AN EFFICIENT SYNTHESIS OF ANTIBIOTIC SF-2312 (3-DIHYDROXYPHOSPHORYL-1,5-DIHYDROXY-2-PYRROLIDONE)

Tadashi Hanaya* and Chika Itoh

Department of Chemistry, Faculty of Science, Okayama University, Tsushimanaka, Okayama 700-8530, Japan. E-mail: hanaya@cc.okayama-u.ac.jp

Abstract

N\)-Benzyloxy-2-(diethoxyphosphoryl)pent-4-enamide (6) was prepared from ethyl diethoxyphosphorylacetate in a 3 -step sequence. Oxidative cleavage of the terminal olefin of $\mathbf{6}$ with osmium tetroxide and sodium periodate afforded 1-benzyloxy-3-diethoxyphosphoryl-5-hydroxy-2-pyrrolidone (7). The first synthesis of racemic SF-2312 was achieved by treatment of 7 with trimethylsilyl bromide, followed by hydrogenolysis.

Phosphonic acid antibiotics containing a hydroxamic acid function have attracted considerable interest in medicinal chemistry because of their antimicrobial activities. For example, fosmidomycin (1) ${ }^{1}$ and its N-acetyl analog FR-900098 (2), ${ }^{2}$ isolated from Streptomyces lavendulae and S. rubellomurinus sp ., respectively, were found to be potent inhibitors for the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. ${ }^{3}$ In recent years, a number of analogs of these compounds have been synthesized owing to the investigation of structure-activity relationships and development of antimalarial agents. ${ }^{4,5}$

$1 \mathrm{R}=\mathrm{H}$ (fosmidomycin)
$2 R=\mathrm{Me}$ (FR-90098)

Meanwhile, SF-2312 (3), a phosphonic acid antibiotic active against Gram-positive and Gram-negative bacteria, was isolated from Micromonospora sp. ${ }^{6,7}$ Despite its unique structure in having a 1,5-dihydroxy-2-pyrrrolidone ring, attempts at preparation of $\mathbf{3}$ and the assignment of the stereochemistry have not been made so far. We describe herein the first, efficient synthesis of racemic SF-2312 (3) as a preliminary study for asymmetric synthesis of $\mathbf{3}$.

Ethyl diethoxyphosphorylacetate served as the starting material for preparation of the 2-phosphorylpent-4-enohydroxamate derivative (6), the key precursor for the 1,5-dihydroxy-2-pyrrolidone ring formation (Scheme 1). The reported procedures ${ }^{8}$ for preparation of ethyl 2-(diethoxyphosphoryl)pent-4-enoate (4a) from ethyl diethoxyphosphorylacetate was slightly modified and thus $\mathbf{4 a}$ was obtained in an improved yield (72%) together with the diallyl-substituted compound (4b) (11\%). Chemoselective hydrolysis of $\mathbf{4 a}$ in aqueous ethanol containing potassium hydroxide provided the corresponding pent-4-enoic acid (5) in a quantitative yield.
Condensation of $\mathbf{5}$ with O-benzylhydroxylamine in the presence of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide (EDC) hydrochloride and 4-dimethylaminopyridine (DMAP) afforded the O-benzyl hydroxamate (6) in 88% yield. The same condensation in the presence of EDC hydrochloride, 1-hydroxybenzotriazole (HOBt), and N-methylmorpholine, provided $\mathbf{6}$ in a similar yield.

Scheme 1

The 1,5-dihydroxy-2-pyrrolidone ring formation of 6 was carried out by the intramolecular hemiacetalization of the hydroxamate with the terminal aldehyde. Namely, the oxidative cleavage of the terminal olefin of 6 with osmium tetroxide and sodium periodate afforded the aldehyde intermediate, which was immediately cyclized to give the 5-hydroxy-2-pyrrolidone derivative (7) as a $65: 35$ diastereomeric mixture. The structural assignments of these isomers were made by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ with the
aid of 2D NOESY measurement and thus the cis form of the major isomer and the trans form of the minor one were confirmed (Table 1, Figure 1).
As the hemiacetal (hydroxylactam) moiety of 7 seemed to be susceptible to the conditions required for the following cleavage of the benzyl and phosphonic ester moieties, the 5 -hydroxy group of 7 was protected as a methyl acetal (methoxylactam) by way of precaution. Namely, 7 was treated with trifluoroacetic acid (TFA) in methanol at $40{ }^{\circ} \mathrm{C}$ to give the 5-methoxy-2-pyrrolidone derivative (8) in 82% yield. The product was confirmed by NOE experiments to be a $28: 72$ mixture of cis and trans isomers in the reverse ratio to that of (Table 1, Figure 1).

cis-7 $\mathrm{R}=\mathrm{H}$ (major isomer)
cis-8 $\mathrm{R}=\mathrm{Me}$ (minor isomer)

trans-7 R = H (minor isomer)
trans-8 $\mathrm{R}=\mathrm{Me}$ (major isomer)

Figure 1. Relative configurations of 1-benzyloxy-3-phosphoryl-2-pyrrolidone derivatives $(7,8)$ and the observed NOEs

Hydrogenolysis of $\mathbf{8}$ in the presence of $10 \% \mathrm{Pd}-\mathrm{C}$ afforded the debenzylated product ($\mathbf{9}$) and the same treatment of the hemiacetal compound (7) also yielded the deprotected compound (10) without formation of byproducts. Therefore protection of the hemiacetal moiety seems to be unnecessary for such a reductive condition. However cleavage of the phosphonic ester of $\mathbf{9}$ and $\mathbf{1 0}$ with trimethylsilyl bromide in dichloromethane resulted in the formation of an inseparable mixture of unidentified products and a minor amount of the desired product 3 .
We thus attempted removal of protecting groups of $\mathbf{7}$ and $\mathbf{8}$ in the alternative sequence: the phosphonic ester of $\mathbf{7}$ was first cleaved by the treatment with trimethylsilyl bromide to afford $\mathbf{1 1}$ quantitatively. It is noteworthy that the similar treatment of $\mathbf{8}$ also provided $\mathbf{1 1}$ quantitatively, as a result of simultaneous cleavage of the methyl acetal. Judging from these results, it seems that the functional group necessary for protection of the 1,5-dihydroxy-2-pyrrolidone moiety against the action of trimethylsilyl bromide is not the 5 -hydroxy but 1-hydroxy group.
The final removal of the benzyl group of $\mathbf{1 1}$ by hydrogenolysis furnished 3-dihydroxyphosphoryl-1,5-dihydroxy-2-pyrrolidone (3) as a diasteromeric mixture (cis/trans $=41: 59$). ${ }^{9}$ The NMR data of $\mathbf{3}$ were found to be identical with those reported for the natural product. ${ }^{6,7}$
The present work thus demonstrates the first synthesis of racemic SF-2322 (3) by a short and efficient route. Extension of this work including applications of these findings in synthesizing optically active SF-2322 is in progress.

Table 1. $600 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectral parameters for 3-dihydroxyphosphoryl-1,5-dihydroxy-2pyrrolidone derivatives (3, 7-11) ${ }^{\text {a }}$

EXPERIMENTAL

All reactions were monitored by TLC (Merck silica gel $60 \mathrm{~F}, 0.25 \mathrm{~mm}$) with an appropriate solvent system. Column chromatography was performed with Daiso Silica Gel IR-60/210w. Components were detected by spraying them with 20% sulfuric acid-ethanol or 20% phosphomolybdic acid-ethanol (with subsequent heating). The NMR spectra were measured in CDCl_{3} with Varian Unity Inova AS600 (600

MHz for ${ }^{1} \mathrm{H}, 151 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) and Mercury $300\left(121 \mathrm{MHz}\right.$ for ${ }^{31} \mathrm{P}$) spectrometers at $23{ }^{\circ} \mathrm{C}$, unless otherwise stated. Chemical shifts are reported as δ values relative to $\mathrm{CHCl}_{3}\left(7.26 \mathrm{ppm}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ and $\mathrm{DOH}\left(4.79 \mathrm{ppm}\right.$ in $\left.\mathrm{D}_{2} \mathrm{O}\right)$ as an internal standard for ${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}\left(77.0 \mathrm{ppm}\right.$ in CDCl_{3}) and 1,4-dioxane (67.2 ppm in $\mathrm{D}_{2} \mathrm{O}$) as an internal standard for ${ }^{13} \mathrm{C} \mathrm{NMR}$, and 85% phosphoric acid (0 ppm) as an external standard for ${ }^{31} \mathrm{P}$ NMR. The IR spectra were recorded on a Thermo Nicolet Avatar360. The MS spectra were measured on a VG-70SE instrument.

Ethyl 2-(diethoxyphosphoryl)pent-4-enoate (4a) and ethyl 2-diethoxyphosphoryl-2-(prop-2-

 enyl)pent- 4-enoate (4b)Modification of the literature procedures ${ }^{8}$ was made as follows. To a solution of ethyl diethoxyphophorylacetate ($500 \mathrm{mg}, 2.23 \mathrm{mmol}$) in dry THF (5 mL) was added sodium hydride $(60 \%$ in oil, $98 \mathrm{mg}, 2.45 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 1 h , allyl bromide $(0.210 \mathrm{~mL}$, 2.40 mmol) was added and the mixture was stirred at rt for 12 h . The mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$ and then most of THF was distilled off in vacuo. The resulting solution was diluted with water and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was separated by column chromatography with 3:1 AcOEt-hexane to give $\mathbf{4 a}$ [$423 \mathrm{mg}, 72 \%$ (lit., ${ }^{8} 47 \%$ yield by distillation)] and $\mathbf{4 b}$ ($75 \mathrm{mg}, 11 \%$).
4a: Colorless oil; $R_{f}=0.43$ (1:1 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR $\delta=1.27\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$ $1.33,1.34\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{t}, J_{\text {СН2 } 2 \mathrm{CH}}=7.1 \mathrm{~Hz}, \mathrm{POCH}_{2} \mathrm{CH}_{3}\right), 2.58,2.70\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~m}, \mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{b}}-3\right), 3.01(1 \mathrm{H}$, ddd, $\left.J_{2, \mathrm{P}}=22.3, J_{2,3 \mathrm{a}}=11.4, J_{2,3 \mathrm{~b}}=4.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.12-4.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}\right), 4.17\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COCH}_{2}\right), 5.04[1 \mathrm{H}$, $\left.\mathrm{dq}, J_{4,5 E}=10.2, J_{3,5 E}=J_{5 E, 5 Z}=1.5 \mathrm{~Hz}, \mathrm{H}_{(E)}-5\right], 5.11\left[1 \mathrm{H}, \mathrm{dq}, J_{4,5 Z}=17.0, J_{3,5 Z}=1.5 \mathrm{~Hz}, \mathrm{H}_{(Z)}-5\right], 5.76(1 \mathrm{H}$, ddt, $\left.J_{3 \mathrm{a}, 4}=J_{3 \mathrm{~b}, 4}=6.7 \mathrm{~Hz}, \mathrm{H}-4\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=22.46$.
4b: Colorless oil; $R_{f}=0.55$ (1:1 AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR $\delta=1.28\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$ $1.32\left(6 \mathrm{H}, \mathrm{t}, J_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}, \mathrm{POCH}_{2} \mathrm{CH}_{3}\right), 2.67\left(4 \mathrm{H}, \mathrm{ddt}, J_{3, \mathrm{P}}=14.8, J_{3,4}=7.1, J_{3,5 E}=J_{3,5 Z}=1.3 \mathrm{~Hz}\right.$, $\mathrm{H}-3), 4.12-4.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COCH}_{2}\right), 5.09\left[2 \mathrm{H}, \mathrm{ddt}, J_{4,5 E}=10.2, J_{5 E, 5 \mathrm{Z}}=2.3 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{(E)}-5\right], 5.11\left[2 \mathrm{H}, \mathrm{dqt}, J_{4,5 Z}=17.1 \mathrm{~Hz}, \mathrm{H}_{(Z)}-5\right], 5.86\left(2 \mathrm{H}, \mathrm{ddtd},{ }^{4} J_{4, \mathrm{P}}=0.6 \mathrm{~Hz}, \mathrm{H}-4\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=22.91$.

2-(Diethoxyphosphoryl)pent-4-enoic acid (5).

To a solution of $4(500 \mathrm{mg}, 1.89 \mathrm{mmol})$ in $\mathrm{EtOH}(5.0 \mathrm{~mL})$ was added 10 M aq. $\mathrm{KOH}(0.28 \mathrm{~mL}, 2.8$ $\mathrm{mmol})$. The mixture was stirred at rt for 24 h and then neutralized with Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$. The resin was filtered off and the filtrate was evaporated in vacuo to give $\mathbf{5}$ (447 mg , quant) as a colorless syrup, which was used for the next step without further purification: $R_{f}=0.08$ ($1: 1 \mathrm{AcOEt}$-hexane).
${ }^{1} \mathrm{H}$ NMR $\delta=1.33,1.335\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{t}, J_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.52,2.68\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~m}, \mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{b}}-3\right)$, $3.03\left(1 \mathrm{H}\right.$, ddd, $\left.J_{2, \mathrm{P}}=22.5, J_{2,3 \mathrm{a}}=11.0, J_{2,3 \mathrm{~b}}=3.9 \mathrm{~Hz}, \mathrm{H}-2\right), 4.16,4.20\left(2 \mathrm{H}\right.$ each, $\left.2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.04[1 \mathrm{H}$, $\left.\mathrm{dq}, J_{4,5 E}=10.3, J_{3,5 E}=J_{5 E, 5 Z}=1.2 \mathrm{~Hz}, \mathrm{H}_{(E)}-5\right], 5.12\left[1 \mathrm{H}, \mathrm{dq}, J_{4,5 Z}=17.0, J_{3,5 Z}=1.2 \mathrm{~Hz}, \mathrm{H}_{(Z)}-5\right], 5.78(1 \mathrm{H}$, ddt, $\left.J_{3 \mathrm{a}, 4}=J_{3 \mathrm{~b}, 4}=6.6 \mathrm{~Hz}, \mathrm{H}-4\right), 5.90\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=23.57$.
N-Benzyloxy-2-(diethoxyphosphoryl)pent-4-enamide (6).
A. With EDC-DMAP. To a solution of $5(200 \mathrm{mg}, 0.847 \mathrm{mmol})$ and O-benzylhydroxylamine
hydrochloride ($170 \mathrm{mg}, 1.07 \mathrm{mmol}$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added DMAP ($265 \mathrm{mg}, 2.17$ mmol) and EDC hydrochloride ($200 \mathrm{mg}, 1.04 \mathrm{mmol}$). After stirring for 36 h at rt , the mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and then brine $(2 \times 10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by column chromatography with $3: 1 \mathrm{AcOEt}$-hexane to give $\mathbf{6}(253 \mathrm{mg}, 88 \%)$ as a colorless syrup: $R_{f}=0.35$ (AcOEt). ${ }^{1} \mathrm{H}$ NMR $\delta=1.31\left(6 \mathrm{H}, \mathrm{t}, J_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\mathrm{b}}-3\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}^{\mathrm{a}}-3\right), 4.11$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.04\left[1 \mathrm{H}, \mathrm{dt}, J_{4,5 E}=10.3, J_{3,5 E}=J_{5 E, 5 Z}=1.2 \mathrm{~Hz}, \mathrm{H}_{(E)}-5\right], 5.10[1 \mathrm{H}$, $\left.\mathrm{dt}, J_{4,5 Z}=16.9, J_{3,5 z}=1.2 \mathrm{~Hz}, \mathrm{H}_{(Z)}-5\right], 5.75\left(1 \mathrm{H}, \mathrm{ddt}, J_{3 \mathrm{a}, 4}=J_{3 \mathrm{~b}, 4}=6.4 \mathrm{~Hz}, \mathrm{H}-4\right), 7.36[3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}(m, p)]$, $7.40[2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}(o)], 9.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta=16.30\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}^{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}\right.$ $\left.=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} C \mathrm{H}_{3}\right), 30.64(\mathrm{C}-3), 43.58\left(\mathrm{~d},{ }^{1} J_{2, \mathrm{P}}=130.1 \mathrm{~Hz}, \mathrm{C}-2\right), 62.73\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right)$, $63.32\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 78.24\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 117.35(\mathrm{C}-5), 128.45[\mathrm{Ph}(m)], 128.58[\mathrm{Ph}(p)], 129.12$ $[\mathrm{Ph}(o)], 134.37\left(\mathrm{~d},{ }^{3} J_{4, \mathrm{P}}=15.0 \mathrm{~Hz}, \mathrm{C}-4\right), 135.30[\mathrm{Ph}($ ipso $)], 165.20(\mathrm{C}-1) ;{ }^{31} \mathrm{P}$ NMR $\delta=24.07$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}: \mathrm{C}, 56.30 ; \mathrm{H}, 7.09$. Found: C, $56.21 ; \mathrm{H}, 7.20$.
B. With EDC-HOBt. To a solution of $5(120 \mathrm{mg}, 0.508 \mathrm{mmol})$ and O-benzylhydroxylamine hydrochloride ($100 \mathrm{mg}, 0.627 \mathrm{mmol}$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{HOBt}(83.0 \mathrm{mg}, 0.614$ $\mathrm{mmol})$, N-methylmorpholine ($140 \mathrm{~mL}, 1.27 \mathrm{mmol}$) and EDC hydrochloride ($120 \mathrm{mg}, 0.626 \mathrm{mmol}$). After stirring at rt for 24 h , the reaction mixture was purified by use of same procedures described above, giving 6 ($147 \mathrm{mg}, 85 \%$).

1-Benzyloxy-3-diethoxyphosphoryl-5-hydroxy-2-pyrrolidone (7).

To a solution of $6(57.6 \mathrm{mg}, 0.169 \mathrm{mmol})$ in 50% aqueous 1,4 -dioxane (5.0 mL) was added osmium tetroxide ($4.4 \mathrm{mg}, 0.017 \mathrm{mmol}$). The mixture was stirred at rt for 30 min and then sodium periodate ($110 \mathrm{mg}, 0.514 \mathrm{mmol}$) was added gradually. The mixture was stirred at rt for 1 h , diluted with water (15 mL), and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water (15 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by column chromatography with 1:19 MeOH-CHCl ${ }_{3}$ to give a diastereomeric mixture (cis/trans $=65: 35$) of $7(55.2 \mathrm{mg}, 95 \%)$ as a colorless solid: $R_{f}=0.50,0.43\left(1: 9 \mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 52.48 ; \mathrm{H}, 6.46$. Found: C, 52.60; H, 6.55.
cis-7: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.28,16.37\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.69\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=4.0\right.$ $\mathrm{Hz}, \mathrm{C}-4), 37.24\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=135.9 \mathrm{~Hz}, \mathrm{C}-3\right), 62.72,65.16\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 78.31\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $81.79\left({ }^{3} J_{5, \mathrm{P}}=0 \mathrm{~Hz}, \mathrm{C}-5\right), 128.46[\mathrm{Ph}(m)], 128.88[\mathrm{Ph}(p)], 129.56[\mathrm{Ph}(o)], 134.79[\mathrm{Ph}(i p s o)], 164.19(\mathrm{~d}$, $\left.{ }^{2} J_{2, \mathrm{P}}=3.5 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=25.70$.
trans-7: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.32$, $16.41\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.86\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=\right.$ $3.5 \mathrm{~Hz}, \mathrm{C}-4), 36.11\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=148.6 \mathrm{~Hz}, \mathrm{C}-3\right), 62.54,63.33\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 77.94\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $80.46\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=9.2 \mathrm{~Hz}, \mathrm{C}-5\right), 128.59[\mathrm{Ph}(m)], 129.00[\mathrm{Ph}(p)], 129.59[\mathrm{Ph}(o)], 134.98[\mathrm{Ph}($ ipso $)], 166.27$ (d, $\left.{ }^{2} J_{2, \mathrm{P}}=3.5 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=23.26$.

1-Benzyloxy-3-diethoxyphosphoryl-5-methoxy-2-pyrrolidone (8).

To a solution of $7(50.6 \mathrm{mg}, 0.147 \mathrm{mmol})$ in dry $\mathrm{MeOH}(4.0 \mathrm{~mL})$ was added TFA $(0.010 \mathrm{~mL}, 0.13 \mathrm{mmol})$.

The mixture was stirred at $40^{\circ} \mathrm{C}$ for 36 h and then triethylamine $(0.20 \mathrm{~mL})$ was added at rt . The mixture was evaporated in vacuo and the residue was purified by column chromatography with $1: 19$ $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ to give a diastereomeric mixture (cis/trans $=28: 72$) of $\mathbf{8}(43.2 \mathrm{mg}, 82 \%)$ as a colorless syrup: $R_{f}=0.55,0.49\left(1: 9 \mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 53.78 ; \mathrm{H}, 6.77$. Found: C, 53.89; H, 6.59.
cis-8: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.37,16.46\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.95\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=3.5\right.$ $\mathrm{Hz}, \mathrm{C}-4), 36.62\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=144.5 \mathrm{~Hz}, \mathrm{C}-3\right), 56.46(\mathrm{MeO}), 62.74,63.40\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 78.02$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 88.25\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=4.7 \mathrm{~Hz}, \mathrm{C}-5\right), 128.53[\mathrm{Ph}(m)], 128.96[\mathrm{Ph}(p)], 129.55[\mathrm{Ph}(o)], 134.77[\mathrm{Ph}(i p s o)]$, $164.99\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=4.8 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=21.92$.
trans-8: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.37,16.46\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.70\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=\right.$ $3.5 \mathrm{~Hz}, \mathrm{C}-4), 36.20\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=149.1 \mathrm{~Hz}, \mathrm{C}-3\right), 56.82(\mathrm{MeO}), 62.44,63.35\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $77.82\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 87.99\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=9.2 \mathrm{~Hz}, \mathrm{C}-5\right), 128.56[\mathrm{Ph}(m)], 128.99[\mathrm{Ph}(p)], 129.76[\mathrm{Ph}(o)], 134.94$ $[\mathrm{Ph}($ ipso $)], 165.43\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=4.5 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=23.32$.

3-Diethoxyphosphoryl-1-hydroxy-5-methoxy-2-pyrrolidone (9).

Compound $8(24.3 \mathrm{mg}, 0.0680 \mathrm{mmol}$) was dissolved in 50% aqueous 1,4 -dioxane (5.0 mL) and 10% Pd-C ($8.5 \mathrm{mg}, 0.0080 \mathrm{mmol}$) was added. The mixture was stirred at rt for 3 h under atmospheric pressure of hydrogen. The catalyst was filtered off and the filtrate was evaporated in vacuo. The residue was purified by short-path column chromatography with $1: 19 \mathrm{MeOH}^{-} \mathrm{CHCl}_{3}$ to give a diastereomeric mixture (cis/trans $=30: 70)$ of $9(17.1 \mathrm{mg}, 94 \%)$ as a colorless syrup: $R_{f}=0.46,0.40(1: 9$ $\mathrm{MeOH}-\mathrm{CHCl}_{3}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 40.45 ; \mathrm{H}, 6.79$. Found: C, $40.28 ; \mathrm{H}, 6.88$.
cis-9: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.27,16.33\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.75\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=4.0\right.$ $\mathrm{Hz}, \mathrm{C}-4), 36.77\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=145.7 \mathrm{~Hz}, \mathrm{C}-3\right), 56.57(\mathrm{MeO}), 62.93,63.50\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 88.79$ $\left(\mathrm{d},{ }^{3} J_{5, \mathrm{P}}=5.2 \mathrm{~Hz}, \mathrm{C}-5\right), 165.12\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=4.5 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=22.65$.
trans-9: ${ }^{1} \mathrm{H}$ NMR, see Table 1; ${ }^{13} \mathrm{C}$ NMR $\delta=16.29,16.36\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.59\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=\right.$ $3.5 \mathrm{~Hz}, \mathrm{C}-4), 36.58\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=150.3 \mathrm{~Hz}, \mathrm{C}-3\right), 57.10(\mathrm{MeO}), 62.55,63.86\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $89.02\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=9.2 \mathrm{~Hz}, \mathrm{C}-5\right), 165.09\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=4.0 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=24.15$.

3-Diethoxyphosphoryl-1,5-dihydroxy-2-pyrrolidone (10).

By use of same procedures described for $\mathbf{9}$ from 8, compound $7(26.6 \mathrm{mg}, 0.0775 \mathrm{mmol})$ was treated with $10 \% \mathrm{Pd}-\mathrm{C}(8.7 \mathrm{mg}, 0.0082 \mathrm{mmol})$ to give a diastereomeric mixture (cis/trans $=38: 62)$ of $\mathbf{1 0}(17.9 \mathrm{mg}$, $91 \%)$ as a colorless syrup: $R_{f}=0.26,0.19\left(1: 9 \mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 37.95 ; \mathrm{H}$, 6.37. Found: C, 37.79; H, 6.53 .
cis-10: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.26,16.30\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.59\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=\right.$ $4.5 \mathrm{~Hz}, \mathrm{C}-4), 37.32\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=145.1 \mathrm{~Hz}, \mathrm{C}-3\right), 62.83,64.60\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 82.11\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=\right.$ $4.6 \mathrm{~Hz}, \mathrm{C}-5), 164.74\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=3.8 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=24.82$.
trans-10: ${ }^{1} \mathrm{H}$ NMR, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\delta=16.30,16.32\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.33\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=\right.$ $4.1 \mathrm{~Hz}, \mathrm{C}-4), 36.60\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=149.1 \mathrm{~Hz}, \mathrm{C}-3\right), 63.18,63.45\left(2 \mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right), 81.76\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=\right.$ $8.6 \mathrm{~Hz}, \mathrm{C}-5), 165.53\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=4.0 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR $\delta=24.16$.

1-Benzyloxy-3-dihydroxyphosphoryl-5-hydroxy-2-pyrrolidone (11).

A. From 7. Compound $7(24.0 \mathrm{mg}, 0.0699 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and trimethylsilyl bromide ($0.140 \mathrm{~mL}, 1.07 \mathrm{mmol}$) was added. The mixture was stirred at rt for 24 h and then evaporated in vacuo. The residue was dissolved in water $(5 \mathrm{~mL})$ and washed with $\operatorname{AcOEt}(10 \mathrm{~mL})$. The aqueous layer was evaporated in vacuo to give a diastereomeric mixture (cis/trans $=39: 61$) of $\mathbf{1 1}$ ($19.7 \mathrm{mg}, 98 \%$) as a pale yellow syrup, which was spectrometrically pure and was used directly for the next step: $R_{f}=0.55\left(3: 7 \mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$, see Table 1. HRMS(FAB): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$288.0637, found 288.0650.
B. From 8. By use of same procedures describe above, compound $8(23.5 \mathrm{mg}, 0.0657 \mathrm{mmol})$ was treated with rimethylsilyl bromide $(0.140 \mathrm{~mL}, 1.07 \mathrm{mmol})$ at rt for 24 h , giving $11(18.5 \mathrm{mg}, 98 \%)$.

3-Dihydroxyphosphoryl-1,5-dihydroxy-2-pyrrolidone (3).

To a solution of $\mathbf{1 1}(19.7 \mathrm{mg}, 0.0685 \mathrm{mmol})$ in water $(1.5 \mathrm{~mL})$ was added $10 \% \mathrm{Pd}-\mathrm{C}(9.0 \mathrm{mg}, 0.0085$ mmol). The mixture was stirred at rt for 2.5 h under atmospheric pressure of hydrogen. The catalyst was filtered off and the filtrate was diluted with water. The mixture was treated with active charcoal and filtered. The filtrate was evaporated in vacuo to give a diastereomeric mixture (cis/trans $=41: 59$) of $\mathbf{3}$ $(13.0 \mathrm{mg}, 96 \%)$ as a colorless hygroscopic syrup: $R_{f}=0.18$ (3:7 H2O-EtOH); IR (neat) $3390(\mathrm{OH}), 1685$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$. $\quad \mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$198.0168, found 198.0175. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}_{6} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 22.34 ; \mathrm{H}, 4.69$. Found: C, 22.06; $\mathrm{H}, 4.82$.
cis-3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$, see Table $1 ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=27.70\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=3.5 \mathrm{~Hz}, \mathrm{C}-4\right), 38.84\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=\right.$ $133.0 \mathrm{~Hz}, \mathrm{C}-3$), $82.44\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=3.7 \mathrm{~Hz}, \mathrm{C}-5\right), 169.35\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=8.2 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=17.70$. trans-3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta=26.64\left(\mathrm{~d},{ }^{2} J_{4, \mathrm{P}}=2.9 \mathrm{~Hz}, \mathrm{C}-4\right), 38.20\left(\mathrm{~d},{ }^{1} J_{3, \mathrm{P}}=\right.$ $135.9 \mathrm{~Hz}, \mathrm{C}-3), 82.01\left(\mathrm{~d},{ }^{3} J_{5, \mathrm{P}}=6.0 \mathrm{~Hz}, \mathrm{C}-5\right), 169.52\left(\mathrm{~d},{ }^{2} J_{2, \mathrm{P}}=8.2 \mathrm{~Hz}, \mathrm{C}-2\right) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta=18.19$.

ACKNOWLEDGEMENTS

We are grateful to the SC-NMR Laboratory of Okayama University for the NMR measurements.

REFERENCES AND NOTES

1. M. Okuhara, Y. Kuroda, T. Goto, M. Okamoto, H. Terano, M. Kohsaka, H. Aoki, and H. Imanaka, J. Antibiot., 1980, 33, 24; Y. Kuroda, M. Okuhara, T. Goto, M. Okamaoto, H. Terano, M. Kohsaka, H. Aoki, and H. Imanaka, J. Antibiot., 1980, 33, 29.
2. M. Okuhara, Y. Kuroda, T. Goto, M. Okamoto, H. Terano, M. Kohsaka, H. Aoki, and H. Imanaka, J. Antibiot., 1980, 33, 13.
3. T. Kuzuyama, T. Shimizu, S. Takahashi, and H. Seto, Tetrahedron Lett., 1998, 39, 7913; H. Jomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, I. Turbachova, M. Eberl, J. Zeidler, H. K. Lichtenthaler, D. Soldati, and E. Beck, Science, 1999, 285, 1573; A. Reichner, J. Wiesner, C. Weidemeyer, E. Dreiseidler, S. Sanderbrand, B. Altincicek, E. Beck, M. Schlitzer, and
H. Jomaa, Bioorg. Med. Chem. Lett., 2001, 11, 833.
4. M. Courtois, Z. Mincheva, F. Andreu, M. Rideau, and M. C. Viaud-Massuard, J. Enzyme Inhib. Med. Chem., 2004, 19, 559; L. Kuntz, D. Tritsch, C. Grrosdemange-Billiard, A. Hemmerlin, A. Willem, T. J. Bach, and M. Rohmer, Biochem. J., 2005, 386, 127; T. Haemers, J. Wiesner, R. Busson, H. Jomaa, and S. Van Calenbergh, Eur. J. Org. Chem., 2006, 3856.
5. As analogs of SF-2312 (3), 1-hydroxy-3-phosphorylpyrrolidin-2,5-dione derivatives have been prepared: W. Owotoki, D. Geffken, and T. Kurz, Aust. J. Chem., 2006, 59, 283.
6. K. Ohba, H. Watabe, J. Yoshida, T. Shomura, M. Sezaki, and T. Ishikawa, Jpn. Patent, 60,224,493, 1985 (Chem. Abstr., 1986, 104, 107918y).
7. Most of physico-chemical properties of $\mathbf{3}$ are reported as the corresponding mono sodium salt: K . Ohba, Y. Sato, T. Sasaki, and M. Sezaki, Sci. Reports of Meiji Seika Kaisha, 1986, 25, 18.
8. T. Janecki, E. Błaszczyk, K. Studzian, M. Różalski, U. Krajewska, and A. Janecka, J. Med. Chem., 2002, 45, 1142
9. Although ${ }^{1} \mathrm{H}$ NMR spectrum of an isomeric mixture (ca. 2:3) of the natural $\mathbf{3}$ is shown in Ref. 6 , the cis- and trans-structures of the isomers are not assigned. The isomeric structures of the synthetic $\mathbf{3}$ and $\mathbf{9 - 1 1}$ were assigned by comparison to the ${ }^{1} \mathrm{H}$ NMR data for the isomers of $\mathbf{7}$ and $\mathbf{8}$ having the similar characteristic tendency of the corresponding coupling constants and chemical shifts (Table 1). The precise conformations of these compounds are currently under consideration.
