Math. J. Okayama Univ. 53 (2011), 167-172

A CAUCHY-KOWALEVSKI THEOREM FOR INFRAMONOGENIC FUNCTIONS

Helmuth R. MALONEK, Dixan PEÑA PEÑA and Frank SOMMEN

Abstract. In this paper we prove a Cauchy-Kowalevski theorem for the functions satisfying the system $\partial_{x} f \partial_{x}=0$ (called inframonogenic functions).

1. Introduction

Let $\mathbb{R}_{0, m}$ be the 2^{m}-dimensional real Clifford algebra constructed over the orthonormal basis $\left(e_{1}, \ldots, e_{m}\right)$ of the Euclidean space \mathbb{R}^{m} (see [3]). The multiplication in $\mathbb{R}_{0, m}$ is determined by the relations $e_{j} e_{k}+e_{k} e_{j}=-2 \delta_{j k}$, $j, k=1, \ldots, m$, where $\delta_{j k}$ is the Kronecker delta. A general element of $\mathbb{R}_{0, m}$ is of the form

$$
a=\sum_{A} a_{A} e_{A}, \quad a_{A} \in \mathbb{R}
$$

where for $A=\left\{j_{1}, \ldots, j_{k}\right\} \subset\{1, \ldots, m\}, j_{1}<\cdots<j_{k}, e_{A}=e_{j_{1}} \ldots e_{j_{k}}$. For the empty set \emptyset, we put $e_{\emptyset}=1$, the latter being the identity element.

Notice that any $a \in \mathbb{R}_{0, m}$ may also be written as $a=\sum_{k=0}^{m}[a]_{k}$ where $[a]_{k}$ is the projection of a on $\mathbb{R}_{0, m}^{(k)}$. Here $\mathbb{R}_{0, m}^{(k)}$ denotes the subspace of k-vectors defined by

$$
\mathbb{R}_{0, m}^{(k)}=\left\{a \in \mathbb{R}_{0, m}: a=\sum_{|A|=k} a_{A} e_{A}, \quad a_{A} \in \mathbb{R}\right\}
$$

Observe that \mathbb{R}^{m+1} may be naturally identified with $\mathbb{R}_{0, m}^{(0)} \oplus \mathbb{R}_{0, m}^{(1)}$ by associating to any element $\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m+1}$ the "paravector" $x=x_{0}+\underline{x}=$ $x_{0}+\sum_{j=1}^{m} x_{j} e_{j}$.

Conjugation in $\mathbb{R}_{0, m}$ is given by

$$
\bar{a}=\sum_{A} a_{A} \bar{e}_{A}
$$

where $\bar{e}_{A}=\bar{e}_{j_{k}} \ldots \bar{e}_{j_{1}}, \bar{e}_{j}=-e_{j}, j=1, \ldots, m$. One easily checks that $\overline{a b}=\bar{b} \bar{a}$ for any $a, b \in \mathbb{R}_{0, m}$. Moreover, by means of the conjugation a norm

[^0]$|a|$ may be defined for each $a \in \mathbb{R}_{0, m}$ by putting
$$
|a|^{2}=[a \bar{a}]_{0}=\sum_{A} a_{A}^{2} .
$$

Let us denote by $\partial_{x}=\partial_{x_{0}}+\partial_{\underline{x}}=\partial_{x_{0}}+\sum_{j=1}^{m} e_{j} \partial_{x_{j}}$ the generalized CauchyRiemann operator and let Ω be an open set of \mathbb{R}^{m+1}. According to [11], an $\mathbb{R}_{0, m}$-valued function $f \in C^{2}(\Omega)$ is called an inframonogenic function in Ω if and only if it fulfills in Ω the "sandwich" equation $\partial_{x} f \partial_{x}=0$.

It is obvious that monogenic functions (i.e. null-solutions of ∂_{x}) are inframonogenic. At this point it is worth mentioning that the monogenic functions are the central object of study in Clifford analysis (see [2, 4, 5, 7, $8,9,10,14]$). Furthermore, the concept of monogenicity of a function may be seen as the higher dimensional counterpart of holomorphy in the complex plane.

Moreover, as

$$
\Delta_{x}=\sum_{j=0}^{m} \partial_{x_{j}}^{2}=\partial_{x} \bar{\partial}_{x}=\bar{\partial}_{x} \partial_{x}
$$

every inframonogenic function $f \in C^{4}(\Omega)$ satisfies in Ω the biharmonic equation $\Delta_{x}^{2} f=0$ (see e.g. $[1,6,12,15]$).

This paper is intended to study the following Cauchy-type problem for the inframonogenic functions. Given the functions $A_{0}(\underline{x})$ and $A_{1}(\underline{x})$ analytic in an open and connected set $\underset{\widetilde{\Omega}}{\sim} \mathbb{R}^{m}$, find a function $F(x)$ inframonogenic in some open neighbourhood $\widetilde{\widetilde{\Omega}}$ of $\underline{\Omega}$ in \mathbb{R}^{m+1} which satisfies

$$
\begin{align*}
\left.F(x)\right|_{x_{0}=0} & =A_{0}(\underline{x}), \tag{1.1}\\
\left.\partial_{x_{0}} F(x)\right|_{x_{0}=0} & =A_{1}(\underline{x}) . \tag{1.2}
\end{align*}
$$

2. CAUCHY-TYPE PROBLEM FOR INFRAMONOGENIC FUNCTIONS

Consider the formal series

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} x_{0}^{n} A_{n}(\underline{x}) \tag{2.1}
\end{equation*}
$$

It is clear that F satisfies conditions (1.1) and (1.2). We also see at once that

$$
\partial_{x}\left(x_{0}^{n} A_{n}\right) \partial_{x}=n(n-1) x_{0}^{n-2} A_{n}+n x_{0}^{n-1}\left(\partial_{\underline{x}} A_{n}+A_{n} \partial_{\underline{x}}\right)+x_{0}^{n} \partial_{\underline{x}} A_{n} \partial_{\underline{x}} .
$$

We thus get
$\partial_{x} F \partial_{x}=\sum_{n=0}^{\infty} x_{0}^{n}\left((n+2)(n+1) A_{n+2}+(n+1)\left(\partial_{\underline{x}} A_{n+1}+A_{n+1} \partial_{\underline{x}}\right)+\partial_{\underline{x}} A_{n} \partial_{\underline{x}}\right)$.

From the above it follows that F is inframonogenic if and only if the functions A_{n} satisfy the recurrence relation

$$
A_{n+2}=-\frac{1}{(n+2)(n+1)}\left((n+1)\left(\partial_{\underline{x}} A_{n+1}+A_{n+1} \partial_{\underline{x}}\right)+\partial_{\underline{x}} A_{n} \partial_{\underline{x}}\right), \quad n \geq 0
$$

It may be easily proved by induction that

$$
\begin{equation*}
A_{n}=\frac{(-1)^{n+1}}{n!}\left(\sum_{j=0}^{n-2} \partial_{\underline{x}}^{n-j-1} A_{0} \partial_{\underline{x}}^{j+1}+\sum_{j=0}^{n-1} \partial_{\underline{x}}^{n-j-1} A_{1} \partial_{\underline{x}}^{j}\right), \quad n \geq 2 \tag{2.2}
\end{equation*}
$$

We now proceed to examine the convergence of the series (2.1) with the functions $A_{n}(n \geq 2)$ given by (2.2). Let \underline{y} be an arbitrary point in $\underline{\Omega}$. Then there exist a ball $B(\underline{y}, R(\underline{y}))$ of radius $\bar{R}(\underline{y})$ centered at \underline{y} and a positive constant $M(\underline{y})$, such that

$$
\left|\partial_{\underline{x}}^{n-j} A_{s}(\underline{x}) \partial_{\underline{x}}^{j}\right| \leq M(\underline{y}) \frac{n!}{R^{n}(\underline{y})}, \underline{x} \in B(\underline{y}, R(\underline{y})), \quad j=0, \ldots, n, \quad s=0,1 .
$$

It follows that

$$
\left|A_{n}(\underline{x})\right| \leq M(\underline{y}) \frac{n+R(\underline{y})-1}{R^{n}(\underline{y})}, \quad \underline{x} \in B(\underline{y}, R(\underline{y}))
$$

and therefore the series (2.1) converges normally in

$$
\widetilde{\Omega}=\bigcup_{\underline{y} \in \underline{\Omega}}(-R(\underline{y}), R(\underline{y})) \times B(\underline{y}, R(\underline{y})) .
$$

Note that $\widetilde{\Omega}$ is a x_{0}-normal open neighbourhood of $\underline{\Omega}$ in \mathbb{R}^{m+1}, i.e. for each $x \in \widetilde{\Omega}$ the line segment $\{x+t: t \in \mathbb{R}\} \cap \tilde{\Omega}$ is connected and contains one point in $\underline{\Omega}$.

We thus have proved the following.
Theorem 2.1. The function $\mathrm{CK}\left[A_{0}, A_{1}\right]$ given by

$$
\begin{align*}
& \mathrm{CK}\left[A_{0}, A_{1}\right](x)=A_{0}(\underline{x})+x_{0} A_{1}(\underline{x}) \tag{2.3}\\
& \quad-\sum_{n=2}^{\infty} \frac{\left(-x_{0}\right)^{n}}{n!}\left(\sum_{j=0}^{n-2} \partial_{\underline{x}}^{n-j-1} A_{0}(\underline{x}) \partial_{\underline{x}}^{j+1}+\sum_{j=0}^{n-1} \partial_{\underline{x}}^{n-j-1} A_{1}(\underline{x}) \partial_{\underline{x}}^{j}\right)
\end{align*}
$$

is inframonogenic in a x_{0}-normal open neighbourhood of $\underline{\Omega}$ in \mathbb{R}^{m+1} and satisfies conditions (1.1)-(1.2).

It is worth noting that if in particular $A_{1}(\underline{x})=-\partial_{\underline{x}} A_{0}(\underline{x})$, then

$$
\mathrm{CK}\left[A_{0},-\partial_{\underline{x}} A_{0}\right](x)=\sum_{n=0}^{\infty} \frac{\left(-x_{0}\right)^{n}}{n!} \partial_{\underline{x}}^{n} A_{0}(\underline{x}),
$$

which is nothing else but the left monogenic extension (or CK-extension) of $A_{0}(\underline{x})$. Similarly, it is easy to see that $\operatorname{CK}\left[A_{0},-A_{0} \partial_{\underline{x}}\right](x)$ yields the right monogenic extension of $A_{0}(\underline{x})$ (see $[2,5,13,16,17]$).

Let $\mathrm{P}(k)\left(k \in \mathbb{N}_{0}\right.$ fixed) denote the set of all $\mathbb{R}_{0, m}$-valued homogeneous polynomials of degree k in \mathbb{R}^{m}. Let us now take $A_{0}(\underline{x})=P_{k}(\underline{x}) \in \mathrm{P}(k)$ and $A_{1}(\underline{x})=P_{k-1}(\underline{x}) \in \mathrm{P}(k-1)$. Clearly,

$$
\begin{aligned}
& \operatorname{CK}\left[P_{k}, P_{k-1}\right](x)=P_{k}(\underline{x})+x_{0} P_{k-1}(\underline{x}) \\
& \quad-\sum_{n=2}^{k} \frac{\left(-x_{0}\right)^{n}}{n!}\left(\sum_{j=0}^{n-2} \partial_{\underline{x}}^{n-j-1} P_{k}(\underline{x}) \partial_{\underline{x}}^{j+1}+\sum_{j=0}^{n-1} \partial_{\underline{x}}^{n-j-1} P_{k-1}(\underline{x}) \partial_{\underline{x}}^{j}\right),
\end{aligned}
$$

since the other terms in the series (2.3) vanish. Moreover, we can also claim that $\mathrm{CK}\left[P_{k}, P_{k-1}\right](x)$ is a homogeneous inframonogenic polynomial of degree k in \mathbb{R}^{m+1}.

Conversely, if $P_{k}(x)$ is a homogeneous inframonogenic polynomial of degree k in \mathbb{R}^{m+1}, then $\left.P_{k}(x)\right|_{x_{0}=0} \in \mathrm{P}(k),\left.\partial_{x_{0}} P_{k}(x)\right|_{x_{0}=0} \in \mathrm{P}(k-1)$ and obviously CK $\left[\left.P_{k}\right|_{x_{0}=0},\left.\partial_{x_{0}} P_{k}\right|_{x_{0}=0}\right](x)=P_{k}(x)$.

Call $\mathrm{I}(k)$ the set of all homogeneous inframonogenic polynomials of degree k in \mathbb{R}^{m+1}. Then CK[.,.] establishes a bijection between $\mathrm{P}(k) \times \mathrm{P}(k-1)$ and $\mathrm{I}(k)$.

It is easy to check that

$$
P_{k}(\underline{x})=P_{k}\left(\partial_{\underline{u}}\right) \frac{\langle\underline{x}, \underline{u}\rangle^{k}}{k!}, \quad P_{k}(\underline{x}) \in \mathrm{P}(k)
$$

where $P_{k}\left(\partial_{\underline{u}}\right)$ is the differential operator obtained by replacing in $P_{k}(\underline{u})$ each variable u_{j} by $\partial_{u_{j}}$. Therefore, in order to characterize $\mathbf{I}(k)$, it suffices to calculate $\operatorname{CK}\left[\langle\underline{x}, \underline{u}\rangle^{k} e_{A}, 0\right]$ and $\operatorname{CK}\left[0,\langle\underline{x}, \underline{u}\rangle^{k-1} e_{A}\right]$ with $\underline{u} \in \mathbb{R}^{m}$.

A simple computation shows that

$$
\begin{aligned}
\operatorname{CK}\left[\langle\underline{x}, \underline{u}\rangle^{k} e_{A}, 0\right](x)= & \langle\underline{x}, \underline{u}\rangle^{k} e_{A} \\
& -\sum_{n=2}^{k}\binom{k}{n}\left(-x_{0}\right)^{n}\langle\underline{x}, \underline{u})^{k-n}\left(\sum_{j=0}^{n-2} \underline{u}^{n-j-1} e_{A} \underline{u}^{j+1}\right), \\
\operatorname{CK}\left[0,\langle\underline{x}, \underline{u}\rangle^{k-1} e_{A}\right](x) & =x_{0}\langle\underline{x}, \underline{u}\rangle^{k-1} e_{A} \\
& -\frac{1}{k} \sum_{n=2}^{k}\binom{k}{n}\left(-x_{0}\right)^{n}\langle\underline{x}, \underline{u})^{k-n}\left(\sum_{j=0}^{n-1} \underline{u}^{n-j-1} e_{A} \underline{u}^{j}\right) .
\end{aligned}
$$

References

[1] S. Bock and K. Gürlebeck, On a spatial generalization of the Kolosov-Muskhelishvili formulae, Math. Methods Appl. Sci. 32 (2009), no. 2, 223-240.
[2] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA, 1982.
[3] W. K. Clifford, Applications of Grassmann's Extensive Algebra, Amer. J. Math. 1 (1878), no. 4, 350-358.
[4] J. Cnops and H. Malonek, An introduction to Clifford analysis, Textos de Matemática, Série B, 7, Universidade de Coimbra, Departamento de Matemática, Coimbra, 1995.
[5] R. Delanghe, F. Sommen and V. Souček, Clifford algebra and spinor-valued functions, Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992.
[6] K. Gürlebeck and U. Kähler, On a boundary value problem of the biharmonic equation, Math. Methods Appl. Sci. 20 (1997), no. 10, 867-883.
[7] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford calculus for physicists and engineers, Wiley and Sons Publ., 1997.
[8] V. V. Kravchenko, Applied quaternionic analysis, Research and Exposition in Mathematics, 28, Heldermann Verlag, Lemgo, 2003.
[9] V. V. Kravchenko and M. V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics Series, 351, Longman, Harlow, 1996.
[10] H. R. Malonek, Selected topics in hypercomplex function theory, Clifford algebras and potential theory, 111-150, Univ. Joensuu Dept. Math. Rep. Ser., 7, Univ. Joensuu, Joensuu, 2004.
[11] H. R. Malonek, D. Peña Peña and F. Sommen, Fischer decomposition by inframonogenic functions, to appear in CUBO, A Mathematical Journal.
[12] V. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev. 56 (2003), no. 1, 33-85.
[13] D. Peña Peña, Cauchy-Kowalevski extensions, Fueter's theorems and boundary values of special systems in Clifford analysis, Ph.D. Thesis, Ghent University, Ghent, 2008 (available at http://hdl.handle.net/1854/11636).
[14] J. Ryan, Basic Clifford analysis, Cubo Mat. Educ. 2 (2000), 226-256.
[15] L. Sobrero, Theorie der ebenen Elastizität unter Benutzung eines Systems hyperkomplexer Zahlen, Hamburg. Math. Einzelschriften, Leipzig, 1934.
[16] F. Sommen, Monogenic functions on surfaces, J. Reine Angew. Math. 361 (1985), 145-161.
[17] F. Sommen and B. Jancewicz, Explicit solutions of the inhomogeneous Dirac equation, J. Anal. Math. 71 (1997), 59-74.

Helmuth R. Malonek
Department of Mathematics
Aveiro University
3810-193 Aveiro
Portugal
e-mail address: hrmalon@ua.pt

Dixan Peña Peña
Department of Mathematics
Aveiro University
3810-193 Aveiro
Portugal
e-mail address: dixanpena@ua.pt; dixanpena@gmail.com
Frank Sommen
Department of Mathematical Analysis
Ghent University
9000 Gent
Belgium
e-mail address: fs@cage.ugent.be
(Received May 9, 2009)

[^0]: Mathematics Subject Classification. 30G35, 35G10.
 Key words and phrases. Inframonogenic functions, Cauchy-Kowalevski theorem.
 The second author was supported by a Post-Doctoral Grant of Fundação para a Ciência e a Tecnologia, Portugal (grant number: SFRH/BPD/45260/2008).

