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1 . Introduction.

In Khilnani and Tse (1985), an easy and simple fixed point algorithm

was introduced for a mappmg that IS Lipschitz-continuous and

antitone. Its publication was followed by some interchanges that were

concerned with the convergence of the proposed algorithm (see Marcotte

(1987), Khilnani and Tse (1987, 1989), and Herceg and Cvetkovic (1989)).

So far as the contraction property of the algorithm is concerned, more

general results were obtained independently by two mathematicians three

decades ago: Vainberg (1960) and Zarantonello (1960). The purpose of this

note is to present some theorems in the form useful to economists by

considering nonnegative constraints explicitly. Some observations are also

presented on the relationship of the algorithm with the weak axiom of

revealed preference.
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2. Main Theorems.

Let X be a Hilbert space with its inner product denoted by (x, y) for

x, y in X. The norm is defined as (x, X)l/2 for xEX and denoted by

II x II . With this norm, X becomes a Banach space. We consider a closed,

convex cone X+ and a mapping f(x) from X+ into itself. Let us now

introduce:

Definition:j(x) IS said to be negatively monotone on X+ iff (x-y,

f(x)- f(y))~O for any x, yEX+. (See Ortega and Rheinboldt (1970,

p. 141) for monotonicity.) We also introduce:

Definition:f(x) is Lipschitz-continuous on X+ iff there exists a scalar

k>O such that II f(x)- f(y) II ~k II x-y II for any x, yEX+.

Now, for a positive scalar cE(O, 1), let us consider a mapping on X+

defined by

F(x) == (1-c)x+cf(x).

Since X+ is a convex cone, F(x) is also a transformation from X+ into

itself. This type of 'averaging' mapping was studied by Browder and

Petryshyn (1966) for the case of f(x) being non-expansive. Earlier, Mann

(1953) had considered general mean value methods in the context of

iterative solutions. More recent discussions on the topic appear III

Ishikawa (1976) and Thorlund-Petersen (1985). This brings us to:

Theorem 1:1£ a mapping f(x) is Lipschitz-continuous with the constant

k>O, and for some scalar hE(O, 1), satisfies

(x-y, f(x)-f(y))~h II x-y 11 2
, for any x, yEX+,

then F(x) is contractive on X+ when O<c<c*. Here, c*=1 when I-2h

+k2=0, and otherwise c*=min(1, max(O, 2(1-h)/(1-2h+k2
))).

Proof: By virtue of Zarantonello's result (1960) (see Ortega and
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Rheinboldt (1970, p.408)), the result IS obvious. Nonetheless, for a ready

reference, we give a proof.

II F(x)-F(y) II 2 = II (1-c)(x-y)+c(f(x)- f(y)) 11 2

=(1-c)211 x-y 11 2+2c(1-c)(x-y, f(x)-f(y))+c2 11 f(x)-f(y) 11 2

:::;;(1-cY II x-y 11 2+2c(1 ~c)h II.x-y 11 2+c2 11 f(x)- f(y) 11 2

= {(l-2h+F)c2_2c(1-h)+1} II x-y 11 2

As is quite clear, if the constant c is such that O<c<c*, then F(x) turns

out to be contractive. Q. E. D.

Theorem2:Suppose the assumptions made in theorem 1 are satisfied.

Then the equation x=f(x) has a unique solution in X+, and further, given

an arbitrary initial vector x(O) in X+, the iteration

x(i+ l)=F(x(i)) for i=O, 1, 2, ....

produces a sequence {x(i)} within X+ and it converges to a unique

solution to the equation x=F(x) or equivalently x=f(x) provided that the

constant c satisfies O<c<c*.

Proof: Given that X+ is closed and convex, the theorem IS valid

because of the contraction mapping theorem. Q. E. D.

3. Applications.

When X=Rn and X+=R~, and some inner product is defined, for

example (x, y)=xPy, where P is an n X n positive definite matrix, then

we can apply theorem 2 provided f(x) is Lipschitz-continuous and satisfies

the inequality

(x-y, f(x)- f(y)):::;;h II x-y 11 2 for any x, yEX+.

Khilnani and Tse's theorem (1985, p. 131) is a special case when our h is

zero (i. e., f(x) is negatively monotone) and P is the identity matrix. (See
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also Fujimoto (1987) for another special case.) It should be noted here

that our theorem2 shows the existence and uniqueness of the nonnega­

tive solution together with the convergence of the averaging iteration all

in one stroke, thanks to a simple convex combination seen in F(x). Note

also that when the nonnegativity constraint is removed and we seek a

solution on the whole space X, the existence of a fixed point was

demonstrated by Minty (1962) without requiring Lipschitz-continuity. The

assumptions made there were about f(x) being continuous and the above

inequality involving h being satisfied.

We now take up an example from the cobweb model following

Khilnani and Tse (1985). Our theorem 2 shows that an equilibrium price

can be approximated by the above simple iteration not only for the case

where the demand curve is downward sloping and the supply curve

upward sloping, but also for the case in which the contrary is true to a

certain degree.

The implications of the 'averaging' iteration are not restricted to the

computational purpose. We can imagine markets where the auctioneer

revises the prices, say x, at each period in a cautious conservative way

represented by the term cx in the definition of F(x). In this example, f(x)

may be taken as (x+E(x)), where E(x) is the excess demand function.

Then F(x) becomes (1-c)x+c(x+E(x)) or x+cE(x), that IS to say, a

smaller speed of adjustment. The condition of theorem may be

rewritten as

(x-y, E(x)-E(y))-::;m II x-y 11 2 for some mE(O, 1).

If this is weakened to

(x-y, E(x)-E(y))<O

then by virtue of the Walras law it follows that -xE(y)-yE(x)<O.1f x
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is an equilibrium price vector, the inequality becomes xE(y»O, the weak

axiom of revealed preference. It has been shown in the general equilibrium

theory that this axiom is enough to have the system stability of the

equilibrium set, which is known to be convex (see Mckenzie (1960), and

Arrow and Hurwicz (1960)).

With these remarks on the applications we go back to the general

setting with an abstract space and in the next section, we show the

variants of the above theorems under weaker conditions while assuming

the existence of a fixed point.

4. More Theorems.

First we write G(x)= f(x)-x, and denote by S the set of

solutions to G(x)=O.

That is to say, S= {x I G(x)=O, xEX+} . Next, we introduce

Definition: G(x) is called strictly negatively w-monotone iff

(x-y, G(y))>O, V xES, yEl=S.

It may be emphasized here that the condition requires exactly one of the

two vectors to be a solution and hence is clearly weaker than requiring

(x-y, G(x)-G(y))<O, V x, yEX+(X=Fy).

Theorem3:Suppose S is not empty. If G is strictly negatively

w-monotone, the solution set S is convex.

Proof:Let x and z be two vectors in S.Consider y=cx+(1-c)z for an

arbitrary scalar cE(O, 1). If yEl=S then by assumption

(x-y, G(y))>O and (z-y, G(y)) >0.

The convex combination of the left sides of the two inequalities with

respective weights of c and (1-c) yields (y-y, G(y))>0, a contradiction.
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Q.E.D.

(See theorem 5.4.7 in Ortega and Rheinboldt (1970, p144) in which a

similar result is proved when G is continuous, under a usual monotonicity

assumption. See also Minty (1962).) Next, in order to show the convergence

of the averaging iteration, we need to introduce

Definition: G(x) is said to be strongly negatively w-monotone, iff '3 a

scalar mE(O, 1) and (x-y, G(y))>m II x-y 11
2 VX, y such that xES, y

$S.

Theorem 4: Suppose S is not empty. If G is strongly negatively

w-monotone and Lipschitz-continuous, then given any initial vector x(O) in

X+ the iteration

x(i+l)=x(i)+cG(x(i)) for i=O, 1, 2,

converges to a vector in S for a sufficiently small c.

Proof: We write f(x)=x+G(x) and proceed backwards through the

argument of section 2. In the inequality of theorem 1, that is

(x- y, f(x)- f(y))-::;'h II x-y II 2 for any x, yEX+,

we can take x=x* ES and y=x(i)$S and get

(x*-x(i), x*-x(i)+G(x*)-G(x(i)))-::;'h II x*-x(i) 11 2
, provided the

constant c satisfies the inequality with k now being (1-m). Since the

rate of contraction is uniform, the convergence is guaranteed. Q. E. D.

Unfortunately, we have been unable to prove the convergence under

strict negative w-monotonicity in place of the strong one. Nor have we

been able to demonstrate a counter-example of non-convergence in the

former case. The difficulty seems to arise from the subtle differences

between the systems of nonlinear difference and differential equations.
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