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ON ALMOST N-SIMPLE-PROJECTIVES

YosHrtomMo BABA AND TAKESHI YAMAZAKI

ABSTRACT. The concept of almost N-projectivity is defined in [5] by
M. Harada and A. Tozaki to translate the concept “lifting module” in
terms of homomorphisms. In [6, Theorem 1] M. Harada defined a little
weaker condition “almost N-simple-projecive” and gave the following
relationship between them:
For a semiperfect ring R and R-modules M and N of finite length,
M is almost N-projective if and only if M is almost N -simple-
projective.
We remove the assumption “of finite length” and give the result in The-
orem 5 as follows:
For a semiperfect ring R, a finitely generated right R-module M
and an indecomposable right R-module N of finite Loewy length,
M is almost N-projective if and only if M is almost N-simple-
projective.
We also see that, for a semiperfect ring R, a finitely generated R-module
M and an R-module N of finite Loewy length, M is N-simple-projective
if and only if M is N-projective.

Throughout this paper, we let R be a semiperfect ring unless otherwise
stated and R-modules unitary. For an R-module M, we denote the Loewy
length and the composition length of M by L(M) and | M |, respectively.

Let M and N be R-modules. We say that M is N-projective if, for any
submodule L of N and an R-homomorphism ¢ : M — N/L, there exists
an R-homomorphism ¢ : M — N with v = ¢, where v : N — N/L
is the natural epimorphism. If, in this definition, we only consider the R-
homomorphisms ¢ with simple images, M is said to be N-simple-projective.

First we give a lemma in which N-simple-projectivity is investigated for
an R-homomorphism with its image semisimple artinian.

Lemma 1. Let R be a ring, M and N R-modules, L a submodule of N
and ¢ : M — N/L an R-homomorphism with Im ¢ semisimple artinian. If
M s N-simple-projective, then there exists an R-homomorphism ¢ : M —
N with vy = ¢, where v: N — N/L is the natural epimorphism.
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Proof. Let Imgp = N’/L, where N’ is a submodule of N. Then M is N’'-
simple-projective by assumption. So the statement follows from [6, Lemma
1]. O

Using Lemma 1 we obtain the following result which is a generalization
of [6, Lemma 1]. And we also note that, in [2, Proposition 2], Baba and
Oshiro gave the dual result which played an important role to characterize
Fuller’s theorem for injective modules.

Proposition 2. Let M be a finitely generated right R-module and N a
right R-module with L(N) < oo. If M is N-simple-projective, then M is
N -projective.

Proof. Let L be a submodule of N, ¢ : M — N/L an R-homomorphism
and v : N — N/L the natural epimorphism. Since L(N) < oo, there exists
ny € N such that Im¢ C (N/L)J™~! but Imp ¢ (N/L)J". Then (Im ¢ +
(N/L)J™)/(N/L)J™ is semisimple artinian since R is semiperfect and M
is finitely generated. So, by Lemma 1, there exists an R-homomorphism
p1: M — N with vyvgy = 11, where vy : N/L — (N/L)/(N/L)J™ is the
natural epimorphism.

We assume that ¢ # v@;. Since Im(p — vp;) C (N/L)J"™, there exists
ng € N with ny > ny, Im(p — v@1) € (N/L)J™~! but Im(p — v@y) €
(N/L)J". Then (Im(e — vp1) + (N/L)J™)/(N/L)J™ is semisimple ar-
tinian. So, by Lemma 1, there exists an R-homomorphism @9 : M — N
with orvgy = va(p — v$1), where v : N/L — (N/L)/(N/L)J™ is the
natural epimorphism.

We assume that ¢ # v(@1 + @2). Since Im(p — v (@1 + $2)) € (N/L)J"2,
we have n3 € N such that ng > ng, Im(p — v($1 + @2)) € (N/L)J™~1 but
(g — v(B1 + ¢2) € (N/D)J7.

Continuing this argument, we have £ € N with ¢ = v(@1 + -+ + Pg)
because L(N) < oo. O

Now we define “almost N-projective” and “almost N-simple-projective”.
Let M and N be R-modules. We say that M is almost N -projective if, for
any submodule L of N and an R-homomorphism ¢ : M — N/L, letting
v: N — N/L be the natural epimorphism, either the following (I) or (II)
holds:

(I) There exists an R-homomorphism ¢ : M — N with vp = .
(IT) There exist a non-zero direct summand N’ of N and an R- homo-
morphism ¢ : N — M with ¢p = v|ys.
If, in this definition, we only consider the R-homomorphisms ¢ with simple
images, M is said to be almost N -simple-projective.
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We note that, in these definitions, if N is indecomposable, the condition
(IT) is as follows:

(IT') There exists an R-homomorphism v : N — M with ¢ = v.

In this paper, we consider the case that N is indecomposable.

The following in which almost N-simple projective is investigated for an
R-homomorphism with its image semisimple artinian is the first step to
prove Theorem 5.

Lemma 3. Let M be an R-module, N an indecomposable R-module,
L a submodule of N and ¢ : M — N/L an R-homomorphism with Im ¢
semisimple artinian. We consider the following three conditions:

(1) ¢ is not epic.

2) |Tmep| >2.

(3) LKL N.
If M is almost N-simple-projective and, at least, one of the above three
conditions holds, then there exists an R-homomorphism ¢ : M — N with
vp = @, where v: N — N/L is the natural epimorphism.

Proof. First we consider the case that either the condition (1) or (2) holds.
Let Inp =51 ®---@® S, where S; is simple for any i = 1,...,n. Further,
for each i = 1,...,n, we let m; : @?:1§j — S; be the projection and ¢; :
S; — N/L the injection. Then Im ¢;7;¢ is simple and a proper submodule
of N/L by the condition (1) or (2). So, because M is almost N-simple-
projective, there exists an R-homomorphism ¢; : M — N with vp; = 1;m;p.
Put p:=¢1+ -+ ¢n. Then vy = ¢.

Next we consider the case that the condition (3) holds. Since L < N,
there exists a proper submodule L' of N with L + L' = N. We consider an
R-isomorphism n : N/L = (L+L')/L — L'/(LN L") naturally. Let v/: N —
N/(L N L") be the natural epimorphism and ¢ : L'/(LN L") — N/(LN L")
the inclusion map. The condition (1) holds for tny, and so there exists an
R-homomorphism ¢’ : M — N with v/¢’ = ipyp. Then Im¢@’ C L'. Hence
vy = @ since vl = n~ | O

Using Lemma 3, we obtain the following.

Lemma 4. Let M be a finitely generated right R-module, N an inde-
composable Tight R-module with L(N) < oo, L a proper submodule of N
and ¢ : M — N/L an R-homomorphism. Suppose that M is almost N -
simple-projective and let v: N — N/L be the natural epimorphism.

(1) If ¢ is not epic, then there exists an R-homomorphism ¢ : M — N
with v = .
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(2) Suppose that there exist a proper submodule N'/L of N/L and an
R-homomorphism @ : M — N with (V'v)¢' = Ve, where V' :
N/L — N/N' is the natural epimorphism. Then there exists an
R-homomorphism @" : M — N with vy" = .

Proof. (1) Since L(N) < oo, there exists n; € N such that Im¢ Z (NJ" +
L)/L but Imep C (NJ“~!+ L)/L. Let vy : N/L — N/(NJ" + L) be
the natural epimorphism and let Im ¢ = L{/L, where Lj, is a submodule of
N. Then Imvyp = (Lj+ NJ™)/(NJ™ + L) and it is semisimple artinian
because M is finitely generated. Hence we claim that there exists an R-
homomorphism ¢; : M — N with vijvp, = vip. If vie is not epic, then
the condition (1) in Lemma 3 holds. Assume that vy is epic and, further,
NJ™ + L < N, ie., the condition (3) in Lemma 3 does not hold for v;¢.
Then Kerv; = (NJ™ + L)/L <« N/L. Since vi¢p is epic, we see that ¢ is
also epic, a contradiction. In consequence, either the condition (1) or (3) in
Lemma 3 holds for v1¢ and we obtain the desired ;.

Assume that vp; # . There exists ny € N such that ny > nq, Im(p —
vp1) € (NJ2+L)/L but Im(p—v@y) C (NJ2 L+ L)/L. Let vg: N/L —
N/(NJ™ + L) be the natural epimorphism. Then, since Im(¢ — v@;) C
(NJ™ + L)/L < N/L, there exists an R-homomorphism @y : M — N with
vV @y = V(@ — vp1) by Lemma 3.

Assume that v(P1+@2) # ¢. Then there exists ng € N such that ng > ng,
In(p — (@1 + 32)) € (NJ™ + L)/L but Tm(ep — (@1 + 2)) C (NI +
L)/L. Using this procedure finite times, since L(IN) < oo, we have m € N
with v(@1 4+ -+ @m) = .

(2) V(p—v@') =0. Solm(p—vg') < Kerv/ = N'/L < N/L. Therefore,
from (1) which we already show, there exists an R-homomorphism ¢ : M —
N with vp = ¢ — v@’. Hence v(¢+ @) = . O

Now we give a theorem which is a generalization of [6, Theorem 1].

Theorem 5. Let M be a finitely generated right R-module and N an
indecomposable right R-module with L(N) < co. Suppose that M is almost
N -simple-projective. Then M s almost N -projective.

Proof. We consider the following diagram:

M

Ly
N 2 N/L — 0,

where L is a proper submodule of N and v is the natural epimorphism.
If ¢ is not epic, then, by Lemma 4 (1), there exists an R-homomorphism
@ : M — N with vp = p. So we may assume that ¢ is epic.
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First we consider the case that L &« N. Then there exists a proper
submodule N’ of N with N = N’ + L. So we can define an R-isomorphism
n:N/(LNN') — (N/L)®(N/N') naturally. Further define an R-homomor-
phism ¢’ : M — (N/L)& (N/N') by ¢(m) = (p(m), 0) for any m € M and
let 1 : N — N/(LNN’) be the natural epimorphism. Since ¢’ is not epic, by
Lemma 4 (1), there exists an R-homomorphism ¢ : M — N with nu1p = ¢'.

Then, for any m € M, (¢(m), 0) = ¢'(m) = n1g(m) = (¢(m), ¢(m)).
So p(m) = v@(m). Hence v = .

Next we consider the case that L < N. Suppose that N is not local.
Then there exist proper submodules N’ and N” of N such that they contain
NJ, N’ is a maximal submodule of N and N/NJ = (N'/NJ) @ (N"/NJ).
Let v/ : N/L — N/NJ be the natural epimorphism, 7 : N/NJ — N"/N.J
the projection and ¢ : N”/NJ — N/NJ the injection. Then (/¢ : M —
N/NJ and Im 7/ is a simple proper submodule of N/N.J. So, by assump-
tion, there exists an R-homomorphism ¢’ : M — N with v'vg' = /.
Then, letting v : N/L — N/N' be the natural epimorphism, v"v@" = " ¢.
Hence, by Lemma 4 (2), there exists an R-homomorphism ¢ : M — N with
vy = .

Therefore suppose that L < N and N is local. We may assume that
N =eR/A and N/L = eR/B, where e is a primitive idempotent in R and A
and B are submodules of eRr with A < B. Let vy : eR/B — eR/eJ be the
natural epimorphism. By assumption either the following (I) or (II) holds.

(I) There exists an R-homomorphism ¢ : M — eR/A with vyyvp; =
Vop.
(II) There exists an R-homomorphism ¢/ : eR/A — M with vyp)) =
.
In the case (I), we obtain an R-homomorphism ¢ : M — eR/A with vp = ¢
from Lemma 4 (2). So we consider the case (II). Put m; := ¢/(€). Since M
is finitely generated, we have mo, ..., m, € M such that M = m;R+maoR+
<o+ mpR but m; € maR + -+ + mpR. Further we let ¢(m;) = u, where
u € eRe. Then e — u € eJe because vy = Vogm;’. Therefore u=! — e € eJe.
Let u=! = e + j, where j € eJe. Then the following claim holds.

Claim. There exists an R-homomorphism ¢ : M — eR/A with {(m1) =
g

Proof of Claim. When j € A, { = 0 is the desired map. So we assume
that j € A. Then we can define an R-homomorphism ¢; : M — eR/(jJ+ A)
by C1(mary + marg + - -+ + mpry) = jry since my € maoR + -+ + my R and
mie = my. And Im(; is a simple proper submodule of eR/(jJ + A). So,
by assumption, there exists an R-homomorphism 51 : M — eR/A with
V(1 = (1, where v} : eR/A — eR/(jJ + A) is the natural epimorphism. Let
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Ci(my) = jl, where J1 € eRe. Then j — j; € jJ + A since VlCl = (1. Put
ja 4 as :=j — j1, where J2 € jJ and az € A. Then we note that js € J2.

If jo € A, then we put C = Cl, and this C is the desired map. So assume
that jo & A. We define an R-homomorphism (o : M — eR/(j2J + A) by
Co(myry+marg+- - +mpry) = jor;. Then Im (s is a simple proper submod-
ule of eR/(j2J + A). So, by assumption, there exists an R-homomorphism
(o : M — eR/A with v4(s = (o, where v} : eR/A — eR/(jQJ + A) is
the natural epimorphism. We let 52(m1) = jo, where j2 € eRe. Then
j2 — J2 € joJ 4 A since ¢ = 1/2(2 Put j3 4+ a3 := ja — jo, where j3 € jaJ
and a3 € A. Then we note that js € J3.

Since L(eR/A) < oo, this procedure finitely terminates and there exists
s € N with js —js € A, le., we may let js11 =0 and as41 = Js —js. Then
we put ¢ =G + - + s, and {(m1) = Cu(ma) + Ga(ma) + -+ + Colma) =
Jitget- - tis = (J —J2—a2)+(j2 — jz —az)+- -+ (s — Js+1 — ast1) = J.
Hence this ( is the desired map. Cliam is shown.

Therefore we put w (1ar + 'O eR/A — M, and o)(e) = (1 +

PO (@) = o(1ar +¢'¢) (m1) = o(ma+4' () = o(ma+muj) = e(ma)(e+
7) = p(m)u"! = uu—! =€ = v(e). Hence p1) = v. m

We say that M has the lifting property of simple module modulo radical
(abbriviated LPSM) if, for any simple submodule S of M/ Rad(M), there
exists a decomposition M = M; @ My such that (M + Rad(M))/ Rad(M) =
S.

Further, for R-modules M and N and an R-homomophism ¢ : M — N,
we represent a submodule {m + ¢(m) | m € M } of M & N by M(p).

Relationship between almost N-projectivity and LPSM was given in [4,
Proposition 2] by M. Harada and T. Mabuchi as follows:

For a semiperfect ring R, a primitive idempotent e in R and submod-
ules A and B of eR with either eR/A or eR/B noetherian, eR/A is
almost eR/ B-projective if and only if eR/A ® eR/B has LPSM and
eJeA < B

Further in [7, Corollary 9.7] M. Harada showed the following:

Let e be a primitive idempotent in a ring R with eRe a local ring
and let A and B be submodules of eRr with |eR/A|, |eR/B| < oc.
Then the following are equivalent:

(a) eR/A is almost eR/B-projective.

(b) (i) eR/A®eR/B has LPSM.
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(ii) eR/A is C/B-projective for any proper submodule C' of
eRp with C > B.

As an application of Proposition 2 and Theorem 5, last we give a corollary.

Corollary 6. Let e be a primitive idempotent in R and A and B sub-
modules of eRp. If L(eR/B) < 0o, then the following are equivalent.

(a) eR/A is almost eR/B-projective.
(b) eR/A is almost eR/B-simple-projective.
(¢) (i) eR/A®eR/B has LPSM.
(1i) eR/A is eJ/B-projective.
(d) (i) eR/A®eR/B has LPSM.
(i7) eR/A is eJ/B-simple-projective.

Proof. (a) < (b) This follows from Theorem 5.

(c) & (d) This follows from Proposition 2.

(b) = (d) (i) Put M := (eR/A)® (eR/B). Take any simple submodule
S/(eJ®eld) of (eR/eJ)®(eR/eJ). If either S = eR@eJ or S = eJPBeR, then
M = (eR/A) @ (eR/B) is the desired direct decomposition. So we consider
the remainder case. Then there exists @ € Aut(eR/eJ) with S/(eJ ®eJ) =
(eR/eJ)(®). And we consider the following diagram:

eR/A
lv
eR/eJ
lo
eR/B Y eRfeJ — 0,

where v and v/ are the natural epimorphisms. By assumption, either the
following (I) or (II) holds.

(I) There exists an R-homomorphism ¢ : eR/A — eR/B such that
Vo =pu.

(I) There exists an R-homomorphism ) : eR/B — eR/A such that
v =1/,

In the case (I), M = (eR/A)(¢) @& (eR/B). And let X/(A@® B) =
(eR/A)(p), where X is a submodule of eR®eR. Then (X +(eJ®eJ))/(eJ®
eJ)=5/(eJ ®eld).

In the case (II), by the similar argument, we see that M = (eR/A) &
(eR/B) (1)) is the desired direct decomposition.

Hence eR/A @ eR/B has LPSM.
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(i) We consider the following diagram:
eR/A

Ly
eJ/B = eJ/B" — 0,

where Im ¢ is simple, B’ is a submodule of eJ with B’ > B and v is the
natural epimorphism. Let v/ : eR/B — eR/B’ be the natural epimorphism.
From (b), there exists an R-homomorphism ¢ : eR/A — eR/B with V¢ =
. Then Im ¢ C eJ/B since Im ¢ C eJ/B’. Hence V'@ = ¢.

(d) = (b) We consider a diagram:

eR/A

Ly
eR/B X eR/B' — 0,

where Im ¢ is simple, B’ is a submodule of eR with B’ > B and v is the
natural epimorphism. When ¢ is not epic, there exists an R-homomorphism
p:eR/A — eR/B with vp = ¢ from (d) (ii). So we assume that ¢ is epic.
Then B’ =eJ. Put M := (eR/A) @ (eR/B). We consider a submodule

N :={(71,72) | T1 € eR/A, T2 € eR/B, ¢(71) = v(72) }

of M. And we put M; :={(z1,0) € M |71 € eR/A} and My := { (0, 7o) €
M | Ty € eR/B}. Then, by the internal exchange property, either the
following (I) or (II) holds:

(I) M =N M.

(I) M =N @ M.

First we consider the case (II). Let mo : M = N & My — My be the
projection and put ¢ := —ma|p; : My — Ms. Then we claim that vy = ¢.
Take any 71 € eR/A. There exist (71, 7,) € N and (0, T2) € My with
(1, 0) = (U1, Y2) + (0, T2). Then T1 =7y, Yo = —T2 and ¢(¥;) = v(¥s). So
vp(T1) = v(—ma(T1)) = v((0, —T2) ) = v((0, 7)) = »(71) = (71).

Next we consider the case (I). Let 77 : M = N & My — M be the
projection and put 1[) := —m|n, : Mo — M. Then we see, by the same way
as the case (II), that ¢ = v. O
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