
Math. J. Okayama Univ. 53 (2011), 173–183

THE UNIFORM EXPONENTIAL STABILITY OF LINEAR

SKEW-PRODUCT SEMIFLOWS ON REAL HILBERT

SPACE

Pham Viet Hai and Le Ngoc Thanh

Abstract. The goal of the paper is to present some characterizations
for the uniform exponential stability of linear skew-product semiflows
on real Hilbert space.

1. Introduction:

In recent years, the classical ideas of exponential stability and other as-
ymptotic properties concerning evolution equations in infinite dimensional
Banach space have witnessed significant development. The techniques used
in studying became very various and complex: input-output of characteri-
zation relative to integral equations and to difference equations have been
obtained in [1], [4], [9], ... ; discrete-time methods have been developed
in [6], ... ; and also the theory of linear skew-product semiflow (LSPS) on
function spaces has been found.

This paper considers the concepts of LSPS and give conditions about
the uniform exponential stability of LSPS on real Hilbert space. Let X be
the Banach space, let (⊖, d) be the metric space. In what follows, we denote
by L(X) be the Banach algebra of all bounded linear operators acting on
X, R+ := [0,∞), N := {0, 1, 2, ...}.
Definition 1.1. Continuous mapping σ : ⊖×R+ → ⊖ is called a semiflow
on ⊖ if σ(θ, 0) = θ and σ(θ, t+ s) = σ(σ(θ, s), t), for all (θ, s, t) ∈ ⊖ × R

2
+.

Definition 1.2. π = (Φ, σ) is called a linear skew-product semiflow on
E = X × ⊖ if σ is a semiflow on ⊖ and Φ : ⊖ × R+ → L(X) satisfies the
following conditions:

(1) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ ⊖.
(2) Φ(θ, t+ s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ ⊖ × R

2
+.

(3) lim
t→0+

Φ(θ, t)x = x, uniformly in θ.

Remark (See 11). If π = (Φ, σ) is a linear skew-product semiflow then there
are M,ω such that:

‖Φ(θ, t)x‖ ≤ Meωt ‖x‖ ,
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for all (θ, t, x) ∈ ⊖ × R+ ×X.

The mapping Φ given Definition 1.2 is called the cocycle associated to the
linear skew-product semiflow π.

Example 1.1. It is easy to prove that C0-semigroups, evolution families are
particular cases of linear skew-product semiflows.

Example 1.2 ( See 7). Let σ be a semiflow on the compact Hausdorff space
⊖ and {T (t)}t≥0 a C0-semigroup on the Banach space X. For every strongly
continuous mapping:

F : ⊖ → L(X),

there is a linear skew-product semiflow πF = (ΦF , σ) on E = X × ⊖ such
that:

ΦF (θ, t)x = T (t)x +

t
∫

0

T (t− s)F (σ(θ, s))ΦF (θ, s)x ds,

The linear skew-product semiflow πF = (ΦF , σ) is called the linear skew-
product semiflow generated by the triplet (T, F, σ).

Classical examples of cocycles appear as operator solutions for variational
equations.

Example 1.3. Let ⊖ be a compact metric space, σ a semiflow and A : ⊖ →
L(X) a continuous map. If Φ(θ, t)x is the solution of the anstract Cauchy
problem:

{

u′(t) = A(σ(θ, t))u(t),

u(0) = x,

then the pair π = (σ,Φ) is a linear skew-product semiflow.

The well-known theorem of Lyapunov states that if A is an n×n complex
matrix then A has all its characteristic roots with real parts negative if and
only if for any positive definite Hermitian H there exists an unique definite
Hermitian matrix B satisfying

A∗B +BA = −H, (L).

Following Lyapunov’s idea, the paper extends in a natural way to linear
skew-product semiflows. Indeed, from the equation (L), we have:

< A(σ(θ, t))x,Wx > + < Wx,A(σ(θ, t))x >= −‖x‖2
, (L∗)

Assume that (L∗) holds for some conditions, let f be the function defined
by

f(t) =< WΦ(θ, t)x,Φ(θ, t)x > .
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One can easily see that f ′(t) = −‖Φ(θ, t)x‖2. Integrating with respect to τ
on [s, t], we have

< WΦ(θ, t)x,Φ(θ, t)x > − < WΦ(θ, s)x,Φ(θ, s)x >= −
t

∫

s

‖Φ(θ, τ)x‖2
dτ,

which implies

Φ∗(θ, t)WΦ(θ, t)x+

t
∫

s

Φ∗(θ, τ)Φ(θ, τ)x dτ = Φ∗(θ, s)WΦ(θ, s)x.

In next section, we establish the uniform exponential stability of linear skew-
product semiflows and some equation.

Definition 1.3. A linear skew-product semiflow π = (Φ, σ) is said to be
uniformly exponentially stable if and only if there exist K, ν > 0 such that:

‖Φ(θ, t)x‖ ≤ Ke−νt ‖x‖ ,
for all (θ, t) ∈ ⊖ × R+

2. Main Results:

2.1. Discrete characterizations for the uniform exponential stabil-

ity of linear skew-product semiflows.

Definition 2.1. A map H : ⊖ × N → L(X) is called positive if

< H(θ,m)x, x > ≥ 0,

for all m ∈ N and x ∈ X; θ ∈ ⊖.

Let M be the set of all positive maps H defined in Definition 2.1 with
the property

sup
θ∈ ⊖

‖H(θ, 0)‖ < ∞.

Definition 2.2. A map H : ⊖ × N → L(X) is called uniformly positive if
there exists the constant a > 0 such that

< H(θ,m)x, x > ≥ a ‖x‖2
,

for all m ∈ N and x ∈ X; θ ∈ ⊖

Let M∗ be the set of all positive maps H defined in Definition 2.2.

Lemma 2.1. If there are t0 > 0 and c ∈ (0, 1) such that:

sup
θ∈ ⊖

‖Φ(θ, t0)‖ ≤ c,
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then linear skew-product semiflow π = (Φ, σ) is uniformly exponentially sta-

ble.

Proof: For every t ∈ R+, there are k ∈ N and s ∈ [0, t0) such that t =
kt0 + s. An easy computation shows that

Φ(θ, kt0) =
k

∏

i=1

Φ(σ(θ, (i− 1)t0), t0),

Φ(θ, kt0 + s) = Φ(σ(θ, s), kt0)Φ(θ, s)

=

k
∏

i=1

Φ(σ(σ(θ, s), (i− 1)t0), t0)Φ(θ, s).

Hence it follows that π is uniformly exponentially stable with ν = −|lnc|
t0

and K = eωt0−lncM from

‖Φ(θ, kt0 + s)x‖ ≤ ckMeωs ‖x‖
< eklncMeωt0 ‖x‖
< e

( t

t0
−1)lnc

Meωt0 ‖x‖ .
Lemma is proved. �

Lemma 2.2. If there exists C > 0 such that

∞
∑∑∑

k=0

‖Φ(θ, k)x‖2 ≤ C ‖x‖2 < ∞,

for all θ ∈ ⊖, then there is n0 such that

‖Φ(θ, n0)‖ ≤ 1

2
,

for all θ ∈ ⊖.

Proof: By hypothesis, we get that

‖Φ(θ, k)‖2 ≤ C,

for every θ ∈ ⊖ and k ∈ N. From this inequality, we obtain

(n+ 1) ‖Φ(θ, n)x‖2 =

n
∑∑∑

k=0

‖Φ(θ, n)x‖2

=

n
∑∑∑

k=0

‖Φ(σ(θ, k), n− k)Φ(θ, k)x‖2
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≤ C

n
∑∑∑

k=0

‖Φ(θ, k)x‖2

≤ C

∞
∑∑∑

k=0

‖Φ(θ, k)x‖2

≤ C2 ‖x‖2 .

Hence, it follows

‖Φ(θ, n)‖ ≤ C√
n+ 1

.

On the other hand

lim
n→+∞

C√
n+ 1

= 0.

Then there exists n0 ∈ N such that

‖Φ(θ, n0)‖ ≤ 1

2
,

for all θ ∈ ⊖. Lemma is proved. �

Theorem 2.3. π = (Φ, σ) is uniformly exponentially stable if and only if

there exist H ∈ M∗ and W ∈ M such that

0 = W (θ, 0)x− Φ∗(θ, n)W (θ, n)Φ(θ, n)x

−
n−1
∑∑∑

k=0

Φ∗(θ, k)H(θ, n)Φ(θ, k)x, (L)

for every n ≥ 1, x, θ.

Proof:

Sufficiency:
Definition 1.3 guarantees that there are K, ν > 0 such that

‖Φ(θ, t)‖ ≤ Ke−νt.

Let H,W : ⊖ × N → L(X) be respectively given by

H(θ,m) = I,

W (θ,m) =

∞
∑∑∑

k=0

Φ∗(σ(θ,m), k)Φ(σ(θ,m), k).

Here, it follows that W (θ,m) is well defined from the uniform convergence
with respect to θ ∈ ⊖ and m ∈ N:

‖W (θ, 0)‖ ≤
∞

∑∑∑

k=0

‖Φ(θ, k)‖2
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≤
∞

∑∑∑

k=0

K2e−2νk

=
K2

1 − e−2ν
.

It is easy to check that

< H(θ,m)x, x > ≥ ‖x‖2 .

This says that

sup
θ∈ ⊖

‖W (θ, 0)‖ < ∞.

The uniform positivity of H and the positivity of W follow directly from
their individual definitions. Therefore, we can conclude that H ∈ M∗ and
W ∈ M.
Necessity:
Assume that H ∈ M∗ and W ∈ M satisfying (L). From the condition
W ∈ M, we can put

K := sup
θ∈ ⊖

‖W (θ, 0)‖ .

Now, let a be the constant defined in Definition 2.2, this means:

< H(θ,m)x, x > ≥ a ‖x‖2 ,

for all m ∈ N, x ∈ X, θ ∈ ⊖. Using the uniform positivity of H, the
equation (L) and the uniform boundedness of W (., 0), we obtain:

n−1
∑∑∑

k=0

‖Φ(θ, k)x‖2

≤
n−1
∑∑∑

k=0

1

a
< H(θ, n)Φ(θ, k)x,Φ(θ, k)x >

=
1

a
<

n−1
∑∑∑

k=0

Φ∗(θ, k)H(θ, n)Φ(θ, k)x, x >

=
1

a
< W (θ, 0)x, x >

− 1

a
< Φ∗(θ, n)W (θ, n)Φ(θ, n)x, x >

≤ 1

a
< W (θ, 0)x, x > ≤ K

a
‖x‖2

.
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Hence, it folows
∞

∑∑∑

k=0

‖Φ(θ, k)x‖2 ≤ K

a
‖x‖2

< ∞.

Applying Lemma 2.1, 2.2, we get that π is uniformly exponentially stable.
�

2.2. Continuous characterizations for the uniform exponential sta-

bility of linear skew-product semiflows.

Definition 2.3. A map H : ⊖ × R+ → L(X) is called positive if:

< H(θ, t)x, x > ≥ 0,

for all t ∈ R+ and x ∈ X; θ ∈ ⊖.

Let M be the set of positive maps defined in Definition 2.3 with the
property

sup
(θ, t)∈ ⊖×R+

‖H(θ, t)‖ < ∞.

Definition 2.4. A map H : ⊖× R+ → L(X) is called uniformly positive if
there exists the constant a > 0 such that

< H(θ, t)x, x > ≥ a ‖x‖2
,

for all t ∈ R+ and x ∈ X; θ ∈ ⊖

Let M
∗ be the set of positve maps H defined in Definition 2.4.

Lemma 2.4. π is uniformly exponentially stable if and only if there is L

such that:
∞

∫

t

‖Φ(θ, τ)x‖2
dτ ≤ L ‖Φ(θ, t)x‖2

,

for all θ ∈ ⊖ , x ∈ X, t ∈ R+.

Proof: The necessity is obvious. Now, we prove the sufficiency. Put

ψ(t) = M2eω2t ;
1

L0
=

1
∫

0

1

ψ(τ)
dτ.

Step 1. We prove there is L1 such that

‖Φ(θ, t)x‖ ≤ L1 ‖Φ(θ, s)x‖ ,
for all t ≥ s ≥ 0, x ∈ X and θ ∈ ⊖. Indeed, we consider two possibilities.
If t ∈ [s; s+ 1], it follows easily

‖Φ(θ, t)x‖ ≤ Meω(t−s) ‖Φ(θ, s)x‖
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≤ Meω ‖Φ(θ, s)x‖ .

If t ≥ s+ 1

‖Φ(θ, t)x‖2

L0
=

1
∫

0

‖Φ(θ, t)x‖2

ψ(τ)
dτ

=

t
∫

t−1

‖Φ(θ, t)x‖2

ψ(t− τ)
dτ

≤
t

∫

s

‖Φ(θ, t)x‖2

ψ(t− τ)
dτ

≤
t

∫

s

‖Φ(θ, τ)x‖2
dτ

≤
∞

∫

s

‖Φ(θ, τ)x‖2 dτ

≤ L. ‖Φ(θ, s)x‖2
,

‖Φ(θ, t)x‖ ≤
√

L0L ‖Φ(θ, s)x‖ .
Hence, Step 1 is proved by choosing

L1 := max{Meω ;
√

L0L }.

Step 2 We prove that Lemma 2.1 works. Indeed, notice that

(t+ 1) ‖Φ(θ, t)x‖2 =

t
∫

0

‖Φ(θ, t)x‖2
dτ + ‖Φ(θ, t)x‖2

≤ L2
1

t
∫

0

‖Φ(θ, τ)x‖2
dτ + L2

1 ‖x‖2

≤ L2
1

∞
∫

0

‖Φ(θ, τ)x‖2
dτ + L2

1 ‖x‖2

≤ L2
1L ‖x‖2 + L2

1. ‖x‖2

= (L2
1L + L2

1) ‖x‖ ,
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for all t ≥ 0, x ∈ X. Hence, it follows

‖Φ(θ, t)x‖ ≤ L1

√
L+ 1√
t+ 1

‖x‖ .

Since lim
t→∞

L1

√
L+ 1√
t+ 1

= ∞, we get that there are t0, c in Lemma 2.1. Lemma

is proved. �

Theorem 2.5. π = (Φ, σ) is uniformly exponentially stable if and only if

there exist H ∈ M
∗ and W ∈ M such that

0 = Φ∗(θ, s)W (θ, s)Φ(θ, s)x− Φ∗(θ, t)W (θ, t)Φ(θ, t)x

−
t

∫

s

Φ∗(θ, τ)H(θ, τ)Φ(θ, τ)x dτ, (L)

for all θ ∈ ⊖ and t ≥ s ≥ 0.

Proof:

Necessity.
From Definition 1.3, we get that there are K, ν > 0 satisfying

‖Φ(θ, t)‖ ≤ Ke−νt,

for all (θ, t) ∈ ⊖ × R+. Let H,W : ⊖ × N → L(X) given by

H(θ, t) = I,

W (θ, t) =

∞
∫

t

Φ∗(σ(θ, t), τ − t)Φ(σ(θ, t), τ − t) dτ.

It is easy to check that H,W satisfying the equation L. On the other hand,
from the equality < H(θ, t)x, x > = ‖x‖2, we get the uniform positivity of
H. And the uniform boundedness of W (., .) is gotten from the inequalities

‖W (θ, t)‖ ≤
∞

∫

t

‖Φ(σ(θ, t), τ − t)‖2
dτ

≤
∞

∫

t

K2e−2ν(τ−t) dτ

< ∞.

Sufficiency.
Assume that H ∈ M

∗ and W ∈ M satisfying the equation L. Now, define

K := sup
(θ, t)∈ ⊖×R+

‖W (θ, t)‖ .
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Let a be the constant defined in Definition 2.4, this means:

< H(θ, t)x, x > ≥ a ‖x‖2
,

for all t ∈ R+, x ∈ X, θ ∈ ⊖. Using the uniform positivity of H, the
equation (L) and the uniform boundedness of W , we get the inequalities

a

t
∫

s

‖Φ(θ, τ)x‖2
dτ

≤ <

t
∫

s

Φ∗(θ, τ)H(θ, τ)Φ(θ, τ)x dτ, x >

= < Φ∗(θ, s)W (θ, s)Φ(θ, s)x, x >

− < Φ∗(θ, t)W (θ, t)Φ(θ, t)x, x >

≤ < Φ∗(θ, s)W (θ, s)Φ(θ, s)x, x >

≤ K ‖Φ(θ, s)x‖2
.

Thus
∞
∫

s

‖Φ(θ, τ)x‖2
dτ ≤ K

a
|| Φ(θ, s)x ||2 .

Applying Lemma 2.4, we get that π is uniformly exponentially stable.
�
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