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Abstract—In this paper, we present a learning support system 
DASE-E to help students understand fundamental concepts of 
distributed algorithms in computer science. DASE-E is a 
collaborative learning system, in which the task of students is 
to devise a distributed algorithm. DASE-E offers a set of small 
wireless terminals with accelerometers. Each student plays the 
role of a process with a terminal, according to the algorithm 
that students devised. Each terminal enables a student to take 
physical actions that control the behavior of a process in the 
simulator. After the role playing simulation is finished, 
students discuss their activity played back on a screen. 

We implemented the system for learning distributed leader 
election algorithms, had a trial exercise in our research group, 
and we confirmed that it is effective to learn the critical part of 
distributed systems and algorithms.  

Keywords-computer science education, distributed algorithm, 
collaborative learning, kinesthetic learning activity, algorithm 
visualization 

I.  INTRODUCTION 
A distributed system is a network which consists of a set 

of processes (i.e., computers or programs) that communicate 
with each other by exchanging messages. A distributed 
algorithm defines the procedure at each process to perform a 
task in a distributed system. A distributed system models 
computer networks such as the Internet, P2P networks, 
mobile ad-hoc networks, and sensor networks. 

As computer networks become widely used, learning and 
teaching distributed algorithms become more important. For 
example, in CS2008 [1] distributed algorithm is one of the 
important learning topics for undergraduate computer 
science education. Through a class, students are required to 
understand the fundamental concepts behind distributed 
algorithms: how a process operates, why the algorithm works, 
what is the critical part of the algorithm, etc. 

However, it is difficult for students to learn the 
fundamental notions in distributed computing, because it has 
many complicated characteristics. One of the difficulties is 
the nondeterminism of execution. Each process executes the 
algorithm asynchronously, concurrently and at a different 
processing speed, and then changes its state and exchanges 
messages with other processes. Messages are also exchanged 

concurrently and their delivery delays differ at times. Hence, 
numerous numbers of executions are possible because of the 
nondeterminism, and students cannot imagine all cases of 
executions, especially, some critical executions for an 
algorithm. Another difficulty is that each process executes 
the algorithm with limited information about the network, 
because each process can communicate with only its 
neighboring processes. 

Many pedagogical researches indicate that collaborative 
learning, based on the concept of social constructivism, is 
more effective for learning than only listening lectures or 
viewing animation. Also, kinesthetic learning has become 
one of the popular methods in computer science education 
[2]. 

Based on these two learning methods, we present a 
learning support system DASE-E (Distributed Algorithm 
Simulator Engine - for Education), which supports 
collaborative learning activity of distributed algorithms. 
DASE-E is designed to help students understand the 
fundamental concepts of a distributed algorithm by a 
simulation activity, in which each student plays a role of 
each process in a distributed system. DASE-E offers a basic 
environment for distributed algorithm simulation, though the 
behaviors of processes are controlled by the students’ 
kinesthetic activity. Students can easily devise and try to 
simulate various distributed algorithms on DASE-E, and 
discuss among students to evaluate their algorithm. Learning 
with kinesthetic activity offered by DASE-E will help 
students understand the fundamental concepts of distributed 
algorithms. 

II. RELATED WORK 
There are many approaches proposed to support learning 

or teaching distributed algorithms. Common observation 
indicated by these studies is that understanding the 
fundamental concepts of distributed algorithms is difficult 
for students, and to achieve it, a tool or method is needed to 
let them observe actual behavior of algorithms. 

One of the basic approaches for learning distributed 
algorithms is to make students implement an algorithm. 
Through the implementation process and executing programs, 
they review and observe how the algorithm is designed and 
executed. However, this approach has some drawbacks. 
Students tend to struggle with coding and removing subtle 
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bugs that are not related to understanding the algorithm. 
Hence, many learning systems for algorithm 
implementations propose frameworks that help 
implementation of distributed algorithms [3]. 

Algorithm visualization is also widely used for learning 
or teaching sequential algorithms [4]. This approach is also 
adopted in some learning systems of distributed algorithms 
[5]. However, visualization of distributed algorithms has 
some difficulties. In a distributed system, processes execute 
the algorithm asynchronously and concurrently. It is difficult 
for students to observe what is going on in the distributed 
system with naive visualization, which will display a large 
amount of information: concurrent and continuous state 
changes at processes and message transmission. 

Several algorithm visualization systems improve the 
above drawbacks by providing interactive algorithm 
simulation [6] [7] [8], in such a way that students can control 
the execution of a distributed algorithm by a script or real-
time operation through GUI. They support operations to 
pause, skip, rewind, and repeat an execution, with which 
students can observe the behavior of processes and links 
whenever they want. However, this approach is not suitable 
for students, who do not understand the fundamental idea of 
the distributed algorithm. Without sufficient knowledge 
about the algorithm, it is almost impossible to recognize 
when, where and what they should focus on in the simulation 
to understand the algorithm. 

On the other hand, kinesthetic learning activity is 
proposed from pedagogical research. Kinesthetic learning 
activity is a pedagogical style involving physical actions by 
students. This approach is also proposed for distributed 
algorithm education [9]. In [9], they showed two important 
points: kinesthetic learning activity is also an effective 
pedagogical style for computer science education, and 
collaborative work is an effective method for simulating 
distributed algorithms, which makes it easy for students to 
understand concurrency and locality of a distributed 
algorithm by playing a role of a process. However, this 
approach has a drawback. In this activity, each student only 
knows his/her local activity. It is difficult for the student to 
evaluate the entire activity of the distributed system. 

Our approach is to integrate algorithm visualization and 
kinesthetic learning activity that are complementary to each 
other. By role-playing in a kinesthetic learning activity, our 
approach enables each student to understand locality and 
concurrency of a distributed algorithm from a local point of 
view. In addition, by algorithm visualization that plays back 
students’ activity, our approach enables each student to see 
the entire behavior of a distributed system from a global 
point of view. 

III. MAIN CONCEPT OF DASE-E 
In this section, we present the main concept of DASE-E. 

First, we introduce a scenario of a learning activity with 
DASE-E, and based on the scenario, we discuss system 
requirements for DASE-E. 

A. Learning Scenario 
We consider the following scenario in a class of 

distributed algorithms. The goal of the class is to understand 
distributed computing by devising a distributed algorithm. 

First, a teacher gives a lecture to students about 
computational models and characteristics of a distributed 
system, for example processes, message passing, 
nondeterminism, and concurrency. 

Next, the teacher gives students a project issue for 
distributed algorithms, for example “Design an algorithm to 
elect a leader process in the network” (i.e., the leader 
election problem). The teacher explains details of the 
problem setting such as network topology, the number of 
processes, the information each process initially knows, and 
so on. 

Students are divided into several groups, and DASE-E is 
given to each group. In each group, students devise an 
algorithm for the problem through a group discussion. And 
they simulate the algorithm with DASE-E. 

In the simulation, each student operates a process in a 
distributed system according to the devised algorithm. 
DASE-E offers a number of small wireless terminals. Each 
of them corresponds to a process in a distributed system. 
Each student has a terminal, and the terminal displays the 
local state of the corresponding process so that he/she can 
check it at any time. 

When a student takes a physical action with the terminal, 
a process takes a corresponding action, which changes the 
local state of the process or sends/receives messages. During 
the simulation, students are not allowed to talk to each other, 
and they only look at and operate the terminal. Each student 
only knows the local state of the corresponding process 
during the simulation. 

After the simulation is finished, students evaluate 
whether their algorithm was successful or not. DASE-E 
provides a visualization window on PC, which replays the 
execution of the distributed system the group has just 
simulated. Students observe the activity of processes on the 
screen, and they discuss the correctness and the efficiency of 
the algorithm. If students find that their algorithm seems not 
good (e.g., the number of messages is too high), they devise 
another algorithm. They repeat their activity until they 
achieve the best algorithm: devising an algorithm, simulation, 
observation and evaluation. 

Finally, the teacher evaluates the algorithm each group 
devised, and shows an example of a well-known distributed 
algorithm that teacher wants to teach students in the class. 
Students simulate the algorithm with DASE-E, and discuss 
the algorithm taught by the teacher and the algorithm they 
devised. 

B. System Design 
DASE-E should provide two modes, the interactive 

simulation mode and the playback mode. 
In the interactive simulation mode, DASE-E simulates a 

distributed system, in which each process is controlled by the 
user. Each student uses a terminal to control a process. The 
terminal senses physical actions of the student, and converts 
them into the operations of the corresponding process. 



 
Figure 2.  An example visualization of playback mode 

 
Figure 1.  Overview of DASE-E 

In the playback mode, the system plays back the 
execution performed in the interactive simulation mode on 
PC display. For the playback, DASE-E records the 
operations by students in the interactive simulation mode. 

Now, we define the requirements for developing  
DASE-E as follows: 

1. It has an interactive distributed algorithm simulator, 
which has functionality that each process is 
controlled by a student. 

2. As a control device of the simulation, it uses a 
terminal with sensors that can sense the physical 
actions of a student. 

3. It has the recording function that records the 
sequence of all user operations. 

4. It has a visualization that displays the execution of 
the distributed system with GUI. It plays back the 
activity which has been done in the interactive 
simulation mode. 

IV. ARCHITECTURE 
DASE-E consists of one program and a number of 

terminals. The program is a distributed algorithm simulator 
running on a PC with a visualization tool of algorithm 
executions. Each terminal has the sensor that detects 
students’ physical actions. Students can control the behavior 
of processes in the simulation through the terminals. We 
assume that one person controls one terminal, so that the 
number of processes is equal to the number of terminals. 

DASE-E has two modes. In the simulation mode, each 
student uses a terminal to control the behavior of a process 
(see Fig. 1). The operations of each terminal are recorded in 
the log file with the times the operations have occurred. 
After the simulation mode is finished, DASE-E executes the 
playback mode. In the playback mode, DASE-E reads the 
operation log and replays the execution that users operated. 
The distributed system is visualized on the screen with an 
abstracted graph model (see Fig. 2).  

Simulator Core in Fig. 1 is the main module for running 
simulations. It seems similar to other distributed algorithm 

simulators presented in section II. However, DASE-E is 
different from them in the behavior of processes; all 
operations of each process are controlled by a user outside of 
the simulator. 

Simulator Core has some templates of objects such as 
processes, links, messages, and so on, which are the 
components of a distributed system (see Fig. 3). In the 
beginning of a simulation, the simulator creates instances of 
these templates and runs them in the simulation. Each 
process instance has a set of local variables that store any 
type of values, and basic functions of process actions such as 
sending or receiving a message or changing the values of 
local variables. These functions are customizable according 
to the problem. However, no function in the process is 
executed automatically. Each function is executed only when 
a trigger signal comes from the outside of the Simulator Core. 

The dataflow from the terminal operation to the process 
in the Simulator Core is shown in Fig. 4. In DASE-E, a 
control signal from a terminal doesn’t reach a process 
instance in the Simulator Core directly. When a user operates 
a terminal, the signal is first sent to the DeviceConverter. 
DeviceConverter is a device-dependent module constructed 
for each device type, to convert the raw signal of the device 
into a respective physical-activity signal. For example, 
continuous change of acceleration sensed by a terminal is 
converted by DeviceConverter into a signal “shake”. Then 
MessageConverter receives the converted signal. 
MessageConverter is a device-independent but problem-
dependent module, which converts a physical-activity signal 
into a respective action trigger that raises the execution of the 
process. For example, a MessageConverter module converts 
the “shake” operation into the trigger “send a message”. 
These modules also support reverse conversion, such as 
information of a process state into an output signal of the 
respective terminal, for example blinking LEDs on the 
terminal. 

 
 



 
Figure 3.  Internal structure of DASE-E Simulator Core 

 
Figure 4.  The dataflow of a user’s operation 

V. IMPLEMENTATION 
In this section, we will explain an implementation of 

DASE-E for the leader election problem as an example. The 
leader election problem is to elect one process in a network 
as a leader and to make other processes recognize the leader. 

In this implementation, network topology is limited to a 
unidirectional ring network. It is because we want to let 
students concentrate on the behavior of processes. Moreover, 
typical leader-election algorithms presented in textbooks of 
distributed algorithms (e.g., [10]) assume unidirectional ring 
networks. In such algorithms, each process has a unique 
identification number (ID), and the process with the smallest 
ID is elected as the leader. Hence, in this implementation, 
each terminal has a unique ID so that the students can 
simulate typical algorithms in addition to algorithms they 
devised. 

We chose a SunSPOT [11] as a terminal of DASE-E. 
SunSPOT is a small terminal for sensor networks, which has 
an accelerometer, a light sensor, and a temperature sensor. It 
also has two push buttons as input, and eight multicolored 
LEDs as output. Nevertheless, we have designed DASE-E in 
a device-independent manner, so that another sensing 
terminal can be easily incorporated.  

The student is responsible for managing messages, and 
remembering received ID and the local state of the process, 
which is a part of operations the process is supposed to do. In 
this implementation, students are allowed two operations of a 
process: ‘send a message to neighbor processes’ or ‘discard 
the received message’. Students can also check a process’s 
own ID and the latest received ID on SunSPOT terminal at 
any time. However, the process doesn’t offer memory space 
to a student, so that he/she should memorize in his/her head 
or write down the value displayed on LEDs if necessary. 

SunSPOT senses the acceleration of its movement, which 
is converted to the sending/receiving messages and local 
computation at the corresponding process. If a student shakes 
a SunSPOT from side to side, it means ’send a message to 
neighbor processes’, and if he/she shakes it back and forth, it 
means ’discard the received message’. This definition aims 
to provide intuitive operation: the student operates the device 
as if the device is a received message itself. Students can 
send a message only when a message comes from the 

neighbor. It is a fundamental condition of the message 
passing model, which this implementation supposes, and is 
also a hint for students to devise an appropriate distributed 
algorithm. However, of course, this manner is easily 
customizable according to the problem. 

LEDs on SunSPOT display the process’s own ID number 
or the latest number received from its neighbor process. 
LEDs show the number with four colors; red, green, blue and 
white, each of which means 50, 10, 5 and 1, respectively. For 
example, two reds, one blue, three whites means 113. The 
readability of this indication is better than a binary indication. 

Experiment:  We used the system in an experimental 
learning environment. In this experiment, one participant 
acted as a teacher and five participants as a group of students. 
They played the scenario described in section III.A. After the 
experiment was finished, we interviewed participants about 
the usability of the system. They evaluated that this system is 
effective especially for experiencing the difficulty caused by 
concurrency and locality of the distributed system. On the 
other hand, there were opinions that we need to review the 
operation method of a terminal, because two types of shake 
operations caused several wrong operations in the 
experiment. 

VI. CONCLUSION AND FUTURE WORK 
We presented DASE-E, a learning support system for 

distributed algorithm education. DASE-E consists of 
Simulator Core program and a number of sensing terminals, 
with which each student can execute an algorithm via 
physical actions. This system enables students to join the 
kinesthetic learning activity of distributed systems and 
supports collaborative work to understand fundamental 
concepts of distributed algorithms. We also presented an 
implementation of DASE-E that enables the simulation 
exercise of leader election algorithms. 

DASE-E has to support various algorithms, such as 
consensus, replication, spanning-tree construction, and so on. 



However, customizing DASE-E is a hard work for teachers. 
Hence, we are now developing a new feature on DASE-E 
that is easy to apply various distributed algorithm exercises. 
The feature includes a GUI interface and an easy-writable 
definition language to define situations of a distributed 
algorithm. 

Moreover, we will evaluate which physical actions are 
suitable for the simulation of distributed algorithms, and 
which devices are suitable to sense such actions.  
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