
A kinesthetic-based collaborative learning system for distributed algorithms

Hiroyuki Nagataki*, Taichi Fujii†, Yukiko Yamauchi‡, Hirotsugu Kakugawa† and Toshimitsu Masuzawa†
*Center for Faculty Development, Okayama University, Okayama, Japan

Email: nagataki@cc.okayama-u.ac.jp
†Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: {t-fujii, kakugawa, masuzawa}@ist.osaka-u.ac.jp
‡Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan

Email: y-yamauchi@is.naist.jp

Abstract—In this paper, we present a learning support system
DASE-E to help students understand fundamental concepts of
distributed algorithms in computer science. DASE-E is a
collaborative learning system, in which the task of students is
to devise a distributed algorithm. DASE-E offers a set of small
wireless terminals with accelerometers. Each student plays the
role of a process with a terminal, according to the algorithm
that students devised. Each terminal enables a student to take
physical actions that control the behavior of a process in the
simulator. After the role playing simulation is finished,
students discuss their activity played back on a screen.

We implemented the system for learning distributed leader
election algorithms, had a trial exercise in our research group,
and we confirmed that it is effective to learn the critical part of
distributed systems and algorithms.

Keywords-computer science education, distributed algorithm,
collaborative learning, kinesthetic learning activity, algorithm
visualization

I. INTRODUCTION
A distributed system is a network which consists of a set

of processes (i.e., computers or programs) that communicate
with each other by exchanging messages. A distributed
algorithm defines the procedure at each process to perform a
task in a distributed system. A distributed system models
computer networks such as the Internet, P2P networks,
mobile ad-hoc networks, and sensor networks.

As computer networks become widely used, learning and
teaching distributed algorithms become more important. For
example, in CS2008 [1] distributed algorithm is one of the
important learning topics for undergraduate computer
science education. Through a class, students are required to
understand the fundamental concepts behind distributed
algorithms: how a process operates, why the algorithm works,
what is the critical part of the algorithm, etc.

However, it is difficult for students to learn the
fundamental notions in distributed computing, because it has
many complicated characteristics. One of the difficulties is
the nondeterminism of execution. Each process executes the
algorithm asynchronously, concurrently and at a different
processing speed, and then changes its state and exchanges
messages with other processes. Messages are also exchanged

concurrently and their delivery delays differ at times. Hence,
numerous numbers of executions are possible because of the
nondeterminism, and students cannot imagine all cases of
executions, especially, some critical executions for an
algorithm. Another difficulty is that each process executes
the algorithm with limited information about the network,
because each process can communicate with only its
neighboring processes.

Many pedagogical researches indicate that collaborative
learning, based on the concept of social constructivism, is
more effective for learning than only listening lectures or
viewing animation. Also, kinesthetic learning has become
one of the popular methods in computer science education
[2].

Based on these two learning methods, we present a
learning support system DASE-E (Distributed Algorithm
Simulator Engine - for Education), which supports
collaborative learning activity of distributed algorithms.
DASE-E is designed to help students understand the
fundamental concepts of a distributed algorithm by a
simulation activity, in which each student plays a role of
each process in a distributed system. DASE-E offers a basic
environment for distributed algorithm simulation, though the
behaviors of processes are controlled by the students’
kinesthetic activity. Students can easily devise and try to
simulate various distributed algorithms on DASE-E, and
discuss among students to evaluate their algorithm. Learning
with kinesthetic activity offered by DASE-E will help
students understand the fundamental concepts of distributed
algorithms.

II. RELATED WORK
There are many approaches proposed to support learning

or teaching distributed algorithms. Common observation
indicated by these studies is that understanding the
fundamental concepts of distributed algorithms is difficult
for students, and to achieve it, a tool or method is needed to
let them observe actual behavior of algorithms.

One of the basic approaches for learning distributed
algorithms is to make students implement an algorithm.
Through the implementation process and executing programs,
they review and observe how the algorithm is designed and
executed. However, this approach has some drawbacks.
Students tend to struggle with coding and removing subtle

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12545759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bugs that are not related to understanding the algorithm.
Hence, many learning systems for algorithm
implementations propose frameworks that help
implementation of distributed algorithms [3].

Algorithm visualization is also widely used for learning
or teaching sequential algorithms [4]. This approach is also
adopted in some learning systems of distributed algorithms
[5]. However, visualization of distributed algorithms has
some difficulties. In a distributed system, processes execute
the algorithm asynchronously and concurrently. It is difficult
for students to observe what is going on in the distributed
system with naive visualization, which will display a large
amount of information: concurrent and continuous state
changes at processes and message transmission.

Several algorithm visualization systems improve the
above drawbacks by providing interactive algorithm
simulation [6] [7] [8], in such a way that students can control
the execution of a distributed algorithm by a script or real-
time operation through GUI. They support operations to
pause, skip, rewind, and repeat an execution, with which
students can observe the behavior of processes and links
whenever they want. However, this approach is not suitable
for students, who do not understand the fundamental idea of
the distributed algorithm. Without sufficient knowledge
about the algorithm, it is almost impossible to recognize
when, where and what they should focus on in the simulation
to understand the algorithm.

On the other hand, kinesthetic learning activity is
proposed from pedagogical research. Kinesthetic learning
activity is a pedagogical style involving physical actions by
students. This approach is also proposed for distributed
algorithm education [9]. In [9], they showed two important
points: kinesthetic learning activity is also an effective
pedagogical style for computer science education, and
collaborative work is an effective method for simulating
distributed algorithms, which makes it easy for students to
understand concurrency and locality of a distributed
algorithm by playing a role of a process. However, this
approach has a drawback. In this activity, each student only
knows his/her local activity. It is difficult for the student to
evaluate the entire activity of the distributed system.

Our approach is to integrate algorithm visualization and
kinesthetic learning activity that are complementary to each
other. By role-playing in a kinesthetic learning activity, our
approach enables each student to understand locality and
concurrency of a distributed algorithm from a local point of
view. In addition, by algorithm visualization that plays back
students’ activity, our approach enables each student to see
the entire behavior of a distributed system from a global
point of view.

III. MAIN CONCEPT OF DASE-E
In this section, we present the main concept of DASE-E.

First, we introduce a scenario of a learning activity with
DASE-E, and based on the scenario, we discuss system
requirements for DASE-E.

A. Learning Scenario
We consider the following scenario in a class of

distributed algorithms. The goal of the class is to understand
distributed computing by devising a distributed algorithm.

First, a teacher gives a lecture to students about
computational models and characteristics of a distributed
system, for example processes, message passing,
nondeterminism, and concurrency.

Next, the teacher gives students a project issue for
distributed algorithms, for example “Design an algorithm to
elect a leader process in the network” (i.e., the leader
election problem). The teacher explains details of the
problem setting such as network topology, the number of
processes, the information each process initially knows, and
so on.

Students are divided into several groups, and DASE-E is
given to each group. In each group, students devise an
algorithm for the problem through a group discussion. And
they simulate the algorithm with DASE-E.

In the simulation, each student operates a process in a
distributed system according to the devised algorithm.
DASE-E offers a number of small wireless terminals. Each
of them corresponds to a process in a distributed system.
Each student has a terminal, and the terminal displays the
local state of the corresponding process so that he/she can
check it at any time.

When a student takes a physical action with the terminal,
a process takes a corresponding action, which changes the
local state of the process or sends/receives messages. During
the simulation, students are not allowed to talk to each other,
and they only look at and operate the terminal. Each student
only knows the local state of the corresponding process
during the simulation.

After the simulation is finished, students evaluate
whether their algorithm was successful or not. DASE-E
provides a visualization window on PC, which replays the
execution of the distributed system the group has just
simulated. Students observe the activity of processes on the
screen, and they discuss the correctness and the efficiency of
the algorithm. If students find that their algorithm seems not
good (e.g., the number of messages is too high), they devise
another algorithm. They repeat their activity until they
achieve the best algorithm: devising an algorithm, simulation,
observation and evaluation.

Finally, the teacher evaluates the algorithm each group
devised, and shows an example of a well-known distributed
algorithm that teacher wants to teach students in the class.
Students simulate the algorithm with DASE-E, and discuss
the algorithm taught by the teacher and the algorithm they
devised.

B. System Design
DASE-E should provide two modes, the interactive

simulation mode and the playback mode.
In the interactive simulation mode, DASE-E simulates a

distributed system, in which each process is controlled by the
user. Each student uses a terminal to control a process. The
terminal senses physical actions of the student, and converts
them into the operations of the corresponding process.

Figure 2. An example visualization of playback mode

Figure 1. Overview of DASE-E

In the playback mode, the system plays back the
execution performed in the interactive simulation mode on
PC display. For the playback, DASE-E records the
operations by students in the interactive simulation mode.

Now, we define the requirements for developing
DASE-E as follows:

1. It has an interactive distributed algorithm simulator,
which has functionality that each process is
controlled by a student.

2. As a control device of the simulation, it uses a
terminal with sensors that can sense the physical
actions of a student.

3. It has the recording function that records the
sequence of all user operations.

4. It has a visualization that displays the execution of
the distributed system with GUI. It plays back the
activity which has been done in the interactive
simulation mode.

IV. ARCHITECTURE
DASE-E consists of one program and a number of

terminals. The program is a distributed algorithm simulator
running on a PC with a visualization tool of algorithm
executions. Each terminal has the sensor that detects
students’ physical actions. Students can control the behavior
of processes in the simulation through the terminals. We
assume that one person controls one terminal, so that the
number of processes is equal to the number of terminals.

DASE-E has two modes. In the simulation mode, each
student uses a terminal to control the behavior of a process
(see Fig. 1). The operations of each terminal are recorded in
the log file with the times the operations have occurred.
After the simulation mode is finished, DASE-E executes the
playback mode. In the playback mode, DASE-E reads the
operation log and replays the execution that users operated.
The distributed system is visualized on the screen with an
abstracted graph model (see Fig. 2).

Simulator Core in Fig. 1 is the main module for running
simulations. It seems similar to other distributed algorithm

simulators presented in section II. However, DASE-E is
different from them in the behavior of processes; all
operations of each process are controlled by a user outside of
the simulator.

Simulator Core has some templates of objects such as
processes, links, messages, and so on, which are the
components of a distributed system (see Fig. 3). In the
beginning of a simulation, the simulator creates instances of
these templates and runs them in the simulation. Each
process instance has a set of local variables that store any
type of values, and basic functions of process actions such as
sending or receiving a message or changing the values of
local variables. These functions are customizable according
to the problem. However, no function in the process is
executed automatically. Each function is executed only when
a trigger signal comes from the outside of the Simulator Core.

The dataflow from the terminal operation to the process
in the Simulator Core is shown in Fig. 4. In DASE-E, a
control signal from a terminal doesn’t reach a process
instance in the Simulator Core directly. When a user operates
a terminal, the signal is first sent to the DeviceConverter.
DeviceConverter is a device-dependent module constructed
for each device type, to convert the raw signal of the device
into a respective physical-activity signal. For example,
continuous change of acceleration sensed by a terminal is
converted by DeviceConverter into a signal “shake”. Then
MessageConverter receives the converted signal.
MessageConverter is a device-independent but problem-
dependent module, which converts a physical-activity signal
into a respective action trigger that raises the execution of the
process. For example, a MessageConverter module converts
the “shake” operation into the trigger “send a message”.
These modules also support reverse conversion, such as
information of a process state into an output signal of the
respective terminal, for example blinking LEDs on the
terminal.

Figure 3. Internal structure of DASE-E Simulator Core

Figure 4. The dataflow of a user’s operation

V. IMPLEMENTATION
In this section, we will explain an implementation of

DASE-E for the leader election problem as an example. The
leader election problem is to elect one process in a network
as a leader and to make other processes recognize the leader.

In this implementation, network topology is limited to a
unidirectional ring network. It is because we want to let
students concentrate on the behavior of processes. Moreover,
typical leader-election algorithms presented in textbooks of
distributed algorithms (e.g., [10]) assume unidirectional ring
networks. In such algorithms, each process has a unique
identification number (ID), and the process with the smallest
ID is elected as the leader. Hence, in this implementation,
each terminal has a unique ID so that the students can
simulate typical algorithms in addition to algorithms they
devised.

We chose a SunSPOT [11] as a terminal of DASE-E.
SunSPOT is a small terminal for sensor networks, which has
an accelerometer, a light sensor, and a temperature sensor. It
also has two push buttons as input, and eight multicolored
LEDs as output. Nevertheless, we have designed DASE-E in
a device-independent manner, so that another sensing
terminal can be easily incorporated.

The student is responsible for managing messages, and
remembering received ID and the local state of the process,
which is a part of operations the process is supposed to do. In
this implementation, students are allowed two operations of a
process: ‘send a message to neighbor processes’ or ‘discard
the received message’. Students can also check a process’s
own ID and the latest received ID on SunSPOT terminal at
any time. However, the process doesn’t offer memory space
to a student, so that he/she should memorize in his/her head
or write down the value displayed on LEDs if necessary.

SunSPOT senses the acceleration of its movement, which
is converted to the sending/receiving messages and local
computation at the corresponding process. If a student shakes
a SunSPOT from side to side, it means ’send a message to
neighbor processes’, and if he/she shakes it back and forth, it
means ’discard the received message’. This definition aims
to provide intuitive operation: the student operates the device
as if the device is a received message itself. Students can
send a message only when a message comes from the

neighbor. It is a fundamental condition of the message
passing model, which this implementation supposes, and is
also a hint for students to devise an appropriate distributed
algorithm. However, of course, this manner is easily
customizable according to the problem.

LEDs on SunSPOT display the process’s own ID number
or the latest number received from its neighbor process.
LEDs show the number with four colors; red, green, blue and
white, each of which means 50, 10, 5 and 1, respectively. For
example, two reds, one blue, three whites means 113. The
readability of this indication is better than a binary indication.

Experiment: We used the system in an experimental
learning environment. In this experiment, one participant
acted as a teacher and five participants as a group of students.
They played the scenario described in section III.A. After the
experiment was finished, we interviewed participants about
the usability of the system. They evaluated that this system is
effective especially for experiencing the difficulty caused by
concurrency and locality of the distributed system. On the
other hand, there were opinions that we need to review the
operation method of a terminal, because two types of shake
operations caused several wrong operations in the
experiment.

VI. CONCLUSION AND FUTURE WORK
We presented DASE-E, a learning support system for

distributed algorithm education. DASE-E consists of
Simulator Core program and a number of sensing terminals,
with which each student can execute an algorithm via
physical actions. This system enables students to join the
kinesthetic learning activity of distributed systems and
supports collaborative work to understand fundamental
concepts of distributed algorithms. We also presented an
implementation of DASE-E that enables the simulation
exercise of leader election algorithms.

DASE-E has to support various algorithms, such as
consensus, replication, spanning-tree construction, and so on.

However, customizing DASE-E is a hard work for teachers.
Hence, we are now developing a new feature on DASE-E
that is easy to apply various distributed algorithm exercises.
The feature includes a GUI interface and an easy-writable
definition language to define situations of a distributed
algorithm.

Moreover, we will evaluate which physical actions are
suitable for the simulation of distributed algorithms, and
which devices are suitable to sense such actions.

ACKNOWLEDGMENT
This work was supported in part by Grant-in-Aid for

Young Scientists ((Start-up) 21800036 and 21800031) of
Japan Society for the Promotion of Science (JSPS), and
Grant-in-Aid for Scientific Research ((B) 20300012) of JSPS.

REFERENCES
[1] ACM, IEEE Computer Society, “Computer Science Curriculum

2008: An Interim Revision of CS 2001,” ACM (online), available
from
http://www.acm.org//education/curricula/ComputerScience2008.pdf,
(accessed 2010-01-18).

[2] T. Bell, I. H. Witten, and M. Fellows, “Computer science unplugged,”
http://csunplugged.com/.

[3] R. Oechsle and T. Gottwald, “DisASTer (Distributed Algorithms
Simulation Terrain): A Platform for the Implementation of
Distributed Algorithms,” in ITiCSE ’05: Proceedings of the 10th
annual SIGCSE conference on Innovation and technology in
computer science education.1em plus 0.5em minus 0.4emACM, Jun
2005, pp. 44–48.

[4] M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch, “Student-built
algorithm visualizations for assessment: Flexible generation,
feedback and grading,” in ITiCSE ’05: Proceedings of the 10th
annual SIGCSE conference on Innovation and technology in
computer science education.1em plus 0.5em minus 0.4emACM, Jun
2005, pp. 281–285.

[5] Y. Moses, Z. Polunsky, A. Tal, and L. Ulitsky, “Algorithm
visualization for distributed environments,” Journal of Visual
Languages & Computing, vol. 15, no. 1, pp. 97–123, Sep 2003.

[6] M. Ben-Ari, “Interactive execution of distributed algorithms,” ACM
Journal of Educational Resources in Computing, vol. 1, no. 2, pp. 2–8,
Jun 2001.

[7] S. Carr, C. Fang, T. Jozwowski, J. Mayo, and C. kuang Shene,
“Concurrentmentor: A visualization system for distributed
programming education,” in Proceedings of the 2003 International
Conference on Parallel and Distributed Processing Techniques and
Applications.1em plus 0.5em minus 0.4emCSREA Press, 2003, pp.
1676–1682.

[8] B. Koldehofe, M. Papatriantafilou, and P. Tsigas, “LYDIAN: An
Extensible Educational Animation Environment for Distributed
Algorithms,” ACM Journal on Educational Resource in Computing,
vol. 6, no. 2, pp. 1–21, Jun 2006.

[9] P. A. G. Sivilotti and S. M. Pike, “The suitability of kinesthetic
learning activities for teaching distributed algorithms,” in
SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium
on Computer science education.1em plus 0.5em minus 0.4emACM,
Mar 2007, pp. 362–366.

[10] N. A. Lynch, Distributed Algorithms.1em plus 0.5em minus
0.4emMorgan Kaufmann, 1996.

[11] Sun Microsystems, Inc., “SunSPOTWORLD,”
http://www.sunspotworld.com/.

	I. Introduction
	II. Related Work
	III. Main Concept of DASE-E
	A. Learning Scenario
	B. System Design

	IV. Architecture
	Implementation
	VI. Conclusion and Future Work
	Acknowledgment
	References

