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The aim of this present study was to provide a scaffold as a tool for the investigation of 

the effect of mechanical stimulation on three-dimensionally cultured cells. For this 

purpose, we developed an artificial self-assembling peptide (SPG-178) hydrogel 

scaffold. The structural properties of the SPG-178 peptide were confirmed by 

attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and 

transmission electron microscopy (TEM). The mechanical properties of the SPG-178 

hydrogel were studied using rheology measurements. The SPG-178 peptide was able to 

form a stable, transparent hydrogel in a neutral pH environment. In the SPG-178 

hydrogel, mouse skeletal muscle cells proliferated successfully (increased by 12.4 ± 1.5 

times during 8 days of incubation; mean ± SEM). When the scaffold was statically 

stretched, a rapid phosphorylation of ERK was observed (increased by 2.8 ± 0.2 times; 

mean ± SEM). These results demonstrated that the developed self-assembling peptide 

gel is non-cytotoxic and is a suitable tool for the investigation of the effect of 

mechanical stimulation on three-dimensional cell culture. 
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The goal of tissue engineering is to restore diseased or damaged tissue by delivering 

functional cells, scaffolds, and signal molecules such as growth factors to the affected 

area. The scaffolds should permit the release of the signal molecules and the ingress of 

nutrients and oxygen to keep the implanted cells alive. Furthermore, to elicit the 

implanted cell functions, the scaffolds should transmit several mechanical stimulations. 

The effects of mechanical stimulation have been proven in several cell culture systems, 

e.g., cardiomyocytes [1, 2], chondrocytes [3, 4], and others [5, 6, 7]. Animal-derived 

materials such as collagen and Engelbreth-Holm-Swarm (EHS) gels are widely used as 

scaffolds for tissue engineering because of their general compatibility with living 

tissues [8]. However, those scaffolds often contain growth factors, which may interfere 

with the estimation of the effects of the mechanical stimulation [9, 10]. Furthermore, 

such animal-derived materials can cause allergic reactions [11, 12] and carry dangerous 

pathogens including prions that cause a variety of neurodegenerative diseases in 

humans and animals. Evidence for the transmission of bovine spongiform 

encephalopathy prions to humans has been reported [13]. Other viruses might also be 

carried as pathogens in animal-derived scaffolds. Thus, there is a need for alternative 

sources of animal-derived scaffolds.  

Self-assembling peptides are one of the candidate materials to solve these problems. 

The complete sequence of a self-assembling peptide was originally found in a region of 

alternating hydrophobic and hydrophilic residues in zuotin [14], which is characterized 

by a stable β-sheet structure that undergoes self-assembly into nanofibers. The 

nanofibers form interwoven matrices that further form a hydrogel scaffold [15, 16]. 

These hydrogel systems are well characterized and have already been employed in a 

variety of tissue engineering studies [17-20], drug delivery systems [21, 22], and 



hemostatic applications [23]. Self-assembling peptides are a 100 % chemically 

synthesized material. Therefore, the use of self-assembling peptide hydrogels can 

minimize the risk of biological contamination and the influence from the undefined 

factors in EHS gels. 
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However, a typical self-assembling peptide gel, RADA16 

(RADARADARADARADA; R=arginine, A=alanine, and D=aspartic acid) gel, has a 

very low pH (approximately 3-4), thereby retaining the potential to harm inner cells and 

host tissues. In one particular case, a gel required one week to gradually change its pH 

from acidic to neutral by a solvent substitution [24]. In addition, an important drawback 

is that the RADA16 hydrogel structure is unstable under neutral conditions. After the 

neutralization procedure, the hydrogel tends to break under mechanical stress [25]. 

Furthermore, once the hydrogel is stirred, the electrostatic interactions between the 

protonated arginine (+) and the deprotonated aspartic acid (-) within the RADA16 

peptide strongly occur and yield a precipitate [26].  

The aim of this study was to provide a scaffold as a tool for the investigation of the 

effect of mechanical stimulation on three-dimensionally cultured cells without any 

interference from undefined factors such as the growth factors in animal-derived 

scaffolds. For this purpose, we developed a self-assembling peptide, SPG-178 

(Self-assembling Peptide Gel, amino acid sequence #178; 

[CH3CONH]-RLDLRLALRLDLR-[CONH2]; R=arginine, L=leucine, D=aspartic acid, 

and A=alanine; Fig. 1). It is well known that a protein reaches its minimum solubility at 

its isoelectric point, where the protein has a zero net charge. This property of proteins is 

closely related to the instability of the hydrogel formed by the RADA16 peptide, whose 

isoelectric point is 6.1 [26]. Therefore, the isoelectric point of the SPG-178 peptide was 

designed to be 11.5 by employing four cationic arginine and two anionic aspartic acid 
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residues. Furthermore, leucine residues were employed to increase the hydrophobic 

interaction among the SPG-178 peptides, which was the main driving force of the 

self-assembly, and stabilize the hydrogel formation.  
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We report here on the biocompatibility of a developed self-assembling peptide 

hydrogel and its ability to transmit mechanical stimulation. Murine C2C12 myoblast 

cells were used for all of the cell culture experiments because they are known to be 

acutely responsive to mechanical stimulation.  

 

 

2. Materials and methods 

 

2.1. Self-assembling peptide SPG-178 

The self-assembling peptide SPG-178, 

[CH3CONH]-RLDLRLALRLDLR-[CONH2], was synthesized by a solid-phase 

method using standard Fmoc strategy (see Supplementary Data and Fig. S1). The 

peptide powder was dissolved in a 10 % (w/v) sucrose solution. Then the peptide 

solution was sterilized by filtration through a 0.22 μm filter. The pH of the peptide 

solution was adjusted to approximately pH=6.5 by adding aliquots of a 0.5 % (w/v) 

sodium hydrogen carbonate solution. The final concentration of the peptide in the 

solution was 2.4 mM (0.4 % w/v).  

 

2.2. CPK model of SPG-178 peptide  

The molecular models of the anti-parallel β-sheet structure and the fiber formation of 

the SPG-178 peptide were produced using Facio, a 3D-graphics program, and 

employing Tinker with a charm 22 force field parameter 



(http://www1.bbiq.jp/zzzfelis/Facio.html and http://dasher.wustl.edu/tinker/) [27, 28]. 

The dimension of the peptide monomer was calculated using Swiss-PdbViewer 

(http://www.expasy.org/spdbv/) [29] (Fig. 1A). 
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2.3. Gel stretch chamber  

In this study, a gel stretch chamber was employed for the three-dimensional cell 

culture and the tension experiments. The gel stretch chamber was constructed by 

attaching a piece of silicone foam sheet (SPP-2.0S, AS ONE, Osaka, Japan) that had 

been manually cut to a size of approximately 20 mm × 4.5 mm × 2 mm (length × width 

× thickness), with a rectangular hole of approximately 18 mm × 1.5 mm (length × 

width) for holding the peptide gel, to the inner wall of a commercially available stretch 

chamber (STB-CH-04, STREX, Osaka, Japan). Silicone resin (TSE3032, GE Toshiba 

Silicones, Tokyo, Japan) was used as a glue. The silicone foam sheet was located 

approximately 2 mm above the bottom of the chamber to allow the cell culture medium 

to contact the bottom of the hydrogel. A hydrophilic surface treatment, which consisted 

of high power plasma sterilization (PDC-32G, Harrick Scientific Products Inc., NY, 

USA) for 10 minutes, was performed to increase the hydrophilicity of the silicone foam 

sheet surface before its use. 

 

2.4. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR- FTIR) 

The sample for the ATR-FTIR was prepared by dissolving SPG-178 peptide powder 

in a deuterated aqueous solution at a final concentration of 1 % (w/v). The pH of the 

sample was adjusted to approximately pH=6.5 by adding aliquots of a 0.5 % (w/v) 

sodium hydrogen carbonate solution. The sample formed a hydrogel at this condition 

(1 % [w/v] at pH=6.5), which indicated the presence of nanofibers and the 



three-dimensional network structure formation of the SPG-178 peptide. The spectrum 

was recorded on a Perkin-Elmer Spectrum One spectrometer equipped (Perkin-Elmer, 

Norwalk, CT, USA) with a Horizontal ATR (HATR) Sampling Accessory and a trough 

plate, which was comprised of a ZnSe crystal with a 45 ° angle of incidence. One 

milliliter of the hydrogel was spread directly onto the surface of the trough plate. The 

spectrum was recorded at room temperature from 4000 cm-1 to 650 cm-1, and 32 scans 

were collected with a spectral resolution of 4 cm-1. A deuterated water spectrum was 

used as background and was subtracted from the sample spectrum. 
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2.5. Transmission electron microscopy (TEM) 

Dulbecco's modified Eagles medium (DMEM; WAKO, Osaka, Japan) was mixed 

with the peptide solution described in section 2.1 at a volume ratio of 1:2. The mixture 

formed a hydrogel due to the increased salt concentration [14, 15, 30] even though the 

peptide concentration was lowered from 2.4 mM to 1.6 mM. The final concentration of 

the SPG-178 peptide in the hydrogel was 1.6 mM. A 60 μl aliquot of the hydrogel was 

added to the rectangular hole in the silicone foam sheet in the gel stretch chamber. The 

chamber was filled with 3 ml of DMEM that was supplemented with 10 % (v/v) fetal 

bovine serum (FBS) and incubated in 5 % CO2 at 37 °C for 8 days. After the incubation, 

the DMEM supplemented with 10 % (v/v) FBS was removed, and the hydrogel was 

fixed in a 0.1 M phosphate buffer containing 2 % (v/v) glutaraldehyde and 2 % (v/v) 

paraformaldehyde at 4 °C over night and postfixed in 2 % (w/v) osmium tetroxide for 2 

hours at room temperature. The SPG-178 hydrogel was dehydrated using graded 

concentrations of ethanol. After dehydration, the hydrogel was embedded in Spurr resin 

(Polysciences, Warrington, PA, USA). Ultrathin sections (60-90 nm) were cut with a 

Leica EM UC6 ultramicrotome (Leica, Vienna, Austria) and stained with uranyl acetate 



and lead citrate. Visualization was performed using a Hitachi 7650 electron microscope 

(Hitachi, Tokyo, Japan), which was operated at 80 kV. 
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2.6. Rheology measurement 

The SPG-178 hydrogel, which contained 1.6 mM of the SPG-178 peptide was 

prepared as described in section 2.5. A 40 μl aliquot of the hydrogel was placed on the 

plate of a rheometer (AR1000, TA Instruments, New Castle, DE, USA). A 

20-mm-diameter, 1 ° aluminum cone with truncation at 24 μm was lowered so that the 

tip was 24 μm above the plate. A solvent trap was used to maintain a water-saturated 

atmosphere to prevent the evaporation of solvent during the measurement. The 

SPG-178 hydrogel was tested over a range of frequencies from 10 to 0.1 rad/s at 1.0 

μNm oscillatory torque to measure the storage modulus (G′, the elastic response) and 

the loss modulus (G′′, the viscous response) at 37 °C. As controls, a 2.4 mM SPG-178 

peptide solution and DMEM were tested in the same manner.  

 

2.7. Three-dimensional cell culture 

Murine C2C12 myoblasts (ECACC: 91031101) were obtained from the European 

Collection of Cell Cultures (DS Pharma Biomedical, Osaka, Japan). The C2C12 cells 

were cultured on a Petri dish and grown until 50 % confluence in DMEM supplemented 

with 10 % (v/v) FBS in 5 % CO2 at 37 °C. To start the three-dimensional cell culture, 

the cells were trypsinized and suspended in DMEM and then mixed with a 2.4 mM 

SPG-178 peptide solution at a volume ratio of 1:2. The final concentration of the cells 

and the peptide in the hydrogel were 2 × 106 cells/ml and 1.6 mM, respectively. A 60 μl 

aliquot of the hydrogel was added in the rectangular hole of the silicone foam sheet in 

the gel stretch chamber. For the cell proliferation assay, the same amount of the 



hydrogel was added to a 1.5 ml tube and stored at -80 °C (day 0 control). The chamber 

was filled with 3 ml of DMEM that was supplemented with 10 % FBS and incubated in 

5 % CO2 at 37 °C. The medium was replaced with 3 ml of fresh medium once every 2-3 

days.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

C18 

19 

20 

21 

22 

23 

24 

25 

 

2.8. Live and dead assay 

C2C12 cells were cultured in the SPG-178 hydrogel as described in section 2.7. On 

the 8th day of incubation, the medium was changed to DMEM. Calcein (calcein-AM, 

Dojindo, Kumamoto, Japan) and 4,6-diamidino-2-phenylindole, dihydrochloride 

(DAPI, Dojindo) were add to the gel stretch chamber at a final concentrations of 10 μM 

to stain the nuclei of live and dead or injured cells. After 30 minutes of incubation in 

5 % CO2 at 37 °C, the stained cells that were located approximately 500 μm above the 

bottom of the hydrogel were observed on a confocal laser scanning microscopy system 

(ex/em=405/460 nm for DAPI and 488/515 nm for calcein, FV-1000, Olympus, Tokyo, 

Japan). 

 

2.9. Cell proliferation assay 

2C12 cell proliferation in the SPG-178 hydrogel was measured with a CyQUANT 

Cell Proliferation Assay Kit (C7026, Molecular Probes, Eugene, OR, USA) with small 

modifications to the manufacturer’s protocol. The hydrogels described in section 2.7 

were transferred from the gel stretch chamber to a 1.5 ml tube after 2, 4, 6, and 8 days of 

incubation and were stored at -80 °C for at least one hour before the assay. After 

collecting and storing all of the samples, the hydrogels, including the day 0 control 

described in section 2.7, were thawed and dispersed into 940 μl of Cell-Lysis Buffer 

(1X component B). Ten microliters of each dispersed gel solution were transferred to a 



well of a 96-well plate. Two hundred microliters of CyQUANT GR dye solution (a 

mixture of 1X component A and 1X component B) were added to each well and 

measured on a spectrofluorometer with the FLUO star OPTIMA software. The number 

of cells in the gel mixture was extrapolated from a standard curve that was generated 

with known amount of C2C12 cells over a range of 6 × 102 cells – 2.4 × 104 cells per 

well. 
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2.10. Stretching cells in the SPG-178 hydrogel 

C2C12 cells were cultured in the peptide gel as described in section 2.7, with the 

exception of changing the SPG-178 hydrogel volume from 60 μl to 90μl. The volume 

increase allowed for the deep intrusion of the hydrogel into the cavities of the silicone 

foam, which resulted in the prevention of the detachment of the hydrogel during the 

stretch. The gel stretch chamber was placed into a hand-control stretch device (STB-10, 

STREX). On the 5th day of incubation, the cells in the hydrogel were stained by adding 

calcein-AM in the chamber at a final concentration of 10 μM. After 30 minutes of 

incubation, the chamber was statically stretched by 20 %. The stained cells that were 

located approximately 500 μm above the bottom of the hydrogel were observed on the 

confocal laser scanning microscopy system FV-1000 before and after the stretch. 

 

2.11. Static stretch for ERK activation 

C2C12 cells were cultured in the peptide gel as described in section 2.10. On the 8th 

day of incubation, the medium was changed from DMEM that was supplemented with 

10 % FBS to a low serum differentiation medium (DMEM supplemented with 2 % 

[v/v] horse serum). After an additional 2 days of incubation, the gel stretch chamber 

was statically stretched by 10 % for 5 minutes in 5 % CO2 at 37 °C (Stretched sample; 25 



ST). Parallel sets of non-stretched C2C12 cells that were cultured in the SPG-178 

hydrogels in the gel stretch chamber were used as a control (

1 

Non-stretch control; NST). 

MEK1 inhibitor (PD98059, Cell Signaling Technology, Beverly, MA, USA) that was 

dissolved in DMSO was added to the gel stretch chamber as necessary to achieve a final 

concentration of 50 μM one hour before the stretch (

2 

3 

4 

Stretched sample with PD98059; 

STP). The control samples for the inhibitor were treated with the same volume of 

vehicle DMSO (

5 

6 

Stretched sample with DMSO; STD). After the completion of the 

stretch, the SPG-178 hydrogel was collected for Western Blotting. 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

2.12. Western Blotting 

The SPG-178 hydrogels were transferred to a 1.5 ml tube that contained 1 ml of 

ice-cold TBS with protease and phosphatase inhibitors (1 % [v/v], 78440, Thermo 

Fisher Scientific, Rockford, IL, USA) to remove any excess medium in and on the gel. 

The tube was centrifuged at 1,200 ×g (3,550 rpm) for 5 minutes at 4 °C, the supernatant 

was discarded, and 100 μl of RIPA lysis buffer (Thermo Fisher Scientific, Rockford, IL, 

USA) with the protease and phosphatase inhibitors were added. The cell lysate was 

sonicated for a total of 25 sec with a sonicator (BRANSON Digital Sonifier II, 

BRANSON, Danbury, CT, USA) to break down the gel fiber structure and was cleared 

at 21,500 ×g (15,000 rpm) for 45 minutes at 4 °C. The supernatants were transferred 

into new tubes and quantified using the BCA protein assay kit (Piece, Rockford, IL, 

USA). Approximately 25 μg of protein were loaded in a 10 % SDS polyacrylamide gel 

(SDS–PAGE) and transferred to an Immobilon-P transfer membrane (Millipore, 

Bedford, MA, USA). The membrane was blocked in 10 % Blocking One (Nacalai 

Tesque, Kyoto, Japan) in TBS and incubated with primary antibodies: anti-ERK (4695, 

1:1,000, Cell Signaling Technology), and anti-Phosphorylated ERK (Thr202/Tyr204; 



4370, 1:1,000, Cell Signaling Technology). The blots were developed by 

chemiluminescence using LumiGLO (Cell Signaling Technology) to quantify the 

relative intensities (RI) and a tetramethylbenzine (TMB) solution (EzWestBlue, Atto, 

Tokyo, Japan) to show a representative blot. 
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3. Results 

 

3.1 ATR-FTIR 

The existence of a β-sheet structure within the hydrogel was supported by 

ATR-FTIR spectroscopy (Fig. 2A). The spectra showed predominant peaks at 1,616 

cm-1, which indicated the presence of aggregated β-sheets. The typical amide groups 

containing a β-sheet structure give rise to peaks ranging from 1,620 cm-1 to 1,640 cm-1. 

The small peak at 1,679 cm-1 suggested the presence of antiparallel β-sheets in the 

nanofiber structure of the SPG-178 hydrogel. In contrast, there was no peak regarding 

helical character (1,640-1,660 cm-1). Trace amounts of TFA accounted for the peak 

observed at 1,672 cm-1 in the spectrum. 

 

3.2. TEM 

The TEM image from the ultrathin layer of the SPG-178 hydrogel showed the 

nanofibers and the network structure in the hydrogel (Fig. 2B). The diameter of the 

nanofibers was estimated to be less than 10 nm, which corresponds to the calculated 

length of the SPG-178 peptide monomer in β-sheet form (Fig. 1A). Partial mesh 

structures that were formed by the nanofibers were observed. The mesh size was 

variable, reaching up to 500 nm.  
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3.3. Mechanical properties of the SPG-178 hydrogel 

Frequency sweep measurements of the SPG-178 hydrogel (1.6 mM) showed that the 

storage modulus (G′, the elastic response) and the loss modulus (G′′, the viscous 

response) values were relatively constant and that the G′ values were much greater than 

zero. In addition, the G′ values over the entire frequency range exceeded those of G′′. 

This result reflected the gel-like property of the SPG-178 hydrogel [26, 30]. In contrast, 

the G′ and G′′ values obtained from the measurement with the DMEM sample, used as a 

representative example of a liquid, were low and decreased in an oscillatory manner. 

The result from the measurement with a 2.4 mM SPG-178 peptide solution was 

relatively similar to that of the DMEM sample and demonstrated a liquid-like property 

[26, 30]. The G′ and G′′ values were very close at each oscillatory frequency.  

 

3.4. Live and dead, and cell proliferation assays. 

In the live and dead assay, the extended shapes of the C2C12 cells that were stained 

with calcein and a certain number of the nuclei stained with DAPI were observed in the 

SPG-178 hydrogel (Fig. 4A-C). Whereas the live/dead cell ratio of the observed area 

was lower than that of the surface area of the hydrogel (data not shown), the extended 

cells clearly showed that the hydrogel provided a suitable interface for the cells to 

adhere and survive. C2C12 cell proliferation in the SPG-178 peptide hydrogel scaffold 

was monitored by conducting DNA analysis for up to 8 days. As shown in Fig. 4D, the 

C2C12 cells proliferated gradually through 8 days of culture. Based on the measured 

DNA content, the estimated number of C2C12 cells in the hydrogel had increased by 

12.4 ± 1.5 (mean ± SEM, n=4) times by the end of the incubation period.     

 



3.5. Stretching cells in the SPG-178 hydrogel  1 
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The elongation of C2C12 cells in the SPG-178 hydrogel was observed as the gel 

stretch chamber was stretched by 20 % with the hand-control stretch device STB-10 

(Fig. 5). The distance between the asterisks was 260 μm before the stretch (Fig. 5A) and 

310 μm after the stretch (Fig. 5B). The calculated ratio of the increased in distance was 

19 %, which corresponded to the stretch ratio of the gel stretch chamber. The successful 

cell stretch in the hydrogel indicated the deep intrusion of the SPG-178 hydrogel into 

the cavities of the silicone foam; therefore, the hydrogel was able to transmit the 

mechanical stress to the cells that were incorporated into the hydrogel. This result 

proved the usability of the stretch system for three-dimensionally cultured cells that 

consisted of the SPG-178 hydrogel, the gel stretch chamber, and the hand-control 

stretch device STB-10. 

 

3.6. ERK phosphorylation by mechanical stimulation.  

Western blot analysis revealed that ERK in the three-dimensionally cultured C2C12 

was activated by a static stretch (Fig. 6). The degree of the ERK phosphorylation was 

increased by 2.8 ± 0.2 (mean ± SEM, n=15) times by the 5-minute stretch (ST) 

compared to the untreated control basal value (NST: 1.0 ± 0.1, mean ± SEM, n=8). The 

addition of 50 μM PD98059 completely inhibited the stretch-induced phosphorylation 

of ERK (STP), whereas the addition of DMSO, a solvent of PD98059, did not 

significantly affect the ERK phosphorylation (STD). The degree of the ERK 

phosphorylation was 0.6 ± 0.1 (mean ± SEM, n=8) in STP and 2.3 ± 0.3 (mean ± SEM, 

n=7) in STD. The blocking effect of the PD98059 emphasized the effect of the brief 

stretch on the ERK phosphorylation in three-dimensionally cultured cells. No change in 

the total ERK protein concentration was observed in any sample.  
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4. Discussion  

In previous studies, self-assembling peptides with a total net charge of +2 have been 

reported to successfully form a hydrogel at pH=7.4 [26, 31]. The SPG-178 peptide 

solution (2.4 mM) is transparent and able to form a stable hydrogel at neutral pH when 

it is triggered by an increase in salt concentration (Fig. 1B). The stability of the peptide 

solution/hydrogel at neutral pH contributes to the biocompatibility of the scaffold and 

provides an additional benefit for the sterilization procedure. In fact, the SPG-178 

solution at neutral pH can be sterilized with an autoclave. Insignificant degradation of 

the SPG-178 peptide was detected with MALDI-TOFF MASS (see Fig. S1 and S2), 

and no change in the gelation behavior was caused by autoclaving. In contrast, collagen 

scaffolds require relatively complicated procedures and expensive equipment, such as 

ethylene oxide gas treatment and γ-irradiation due to thermal denaturation [32]. The 

decomposition of the conventional self-assembling peptide RADA-16 provided with 

low pH (Puramatrix, Becton Dickinson, CA, USA) by autoclaving was confirmed by 

MALDI-TOFF MASS (see Fig. S3 and S4)  

In the structural studies, the ATR-FTIR spectra shown in Fig. 2A indicated the 

presence of considerable anti-parallel β-sheet content with no or negligible helical 

component in the SPG-178 hydrogel, as has been observed for conventional 

self-assembling peptides [16]. The TEM image from the ultrathin layer of the SPG178 

hydrogel demonstrated the nanofiber structure of the self-assembled peptide with a 

diameter of less than 10 nm. Taken together, the gelation process of the SPG-178 

peptide was confirmed to correspond with the molecular models shown in Fig. 1. The 

partial mesh structure that was formed by the peptide nanofibers was observed in the 



TEM image. Some of the other nanofibers that seemed too short to form the mesh 

structure were considered to have been cut in the procedure for preparing the ultrathin 

layer. The average length of the nanofiber was difficult to be estimated from the image 

for the same reason. However, the mesh size (approximately 500 nm) of the SPG-178 

hydrogel was considered to be much smaller than the size of the cells (approximately 10 

μm). Since, the SPG-178 peptide nanofibers are not chemically cross-linked, the mesh 

structure of the hydrogel can easily change. Thus, the pore size of the hydrogel is 

considered to widen and be rebuilt as cells in the hydrogel infiltrate or ingrow.  
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The gel-like property of the SPG-178 hydrogel was demonstrated with the rheology 

measurement. Both the storage modulus, G′, and the loss modulus, G′′, of the hydrogel 

were relatively low compared to other self-assembling peptides [33]. This can be 

explained by the lower concentration of the SPG-178 in the hydrogel (0.27 % [w/v]) 

compared to the other approximately 2 % (w/v) hydrogels. The low mechanical 

strength of the SPG-178 hydrogel contributes to the homogeneous distribution of the 

cells in the mixing process at the beginning of the cell culture. Next, the further increase 

in the salt concentration during the immersion of the SPG-178 hydrogel into the cell 

culture medium will enhance the gelation to increase the mechanical strength of the 

hydrogel.  

In the live and dead assay, the extended shapes of the C2C12 cells were observed in 

the SPG-178 hydrogel, which indicated tight cell adhesion onto the peptide nanofiber. 

In addition, the DNA content measurement revealed that the three-dimensionally 

cultured C2C12 cells proliferated successfully during the incubation. These results 

indicate that the SPG-178 hydrogel is suitable as a scaffold. According to the mesh size 

(approximately 500 nm) of the SPG-178 observed by TEM, the cells must be suspended 

in the three-dimensional nanofiber network of the SPG-178 hydrogel. The charged 



amino acid residues within the peptide nanofiber, especially the positively charged 

arginine residues, are considered to support cell adhesion at the beginning of the culture 

[34, 35]. The serum proteins in the cell culture medium may also attach to the peptide 

nanofiber and help the cell adhesion [36]. Furthermore, there are studies introducing a 

cell adhesion motif such as RGD in self-assembling peptide hydrogels to improve cell 

adhesion and survival ratios [37, 38]. These techniques might also be useful for the 

SPG-178 hydrogel. In other studies using rat skeletal muscle cell (L6) and human 

chondrosarcoma cells (OUMS-27), accumulated type-I collagen and aggrecan in the 

SPG-178 hydrogel were observed, respectively (unpublished data). These secreted and 

accumulated ECM components in the hydrogel are expected to contribute to the cell 

proliferation and migration. Further research is needed to understand the detailed 

mechanism of cell adhesion, extension, and migration in SPG-178 hydrogels. 
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The confocal microscope observations showed the elongation of the cells and the 

increased distance between the cells as the peptide gel was stretched. These results 

proved that the peptide gel scaffold was “stretchable” and capable of transmitting the 

mechanical stimulation to the inner cells. The plasma-treated hydrophilic surface of the 

silicone foam sheet and the low mechanical strength (low viscosity) of the SPG-178 

hydrogel facilitated the deep infiltration of the hydrogel into the cavities of the silicone 

foam. Thus, the expanded area of contact between the silicone foam sheet and the 

hydrogel produced a friction force that was great enough to stretch the hydrogel without 

slipping. Consequently, the stretch system that consisted of the SPG-178 hydrogel, the 

gel stretch chamber, and the hand-control stretching device STB-10 was confirmed to 

be usable for the stretching of three-dimensionally cultured cells. 

Stretch-induced ERK phosphorylation have been previously shown in many papers 

including studies in the two-dimensional cell culture of C2C12 cells [39, 40], fibroblast 



cells [41-43], human keratinocytes [44], and whole rat skeletal muscle stretching [45]. 

In these studies, the peak time of the ERK phosphorylation varied because of the 

different cell cultures and stretch systems. However, generally, the ERK 

phosphorylation started in the early stage of the stretch induction in these studies. In our 

study, the ERK in the C2C12 cells were also activated quickly by stretching in the 

SPG-178 hydrogel. The transmission of the mechanical stimulation was supported by 

the friction force between the gel stretch chamber and the SPG-178 hydrogel and the 

cell adhesion to the peptide nanofiber network. The gel stretch chamber can be 

incorporated in an automatic stretch system suitable for cyclical stretching or a 

long-term stretching experiment to investigate the cellular response to mechanical 

stress in three-dimensional cell culture. 
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5. Conclusions 

Mechanical stimulation is now widely incorporated into three-dimensional cell culture 

systems for tissue engineering. We studied the biocompatibility and the ability to 

transmit mechanical stimulation of a self-assembling peptide hydrogel. The 

self-assembling peptide SPG-178 was 100 % chemically synthesized and was 

confirmed to form an anti-parallel β-sheet structure in aqueous solution. The peptide 

self-assembled to form a nanofiber with a diameter of less than 10 nm, which further 

formed a hydrogel. The results of the three-dimensional cell culture clarified that the 

developed self-assembling peptide gel was non-cytotoxic. Western Blot analysis 

demonstrated the rapid phosphorylation of ERK induced by the static stretching of the 

hydrogel. These results indicated that the self-assembling peptide hydrogel was a 

suitable tool for the investigation of the effect of mechanical stress on 



three-dimensional cell culture. Additional studies are needed for a better understanding 

of the contribution from the secreted ECM component. 
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Figure Captions 

 

Figure 1 

The self-assembling peptide SPG-178 hydrogel scaffold. (A) A molecular model of 

SPG-178, the dimensions of which are 47.5 ×12.8 ×3.1 Å. For the representation, Facio 

was used: cyan, carbon; red, oxygen; blue, nitrogen; white, hydrogen. (B) A schematic 

diagram of the formation of the hydrogel from the peptide monomer. 

 

Figure 2 

The structural properties of SPG-178. (A) ATR-FTIR spectra of the SPG-178 peptide 

solution. (B) A TEM image of the peptide nanofibers in the hydrogel. The scale bar is 

200 nm.  

 

Figure 3 

The mechanical properties of the SPG-178 hydrogel. (●) SPG-178 hydrogel 0.27 % 

(w/v) G’, (○) SPG-178 hydrogel 0.27 % (w/v) G’’, (▲) SPG-178 solution 0.4 % (w/v) 

G’, (∆) SPG-178 solution 0.4 % (w/v) G’’, (■) DMEM G’, (□) DMEM G’’. Bars 

represent the mean ± SEM. (n=3)  

 

Figure 4 

Live and dead assay and cell proliferation assay. C2C12 cells in a SPG-178 hydrogel 

were stained with A) DAPI and B) calcein. The merged image is shown in (C). The 

proliferation of the C2C12 cells in the peptide gel was estimated by measuring DNA 

content (D). Scale bar shown in (A) is 50 μm. Bars represent mean ± SEM. (n=4) 

 



Figure 5 

C2C12 cells in the peptide gel stained with calcein-AM (A) before and (B) after the 

stretch (20 %) in the stretch chamber. The intercellular distance between the asterisks 

was 260 μm before the stretch and 310 μm after the stretch. 

 

Figure 6 

Western Blot analysis. A representative blot of phosphorylated ERK (p-ERK1/2) and 

total ERK (ERK1/2) showed an increased intensity in labeling of phosphospecific ERK 

antibody following the stretch, and the effect of the MEK inhibitor PD98059. Bars 

represent mean ± SEM (n=8 (NST), 15 (ST), 7 (STD), 8(STP)) 
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Supplementary Data 

Peptide Synthesis 

Peptide SPG178 was manually synthesized by a standard solid phase method using 

9-fluorenylmethoxycarbonyl (Fmoc) chemistry on a KMS-3 peptide synthesizer 

(Kokusan chemical Co. Ltd., Tokyo, Japan). Fmoc-protected amino acids 

(Fmoc-Arg[Pbf], Fmoc-Ala·H2O, Fmoc-Leu, Fmoc-Asp[OBut]) were purchased from 

the Peptide Institute, Inc. (Osaka, Japan). The peptide was prepared on 

CLEARTM-amide resin (Peptide Institute) in dimethylformamide (DMF, 

Sigma-Aldrich Japan, Tokyo, Japan) via 1-hydroxybenzotriazole 

hydrate/N,N'-diisopropylcarbodiimide (Watanabe Chemical Industries, Ltd., 

Hiroshima, Japan) activation. The Fmoc protecting group was deprotected by 20 % 

piperidine (Watanabe Chemical Industries, Ltd.) in DMF. To protect the N-terminal of 

the peptides by an acetyl group, 10 equimolar amounts of acetic anhydride (Nacalai 

Tesque) were reacted for 2 hours in DMF. To cleave the peptide from the solid support, 

it was treated in a mixture of trifluoroacetic acid (TFA, WAKO), 1,2-ethanedithiol 

(Tokyo Chemical Industry, Ltd., Japan), thioanisole (Tokyo Chemical Industry, Ltd.), 

triisopropylsilane (Watanabe Chemical Industries, Ltd.), and Milli-Q water (Millipore) 

in a ratio of 82:6:6:3:3 for 3 hours at room temperature. The cleavage mixture was 

added into an excess amount of cold diethylether (WAKO), and the peptide was 

precipitated. The white precipitation was collected by centrifugation, washed with cold 

ether, and air dried. The peptide powder was dissolved in 5 mM hydrochloric acid 

(Nacalai Tesque) and freeze-dried. Further purification was not performed. 

 

 

 



Mass Spectroscopy 

The molecular weight of the peptide SPG178 and the Puramatrix was measured by 

matrix-assisted laser desorption ionization time-of-flight mass spectroscopy 

(MALDI-TOF-MS) using an Autoflex III (Bruker Daltonics, Bremen, Germany). The 

peptide was dissolved in a 0.1 % TFA aqueous solution at a concentration of 0.1 %, and 

α-cyano-4-hydroxycinnamic acid (WAKO) was dissolved in 0.1 % TFA/acetonitrile 

(WAKO) (1:1) at a concentration of 1 %. A mixture of 1 μL of peptide solution and 1 μL 

of matrix solution was placed on a MTP 384 target plate ground steel T F (Bruker 

Daltonics) and air dried. The mass spectra were recorded in positive ion mode and the 

average mass was determined as [M+H]+. 

 



Supplementary Data Figure Captions 

 

Figure S1 

MALDI-TOF-MS spectrometry of the SPG178 peptide for the molecular weight 

measurement 

 

Figure S2 

MALDI-TOF-MS spectrometry of the SPG178 peptide after autoclaving 

 

Figure S3 

MALDI-TOF-MS spectrometry of Puramatrix before autoclaving 

 

Figure S4 

MALDI-TOF-MS spectrometry of Puramatrix after autoclaving 
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