U, z) and (Ũ , z̃) with U∩Ũ 6= ∅ are charts onX belonging

to the projective structures P̃ and P, respectively. Then, using (3.9), we
have

ΛP
−4(f(dz)−4) =

3∑

n=0

(8 − n)!

n!(4 − n)!(3 − n)!
f (n)∂4−n(4.1)

=
8!

4!3!
f∂4 +

7!

3!2!
f ′∂3 +

6!

2!2!
f ′′∂2 +

5!

3!
f ′′′∂

= 280f∂4 + 420f ′∂3 + 180f ′′∂2 + 20f ′′′∂.

From this and (3.16) we obtain

Λ
eP
−4(f(dz)−4) = Λ

eP
−4(J

4f(dz̃)−4)(4.2)
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= 280J4f∂4
ez + 420

d

dz̃
(J4f)∂3

ez

+ 180
d2

dz̃2
(J4f)∂2

ez + 20
d3

dz̃3
(J4f)∂ez,

where J is as in (3.13). Since ∂ez = J−1∂, using (3.20), we see that

∂4
ez = J−1∂(J−3∂3 − 3J ′J−4∂2 + (3(J ′)2J−5 − J ′′J−4)∂)(4.3)

= J−1
[
−3J−4J ′∂3 + J−3∂4 − 3(J ′′J−4 − 4(J ′)2J−5)∂2

− 3J ′J−4∂3 + (6J ′′J ′J−5 − 15(J ′)3J−6 − J ′′′J−4

+ 4J ′′J ′J−5)∂ + (3(J ′)2J−5 − J ′′J−4)∂2
]

= −3J−5J ′∂3 + J−4∂4 − 3(J ′′J−5 − 4(J ′)2J−6)∂2 − 3J ′J−5∂3

+ (10J ′′J ′J−6 − 15(J ′)3J−7 − J ′′′J−5)∂

+ (3(J ′)2J−6 − J ′′J−5)∂2

= J−4∂4 − 6J ′J−5∂3 +
[
15(J ′)2J−6 − 4J ′′J−5

]
∂2

+
[
10J ′′J ′J−6 − 15(J ′)3J−7 − J ′′′J−5

]
∂.

On the other hand, we have

d

dz̃
(J4f) = J−1 d

dz
(J4f)

= J−1(4J3J ′f + J4f ′) = 4J2J ′f + J3f ′,

d2

dz̃2
(J4f) = J−1(4J2J ′f + J3f ′)′

= J−1
[
(8J(J ′)2 + 4J2J ′′)f + 4J2J ′f ′ + 3J2J ′f ′ + J3f ′′

]

= (8(J ′)2 + 4J ′′J)f + 7J ′Jf ′ + J2f ′′,

d3

dz̃3
(J4f) = J−1

[
(8(J ′)2 + 4J ′′J)f + 7J ′Jf ′ + J2f ′′

]′

= J−1
[
(16J ′J ′′ + 4J ′′′J + 4J ′′J ′)f + (8(J ′)2 + 4J ′′J)f ′

+ 7(J ′′J + (J ′)2)f ′ + 7J ′Jf ′′ + 2J ′Jf ′′ + J2f ′′′
]

= (20J ′′J ′J−1 + 4J ′′′)f + (8(J ′)2J−1 + 4J ′′)f ′

+ 7(J ′′ + (J ′)2J−1)f ′ + 7J ′f ′′ + 2J ′f ′′ + Jf ′′′

= (20J ′′J ′J−1 + 4J ′′′)f

+ (15(J ′)2J−1 + 11J ′′)f ′ + 9J ′f ′′ + Jf ′′′.

From these, (3.15), (3.20), (4.2) and (4.3) we obtain

1

20
Λ

eP
−4(f(dz)−4)
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= 14f(z̃)∂4
ez + 21

d

dz̃
f(z̃)∂3

ez + 9
d2

dz̃2
f(z̃)∂2

ez +
d3

dz̃3
f(z̃)∂ez

= 14J4f
(
J−4∂4 − 6J ′J−5∂3 +

[
15(J ′)2J−6 − 4J ′′J−5

]
∂2

+
[
10J ′′J ′J−6 − 15(J ′)3J−7 − J ′′′J−5

]
∂
)

+ 21(4J2J ′f + J3f ′)(J−3∂3 − 3J ′J−4∂2 + (3(J ′)2 − JJ ′′)J−5∂)

+ 9((8(J ′)2 + 4J ′′J)f + 7J ′Jf ′ + J2f ′′)(J−2∂2 − J ′J−3∂)

+
(
(20J ′′J ′J−1 + 4J ′′′)f

+ (15(J ′)2J−1 + 11J ′′)f ′ + 9J ′f ′′ + Jf ′′′
)
(J−1∂)

= 14f∂4 − 84J ′J−1f∂3 +
[
210(J ′)2J−2f − 56J ′′J−1f

]
∂2

+
[
140J ′′J ′J−2f − 210(J ′)3J−3f − 14J ′′′J−1f

]
∂

+
[
84J ′J−1f + 21f ′

]
∂3 −

[
252(J ′)2J−2f + 63J ′J−1f ′

]
∂2

+
[
252(J ′)3J−3f − 84J ′′J ′J−2f + 63(J ′)2J−2f ′ − 21J ′′J−1f ′

]
∂

+
[
72(J ′)2J−2f + 36J ′′J−1f + 63J ′J−1f ′ + 9f ′′

]
∂2

−
[
72(J ′)3J−3f + 36J ′′J ′J−2f + 63(J ′)2J−2f ′ + 9J ′J−1f ′′

]
∂

+
[
20J ′′J ′J−2f + 4J ′′′J−1f

+ 15(J ′)2J−2f ′ + 11J ′′J−1f ′ + 9J ′J−1f ′′ + f ′′′
]
∂.

Using this and (4.1), we have

1

20
(Λ

eP
−4 − ΛP

−4)(f(dz)−4)

= 10
[
3(J ′)2J−2 − 2J ′′J−1

]
f∂2 + 5

[
3(J ′)2J−2 − 2J ′′J−1

]
f ′∂

+ 10
[
4J ′′J ′J−2 − 3(J ′)3J−3 − J ′′′J−1

]
f∂.

If Sez
z is as in (3.14), its derivative with respect to z is given by

(Sez
z )′ = J ′′′J−1 − J ′′J ′J−2 −

3

2
(2J ′′J ′J−2 − 2(J ′)3J−3)(4.4)

= J ′′′J−1 + 3(J ′)3J−3 − 4J ′′J ′J−2.

Thus we have

−
1

400
(Λ

eP
−4 − ΛP

−4)(f(dz)−4) = 2Sez
z f∂

2 + (Sez
z f

′ + (Sez
z )′f)∂

= 2Sez
z f∂

2 + (Sez
z f)′∂,

which verifies the relation (3.21) in Theorem 3.6.
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5. Degree five case

In this section we prove the relation (3.22) in Theorem 3.6. If f ∈ OX(U∩

Ũ) is as in Section 4, using (3.9) and (3.16), we have

ΛP
−5(f(dz)−5) =

4∑

n=0

(10 − n)!

n!(5 − n)!(4 − n)!
f (n)∂5−n

(5.1)

=
10!

5!4!
f∂5 +

9!

4!3!
f ′∂4 +

8!

2!3!2!
f ′′∂3 +

7!

3!2!
f ′′′∂2 +

6!

4!
f (4)∂

= 30
(
42f∂5 + 84f ′∂4 + 56f ′′∂3 + 14f ′′′∂2 + f (4)∂

)
.

Λ
eP
−5(f(dz)−5) = Λ

eP
−5(J

5f(dz̃)−5)

(5.2)

= 30

(
42J5f∂5

ez + 84
d

dz̃
(J5f)∂4

ez + 56
d2

dz̃2
(J5f)∂3

ez

+ 14
d3

dz̃3
(J5f)∂2

ez +
d4

dz̃4
(J5f)∂ez

)
.

Since ∂5
ez = J−1∂∂4

ez , by using (4.3) we see that

J∂5
ez = ∂

[
J−4∂4 − 6J ′J−5∂3 + (15(J ′)2J−6 − 4J ′′J−5)∂2

+ (10J ′′J ′J−6 − 15(J ′)3J−7 − J ′′′J−5)∂
]

= −4J−5J ′∂4 + J−4∂5 − 6(J ′′J−5∂3 − 5(J ′)2J−6∂3 + J ′J−5∂4)

+ 15(2J ′′J ′J−6∂2 − 6(J ′)3J−7∂2 + (J ′)2J−6∂3)

− 4(J ′′′J−5∂2 − 5J ′′J ′J−6∂2 + J ′′J−5∂3)

+ 10(J ′′′J ′J−6∂ + (J ′′)2J−6∂ − 6J ′′(J ′)2J−7∂ + J ′′J ′J−6∂2)

− 15(3J ′′(J ′)2J−7∂ − 7(J ′)4J−8∂ + (J ′)3J−7∂2)

− (J (4)J−5∂ − 5J ′′′J ′J−6∂ + J ′′′J−5∂2);

hence we obtain

∂5
ez = J−5∂5 − 10J ′J−6∂4 + (−10J ′′J−6 + 45(J ′)2J−7)∂3(5.3)

+ (60J ′′J ′J−7 − 105(J ′)3J−8 − 5J ′′′J−6)∂2

+ (−105J ′′(J ′)2J−8 + 105(J ′)4J−9 + 15J ′′′J ′J−7

+ 10(J ′′)2J−7 − J (4)J−6)∂
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On the other hand, we have

d

dz̃
(J5f) = J−1(J5f)′ = J−1(5J4J ′f + J5f ′) = 5J3J ′f + J4f ′,

d2

dz̃2
(J5f) = J−1(5J3J ′f + J4f ′)′

= J−1
[
(15J2(J ′)2 + 5J3J ′′)f + 5J3J ′f ′ + 4J3J ′f ′ + J4f ′′

]

= (15(J ′)2J + 5J ′′J2)f + 9J ′J2f ′ + J3f ′′,

d3

dz̃3
(J5f) = J−1

[
(15(J ′)2J + 5J ′′J2)f + 9J ′J2f ′ + J3f ′′

]′

= J−1
[
(30J ′′J ′J + 15(J ′)3 + 5J ′′′J2 + 10J ′′J ′J)f

+ (15(J ′)2J + 5J ′′J2)f ′ + (9J ′′J2 + 18(J ′)2J)f ′

+ 9J ′J2f ′′ + 3J ′J2f ′′ + J3f ′′′
]

= (40J ′′J ′ + 15(J ′)3J−1 + 5J ′′′J)f

+ (33(J ′)2 + 14J ′′J)f ′ + 12J ′Jf ′′ + J2f ′′′,

d4

dz̃4
(J5f) = J−1

[
(40J ′′J ′ + 15(J ′)3J−1 + 5J ′′′J)f

+ (33(J ′)2 + 14J ′′J)f ′ + 12J ′Jf ′′ + J2f ′′′
]′

= J−1
[
(40J ′′′J ′ + 40(J ′′)2 + 45J ′′(J ′)2J−1

− 15(J ′)4J−2 + 5J (4)J + 5J ′′′J ′)f

+ (40J ′′J ′ + 15(J ′)3J−1 + 5J ′′′J)f ′

+ (66J ′′J ′ + 14J ′′′J + 14J ′′J ′)f ′ + (33(J ′)2 + 14J ′′J)f ′′

+ (12J ′′J + 12(J ′)2)f ′′ + 12J ′Jf ′′′ + 2J ′Jf ′′′ + J2f (4)
]

= (45J ′′′J ′J−1 + 40(J ′′)2J−1 + 45J ′′(J ′)2J−2 − 15(J ′)4J−3

+ 5J (4))f + (120J ′′J ′J−1 + 15(J ′)3J−2 + 19J ′′′)f ′

+ (45(J ′)2J−1 + 26J ′′)f ′′ + 14J ′f ′′′ + Jf (4).

Combining these relations with (5.1), (5.2) and (5.3) as well as (3.15), (3.20)
and (4.3), we obtain

1

30
(Λ

eP
−5 − ΛP

−5)(f(dz)−5)

= 42J5f(J−5∂5 − 10J ′J−6∂4 + (−10J ′′J−6 + 45(J ′)2J−7)∂3

+ (60J ′′J ′J−7 − 105(J ′)3J−8 − 5J ′′′J−6)∂2

+ (−105J ′′(J ′)2J−8 + 105(J ′)4J−9 + 15J ′′′J ′J−7
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+ 10(J ′′)2J−7 − J (4)J−6)∂

+ 84(5J3J ′f + J4f ′)(J−4∂4 − 6J ′J−5∂3 +
[
15(J ′)2J−6 − 4J ′′J−5

]
∂2

+
[
10J ′′J ′J−6 − 15(J ′)3J−7 − J ′′′J−5

]
∂)

+ 56((15(J ′)2J + 5J ′′J2)f + 9J ′J2f ′ + J3f ′′)

× (J−3∂3 − 3J ′J−4∂2 + (3(J ′)2 − JJ ′′)J−5∂)

+ 14((40J ′′J ′ + 15(J ′)3J−1 + 5J ′′′J)f

+ (33(J ′)2 + 14J ′′J)f ′ + 12J ′Jf ′′ + J2f ′′′)(J−2∂2 − J ′J−3∂)

+ ((45J ′′′J ′J−1 + 40(J ′′)2J−1 + 45J ′′(J ′)2J−2 − 15(J ′)4J−3 + 5J (4))f

+ (120J ′′J ′J−1 + 15(J ′)3J−2 + 19J ′′′)f ′

+ (45(J ′)2J−1 + 26J ′′)f ′′ + 14J ′f ′′′ + Jf (4))(J−1∂)

Thus, if we write

1

30
(Λ

eP
−5 − ΛP

−5)(f(dz)−5) = C5∂
5 + C4∂

4 + C3∂
3 + C2∂

2 + C1∂,

then the coefficients C1, . . . , C5 can be written in the form

C5 = 42f − 42f = 0,

C4 = −420J ′J−1f + 420J ′ + 84f ′ − 84f = 0,

C3 = −420J ′′J−1f + 1890(J ′)2J−2f − 2520(J ′)2J−2f − 504J ′J−1f ′

+ 840(J ′)2J−2f + 280J ′′J−1f + 504J ′J−1f ′ + 56f ′′ − 56f ′′

= 210(J ′)2J−2f − 140J ′′J−1f = 70Sez
z f,

C2 = 2520J ′′J ′J−2f − 4410(J ′)3J−3f − 210J ′′′J−1f + 6300(J ′)3J−3f

+ 1260(J ′)2J−2f ′ − 1680J ′′J ′J−2f − 336J ′′J−1f ′ − 2520(J ′)3J−3f

− 840J ′′J ′J−2f − 1512(J ′)2J−2f ′ − 168J ′J−1f ′′ + 560J ′′J ′J−2f

+ 210(J ′)3J−3f + 70J ′′′J−1f + 462(J ′)2J−2f ′ + 196J ′′J−1f ′

+ 168J ′J−2f ′′ + 14f ′′′ − 14f ′′′

= 560J ′′J ′J−2f − 420(J ′)3J−3f − 140J ′′′J−1f

+ 210(J ′)2J−2f ′ − 140J ′′J−1f ′

= 70((Sez
z )′f + Sez

z f
′) = 70(Sez

zf)′,

C1 = −4410J ′′(J ′)2J−3f + 4410(J ′)4J−4f + 630J ′′′J ′J−2f

+ 420(J ′′)2J−2f − 42J (4)J−1f + 4200J ′′(J ′)2J−3f
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− 6300(J ′)4J−4f − 420J ′′′J ′J−2f + 840J ′′J ′J−2f ′

− 1260(J ′)3J−3f ′ − 84J ′′′J−1f ′ + 2520(J ′)4J−4f

+ 840J ′′(J ′)2J−3f + 1512(J ′)3J−3f ′ + 168(J ′)2J−2f ′′

− 840J ′′(J ′)2J−3f − 280(J ′′)2J−2f − 504J ′′J ′J−2f ′

− 56J ′′J−1f ′′ − 560J ′′(J ′)2J−3f − 210(J ′)4J−4f

− 70J ′′′J ′J−2f − 462(J ′)3J−3f ′ − 196J ′′J ′J−2f ′

− 168(J ′)2J−2f ′′ − 14J ′J−1f ′′′ + 45J ′′′J ′J−2f + 40(J ′′)2J−2f

+ 45J ′′(J ′)2J−3f − 15(J ′)4J−4f + 5J (4)J−1f + 120J ′′J ′J−2f ′

+ 15(J ′)3J−3f ′ + 19J ′′′J−1f ′ + 45(J ′)2J−2f ′′ + 26J ′′J−1f ′′

+ 14J ′J−1f ′′′ + f (4) − f (4)

=
[
−725J ′′(J ′)2J−3 + 405(J ′)4J−4 + 185J ′′′J ′J−2

+ 180(J ′′)2J−2 − 37J (4)J−1
]
f

+
[
260J ′′J ′J−2 − 195(J ′)3J−3 − 65J ′′′J−1

]
f ′

+
[
45(J ′)2J−2 − 30J ′′J−1

]
f ′′

= 37
[
5J ′′′J ′J−2 + 4(J ′′)2J−2 − 17J ′′(J ′)2J−3

+ 9(J ′)4J−4 − J (4)J−1
]
f

+ 8
[
9(J ′)4J−4 − 12J ′′(J ′)2J−3 + 4(J ′′)2J−2

]
f

+ 65
[
4J ′′J ′J−2 − 3(J ′)3J−3 − J ′′′J−1

]
f ′

+ 15
[
3(J ′)2J−2 − 2J ′′J−1

]
f ′′.

If Sez
z is as in (3.14), we have

(Sez
z )2 =

1

4
(3(J ′)2J−2 − 2J ′′J−1)2

=
1

4
(9(J ′)4J−4 − 12J ′′(J ′)2J−3 + 4(J ′′)2J−2).

On the other hand, using (4.4), we obtain

(Sez
z )′′ = J (4)J−1 − J ′′′J ′J−2 + 9J ′′(J ′)2J−3 − 9(J ′)4J−4

− 4J ′′′J ′J−2 − 4(J ′′)2J−2 + 8J ′′(J ′)2J−3

= −5J ′′′J ′J−2 − 4(J ′′)2J−2 + 17J ′′(J ′)2J−3 − 9(J ′)4J−4 + J (4)J−1).

Thus it follows that

−
1

30
(Λ

eP
−5 − ΛP

−5)(f(dz)−5)
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= 70Sez
z f∂

3 + 70(Sez
zf)′∂2 + (37(Sez

z )′′f

+ 16(Sez
z )2f + 65(Sez

z )′f ′ + 30Sez
z f

′′)∂.

Hence we obtain the formula (3.22), and the proof of Theorem 3.6 is com-
plete.

6. Concluding remarks

In the previous sections we obtained expressions of (Λ
eP
m − ΛP

m)(f(dz)m)

in terms of f ∈ OX(U ∩ Ũ) and the Schwarzian derivative of the coordinate
transformation map for

m = 0,−1,−2,−3,−4,−5.

When m = −6, from (3.9) we obtain

(Λ
eP
−6 − ΛP

−6)(f(dz)−6)

=
5∑

n=0

(12 − n)!

n!(6 − n)!(5 − n)!

[
((∂n

ez (J6f)∂6−n
ez − (∂nf)∂6−n

]

with ∂ez = J−1∂. Thus, in addition to ∂ℓ
ez for 0 ≤ ℓ ≤ 5 used in Section 5, we

also need to calculate ∂6
ez = J−1∂∂5

ez as well as the derivatives

∂n
ez (J6f) =

(
J−1 d

dz

)n
(J6f)

for 1 ≤ n ≤ 6. The computations would be much more complicated than
the ones we had in Section 5. It does not seem likely that the general case
can be calculated inductively.

As is mentioned in Question 3.4, Cohen, Manin and Zagier [2] asks if

(Λ
eP
m −ΛP

m)(f(dz)m) could be expressed essentially as multiplication by P̃−
P = Sez

z (dz)2 in a suitable sense for all m ∈ Z. For m > 0, they also mention

that Λ
eP
1 − ΛP

1 = 0, so that their claim holds trivially at least for m = 1.
Note, however, that our method in this paper cannot apply to the cases of
m > 0, even to the simplest case of m = 1.
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