brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

A Fault Injection Method for Generating Error-correction Exercises in
Algorithm Learning
Ryota Itoh', Hiroyuki Nagataki!,
Fukuhito Ooshita', Hirotsugu Kakugawa', Toshimitsu Masuzawa'

!Osaka University, 1-3, Machikaneyama-cho, Toyonaka, Osaka, Japan

ABSTRACT

In this paper we propose a method for generating error-
correction exercises for undergraduate students in com-
puter science who learn algorithms. Our main goal
is to inject faults automatically into a correct source
code that implements an algorithm to be studied. The
proposed method utilizes design paradigm of the algo-
rithm to determine effective fault types and positions in
a source code.

We have developed a prototype system and evaluated
the appropriateness of the generated exercises to algo-
rithm study. We carried out error-correction exercises
in an algorithm class, and most students evaluated that
the exercises are effective for algorithm study.

1 INTRODUCTION

Because the knowledge of algorithms is fundamental
in computer science[1], learning and practicing algo-
rithms are important issues. In many algorithm classes,
programming exercises are carried out. Teachers ex-
pect that the exercises help students to deepen their un-
derstandings of algorithms. For example, in an exercise
to implement an abstract algorithm in a form of con-
crete code, teachers expect students to fully understand
the algorithm to write a complete code. However, for
the exercises of writing a code from scratch, students
are often bothered by syntax errors and waste time, and
students have less chance to concentrate their efforts to
understand the algorithm[2].

To prevent the obstacle, we focused on the learning
methodology known as learning from mistakes. This
is a learning process of a student by recognizing the
difference between his/her wrong answer and a cor-
rect one, and by correcting mistakes of his/her answer.
Inspired by the learning process, we introduce error-
correction exercises for algorithm learning. The outline
of the exercises is as follows: (1) A teacher presents a
source code that implements an algorithm to study de-
spite it contains some faults. (2) Students must find all
the faults in the presented code, and must explain why
it is wrong, and (3) Students must fix the wrong code.
Because students have no need to write a source code
from scratch in the error-correction exercises, they are
not bothered with syntax detail of a programming lan-
guage. Moreover, an answer of a student has only a
small difference from a source code presented to stu-

dents, a teacher spends only little time to check the
answer. In contrast with it, for an exercise that each
student writes a complete source code from scratch, a
teacher must spend much time to check the answer.
Our primary goal is to develop a fault injector program
which automatically injects faults into a correct source
code that implements an algorithm to be studied, and
faults injected in a source code must be effective for
students to understand the algorithm. To this end, the
concept of algorithm design paradigm (e.g., divide-
and-conquer, greedy, dynamic-programming, etc.) is
used in the fault injector program to help to determine
fault types and positions in a source code.

2 RELATED WORKS

Related works on learning support systems for algo-
rithms, such as RAPTOR[2] and SFC[3] are proposed
as educational support tools for algorithm develop-
ment. These systems provide visual programming en-
vironments for learning, and learners are not bothered
by syntax of a programming language. Although such
approaches seem friendly for learners, learners must
learn native notation for programming. On the other
hand, in our system, learners use standard program-
ming languages such as C that they are familiar with.
As another related works based on learning from mis-
takes, learning systems for algorithm design[4] and
computer programming[5] are proposed. In the sys-
tems, learning process is based on mistakes by learners
themselves. However, our method presents a source
code with faults to learners and the faults are injected
on purpose, learning process of which may not be the
same exactly. However, its learning process is essen-
tially the same because learners recognize difference
between correct and wrong answers, and fix the wrong
answers. Therefore, our approach is expected to have
essentially the same effect as the approach based on
learning from mistakes.

As related approach for automatic generation of exer-
cises, a system to generate fill-the-blank exercises for
source code is proposed in [6]. In fill-the-blank ex-
ercises, learners immediately know where they should
focus to consider in a source code because blanks are
presented. On the other hand, in our approach, learn-
ers must read whole the source code carefully to find
faults. For students to answer why a presented source

200

https://core.ac.uk/display/12544033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

code with faults is wrong, they must be aware of cor-
rectness of algorithms. On the other hand, in fill-the-
blank exercises, learners can answer by simply writing
a part of source code what they remember without un-
derstanding correctness of algorithms.

3 ERROR-CORRECTION EXERCISES

3.1 Appropriate Faults for Exercises

The faults injected in a source code must be appropriate
for students to understand the algorithm to be studied.
We consider that a fault is an appropriate fault for ex-
ercises if it satisfies both two conditions. (1) A source
code that includes the fault causes error on runtime,
such as it computes wrong results, array index is out
of range, and it goes into an infinite loop, (2) The fault
is difficult to find and fix without full understanding of
the algorithm.

The above definition is to exclude faults that are not
important to understand essentials of algorithms. For
example, trivial syntax errors are excluded. Although
understanding syntax and semantics of a programming
language is important to implement algorithms, it is not
an aim of learning algorithm itself.

3.2 Automatic generation of
correction exercises

To create an error-correction exercise manually, a
teacher must prepare a complete source code that im-
plements an algorithm to teach, and inject some faults
into the source code. This process is time consum-
ing because he/she must carefully consider and check
whether the faults to be injected are appropriate faults
for exercises or not for the algorithm to teach.

To reduce the workload of a teacher, the system pro-
posed in this paper aims to automatically generate
error-correction exercises with appropriate faults.

It makes easy to generate many exercise problems from
(1) a single source code or (2) some source codes of dif-
ferent implementation of the same algorithm. Because
many exercise problems can be generated, a teacher can
assign different problems for each student so that the
difficulty of the problem matches him/her, and it is also
effective to prevent cheating, for example.

€rror-

4 AUTOMATIC FAULT INJECTION

In this section we present our method to inject faults
into source code automatically. Our method consists of
the following steps: (1) decide a point to inject faults,
which we call fault-position, in a source code, (2) re-
place the code fragment in the fault position with faulty
one that is appropriate for error-correction exercises.

4.1 Decision of Fault Positions

Because what fault is appropriate for exercises is dif-
ferent for each algorithm, our method should deter-

1 #define N 10

2 int a[N] = { RANDOM N };

5 /* each element is a random integer from 0 to N */
4

5 wvoid merge(int 1[], int r[], int all,

6 int llen, int rlen, int len) {

7 /* snip */

8 /* merge two sorted arrays l[llen] and r[rlen] */
9 /* to make an array al[len] (len = llen+rlen) */
10 }

11

12 void mergeSort (int a[], int len) {

13 int i;

14 int mid;

15 int left[len], right[len];

16 if (Ien > 1){ B
17 mid = len / 2; /
18 for (i=0;i<mid;i++) [Teft[i]=a[i];]

19D for (i=0;i<len-mid;i++) [right[i]=a[mid+i];]
20 mergeSort (left, mid); A

21 mergeSort (right, len-mid);

22 merge (left, right, a,mid, len-mid, len) ;

23 }

24 1}

25

26 int main () { C

27 mergeSort (a, N);

28 }

Figure 1: Example: mergesort

mine fault positions depending on which algorithm is
used in a source code. However, it is difficult to iden-
tify an algorithm used in a source code automatically.
To solve this problem, we use the algorithm design
paradigm the algorithm is based on. Algorithm design
paradigm, we call it simply paradigm, is a framework
of algorithm structure, such as divide-and-conquer and
dynamic programming. Most algorithms are based on
one or more paradigms. In this paper four paradigms,
divide-and-conquer, recursion, dynamic programming
and greedy method are considered. To determine fault
positions, paradigm type is given in addition to a source
code. Below, we describe fault-positions and faults that
are appropriate for exercises for each paradigm.
Paradigm 1: Divide-and-Conquer Divide-and-
Conquer is the paradigm to solve a problem by dividing
it into two or more independent smaller sub problems,
solving them recursively, and combining the solutions
of them to construct a solution of the original problem.
Structure of the program is as follows: (1) [solve]: If
the problem is small enough, solve it directly. (2): If
the problem is not small enough, (2-1) [divide]: Di-
vide the problem into sub problems. (2-2) [recur-
sion]: Solve sub problems recursively. (2-3) [com-
bine]: Combine the solutions.

As fault positions of algorithms in this paradigm, the
followings are adopted: (a) Statements or expressions
for recursive calls, (b) Statements that update variables
which are used as arguments of recursive calls, (c)
Function-calls or return statements which appear af-
ter recursive calls, and (d) Conditional statements that
checks the size of a problem. (a) corresponds to divide,
(b) to divide and recursion, (c) to combine and (d) to
solve.

Figure 1 is a sample source code which implements
mergesort algorithm based on the divide-and-conquer

201

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

paradigm. In the source code, A,B,C and D are selected
as the fault-positions: two recursive-calls in A, state-
ments in which variables used as augments of recursive
call (left, right, mid) are updated in B, a function call
which comes after recursive-call in C, and a conditional
statement which checks the size of the problem in D.

Paradigm 2: Recursion In an algorithm based on
Recursion paradigm, recursive call is an important
point in execution. As fault positions of algorithms in
this paradigm, the followings are adopted: (a) State-
ments or expressions for recursive calls, (b) Statements
that update variables which are used as arguments of
recursive calls, and (c) Conditional statements for re-
cursive calls.

Paradigm 3: Dynamic Programming Although
Dynamic Programming paradigm is similar to Divide-
and-Congquer, in Dynamic Programming, a table is used
for solutions of sub problems.

In a source code based on this paradigm, a variable
for the table (table variable) is important for executing
the program. As fault positions of algorithms in this
paradigm, the followings are adopted: (a) Assignment
statements to the table variable, (b) Statements that up-
date variables which appear in (a), and (c) Conditional
statements to execute (a).

Paradigm 4: Greedy method Greedy method is the
paradigm to obtain an optimal solution by iterating
the best choice at each iteration step. As fault posi-
tions of algorithms in this paradigm, the followings are
adopted: (a) Assignment statements which appear in
the iteration, whose execution are controlled by condi-
tional statements. (b) Statements that update variables
which appear in (a), and (c) Condition statements to
execute (a).

Paradigm 5: Others Algorithms that are not based
on paradigms listed above are categorized into this
class. In a source code of such algorithms, conditional,
iteration and function call statements are candidates for
fault-positions.

4.2 Fault Injection

After deciding the fault-positions from a source code,
one or more positions are selected from the fault-
positions randomly, and faults are injected in the posi-
tions. To inject faults automatically, we adopt a syntax-
directed fault pattern injection scheme. By the syntax-
directed fault pattern injection, a code fragment that
corresponds to a subtree in a parse tree of a source code
is substituted with other code fragment. Table 1 shows
a set of rules for substitution.

However, injected faults based on the rules are not al-
ways appropriate faults for algorithm learning. So we
add some restrictions based on semantics so that in-
jected faults should be appropriate ones.

Table 1: Rules for syntax-directed fault pattern injec-
tion

Syntax of fault position
integer constant c

Fault pattern to inject
integer constant 0, c+1, c—1
concatenate +1 or —1;
another variable
another operator
another operator
delete a term

integer variable

arithmetic operator
logical operator
arithmetic expression

(e.g.,A + B) (e.g., B)
logical expression delete a term
(e.g.,A && B) (e.g., B)
function call delete
conditional statement delete conditional part
(e.g.,if (S) A else B) | (e.g,Rd)

Source code

(C language) \\ Lexical analyzer

&
- __— Parser
Intermidiate
1. Paradigm type code
2. # faults to inject [Decision of

3. # exercises

fault positions
to generate

I

Source code Fault
with faults T injection
(C language)

Figure 2: System overview

a) Illegal or unnatural expressions A fault pattern
‘integer constant 0’ applied to division may yield an
expression 1/0, for example. But this is an obvious
error, and it does not lead students to algorithm learn-
ing. So such a fault is not injected.

Expressions such as i «1 or 1 +0 are not injected either.
Such expressions are unnatural so that learners can find
fault positions intuitively. So they are not appropriate
for algorithm learning.

b) Syntax errors A fault pattern ‘another variable’
may yield an expression that referrer can be undefined
variable or assignment of different type of value. Such
errors are not appropriate for algorithm learning itself.
So the variable is changed from 1 to j if j satisfies all
of the following conditions: (1) 1 and j appear in the
same scope, (2) variable types of 1 and j are the same,
(3) an assignment statement of j to i, or comparison
of i and j exists in the source code.

S IMPLEMENTATION

We developed a prototype system of the proposed
method. The overview of the system is shown in Figure
2. A correct source code in C is given by a teacher to
the system with three parameters (1) a paradigm type,
(2) the number of faults to inject, and (3) the number

202

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

of source code files to generate. Parameter (3) specifies
the number of source code files to generate that contain
different faults. In the system, a correct source code is
parsed and translated into an intermediate code. An in-
termediate code is essentially a parse tree for a source
code file, and it is used in the process of syntax-directed
fault injection. Then, according to the given paradigm
type, fault positions are decided in a source code file.
Finally, faults are injected according to the rule set for
syntax-directed fault pattern injection as shown in Ta-
ble 1. Although our method assumes that a program-
ming language for a source code is a subset of C, it can
be applied to other languages, such as Pascal and Java.
This system is developed on Windows XP (SP2). A
subsystem that translates a source code in C into an
intermediate code is written in C, about 1000 lines of
code. Subsystems for deciding fault positions and in-
jecting faults are written in Scheme, about 3600 lines
of code. GCC 3.4.4 is used for C compiler, Flex 2.5.4
and Bison 2.1 are used for lexical analyzer generator
and parser generator, respectively. SCM 5e2 is used
for Scheme interpreter.

6 EVALUATION

In this section we present evaluation results of the pro-
posed method based on comparison of automatically
generated faults and manually created ones.

Faults that are generated automatically is evaluated by
two measures, recall rate and precision rate.

6.1 Recall Rate

We presented seven source codes and asked six expe-
rienced persons to create three faults for each source
code. They created 125 faults in total. By eliminating
identical faults, we obtained 92 sample faults.

Recall rate, in this paper, is defined as 100|Y|/|X| (in
percent), where X is a set of faults that are created by
experienced persons, and Y is a set of faults in X which
can be generated by the system. If X =Y, recall rate
is 100%. Larger recall rate is better because the sys-
tem generates more faults that can be created by expe-
rienced persons.

Results for recall rates are shown in Table 2. We com-
puted two types of recall rates, named position-only re-
call rate and position & fault recall rate for sample
faults created by experienced persons. In computing
position-only recall rate, only fault positions are con-
sidered and injected faults are ignored. On the other
hand, in computing position & fault recall rate, both
fault positions and injected faults are considered. The
average of the position-only recall rate is 77.2%. This
result shows that our method properly decides positions
to inject faults. However, average of position & fault
recall rate is 51.1%, which means that half of faults
by our method are not created by experienced persons.

Table 2: Recall rate

Position-only Position & Fault
Recall Rate Recall Rate
Quicksort 50.0% 37.5%
Binary search 83.3% 58.3%
(recursion)
Binary search 92.9% 64.3%
(iteration)
Knapsack 83.3% 58.3%
problem
Partial sums 81.8% 455%
problem
Dijkstra’s 63.6% 45.5%
algorithm
Selection sort 87.5% 50.0%
[Average | 77.2% | 51.1% |

Table 3: Cross-review of manually-generated faults

#samples rated highly
by all by less
evaluators by4ors than 4
Quicksort 4 10 2
Binary s;arch 7 4 1
(recursion)
Binary search
(iteration) 7 6 !
Knapsack 3 3 1
problem
Partial sums 3 3 0
problem
Dljks.tra s 6 4 1
algorithm
Selection sort 6 7 3
Total 46(50.0%) 37(40.2%) 9 (9.8%)

These results seems that selection of faults to inject are
not proper despite our system finds appropriate posi-
tions in a source code where to inject faults. We further
analyze the results below.

We carried out a cross-review of 92 fault samples cre-
ated by experienced persons. We asked experienced
persons to evaluate all fault samples and to decide
whether each fault sample is appropriate for exercises
or not. Table 3 shows the result for this survey. For
example, in case of quicksort algorithm, 4 fault sam-
ples are rated highly by all 6 persons, 10 fault samples
by 4 or 5 persons, and 2 fault samples by less than 4
persons. This shows that each fault sample may not be
rated highly and equally by every persons. We classi-
fied fault samples by the number of persons who cre-
ated each of them. Fault samples classified as dupli-
cated samples are created by two or more persons, and
those classified as unique samples are created by only
one person. Table 4 shows that automatically generated
faults by our system occupy 71.4% of duplicated sam-
ples which was created by manually. On the other hand,
automatically generated faults occupy only 45.1% of
unique samples. This result implies that most of the
faults that are supported by many persons are generated
by our system.

203

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

Table 4: Recall rate of duplicated samples

Duplicated Unique
samples samples
#samples 21 71
Position-only recall rate 85.7% 74.6%
Position & fault recall rate 71.4% 45.1%
Table 5: Precision rate
#samples rated highly
by all by less
evaluators by 4or3 than 4
Quicksort 4 3 3
Binary s.earch 5 2 3
(recursion)
Binary search
(iteration) 3 2 3
Knapsack 7 3 0
problem
Partial sums 5 5 0
problem
D1]ks.tra s 6 4 0
algorithm
Selection sort 4 6 0
Total 36(51.4%) 25(35.7%) 9 (12.8%)

6.2 Precision Rate

We generated 10 faults for each of seven source codes,
which are the same code as used in the previous subsec-
tion. Then we asked the six experienced persons again
to evaluate whether each of generated faults is appro-
priate or not for exercises. We also asked each of them
to write a comment if he/she decides that a presented
fault is not appropriate for exercises.

Precision rate, in this paper, is defined as 100X |/|Y|
(in percent), where X is a set of faults in Y that are
rated highly by experienced persons, and Y is a set of
faults generated by the system. If Y = X, precision
rate is 100%. Larger precision rate is better because
the system generates less faults that are not appropriate
for exercises.

Result for precision rate is shown in Table 5. In to-
tal, 87.1% of faults generated by the system were rated
highly by at least four persons. Remarkably, None of
the faults were evaluated as useless for exercises by all
6 persons. This survey shows that our system properly
generates faults that are appropriate for exercises, and
it rarely generates useless faults for exercises.

Comments for faults that are marked as not appropri-
ate for exercises are classified into two categories be-
low: (a) Students can intuitively find the fault without
understanding the algorithm, and (b) Although the be-
havior of the presented code is different from that of
algorithm, computed result is correct by coincidence.
Based on the comments, we modified our system so
that it did not generate faults of such types. However,
we found that some instances of such faults appear to
be appropriate for exercises in other context. Context-
aware fault injection is left as a future research topic.

ID Name

Following source code in C implements 'selection sort'.
But it contains a fault.

(Q1) Find and Fix the fault.

1 for(k =n-1; k > 0; k--){

2 i=0;

3 m=k;

4 while (i < k){ (Q2) Explain why it is incorrect.
5 if (data[i] < data[m])

6 m=i

7 i=i+1;

8 3} . .

9 t = data[m]; (Q3) Explain outline of

'selection sort' algorithm.
10 data[m] = data[k];

11 datalk] = t;
12 }

Figure 3: An example of exercise

Table 6: Choice items for Q4

Choice 1 | The exercise deepened my knowledge
Choice 2 | My misunderstand was fixed by the exercise.
Choice 3 | I was confused by the exercise.

Choice 4 | The exercise didn’t deepen my knowledge
Choice 5 | Others

7 EXERCISE IN CLASSROOM

We carried out error-correcting exercises in an algo-
rithm class for sophomore students in computer science
of Osaka University. Students have taken Pascal and
C programming courses. Each exercise took 15 min-
utes long, in which students answered questions(Q1-
Q3) and questionnaire for the exercise(Q4, Q5).

For a given source code, students answered the follow-
ing questions: (Q1) Find and fix one or more faults,
(Q2) Explain why the source code is incorrect, (Q3)
Explain outline of the algorithm. Q3 has been included
in the 2nd exercise and later. Figure 3 shows an ex-
ample exercise used in Ist experiment. In Q4 students
selected one of options shown in Table 6. Choice 1 or
2 means they could get deeper understanding with the
exercise, and Choice 3 or 4 means the opposite. In Q5
students commented anything about the exercises.

We generated multiple questions for each exercise, and
randomly selected one was shown to each student. Ex-
ercises were generated by our prototype system, al-
though the 3rd exercises was generated manually. Al-
gorithm used in the 3rd experiment wasn’t based on any
of paradigm we have defined, and the system couldn’t
generate any fault pattern even with ‘other’ paradigm.
The statistics of exercises are shown in Table 7.

Table 8 shows the result of answers for Q4. In every
exercise over 75% of students selected Choice 1 or 2,
which means that most students think that the error-
correction exercise is effective for understanding algo-
rithm. Table 9 is the result of correct answers for Q1-
Q3 grouped by answer of Q4. ‘1 or 2’ is the group of
students answered Choice 1 or 2 for Q4, and ‘3 or 4’
is the group of students answered Choice 3 or 4. Only
the average rate of four experiments was shown for the
group ‘3 or 4’, because the number of students chose 3

204

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

Table 7: Statistics of exercises in class

Table 9: The percentage of questions answered cor-

Table 8: Distribution of #learners for Q4

Exp.1 | Exp.2 | Exp.3 | Exp.4
Choice 1 45 48 30 32
Choice 2 8 10 7 6
Choice 3 2 1 1 2
Choice 4 3 2 4 3
Choice 5 - 5 7 1

or 4 for Q4 were very few for every exercise. Among
the students chose 1 or 2 for Q4, over 30% of them re-
marked Q2 incorrect. On the other hand, over 20% of
the students choiced 3 or 4 for Q4 remarked Q2 cor-
rect. The result means that there are some students that
self-assesment and actual result of their own learning
skill are different. It is likely that feedback process is
important in the exercise, by which students recognize
their actual learning skill.

As the answers for Q5, 67 comments in total were gath-
ered in the four experiments. We classified the com-
ments into 7 groups, which is shown in Table 10. Most
of comments were positive, and students recognized
the purpose of the exercises which is to deepen their
knowledge of algorithm.

8 CONCLUSION

In this paper we proposed the method for generating
error-correction exercises automatically. This method
is to inject faults into a correct source code, by using
algorithm design paradigm to determine fault positions
and injecting faults by rules for syntax-directed fault
patterns, which is well-designed for the purpose of al-
gorithm education.

We evaluated our prototype system that implemented
our method, and confirmed that the faults generated by
the method were appropriate for exercises. We also
used the generated exercises in an algorithm class, and
most students evaluated that error-correction exercise
is effective to deepen their knowledge of algorithms.

References

[1] SIGCSE, “Computing curricula 2001,”
http://www.sigcse.org/cc2001/

Exp.1 Exp.2 Exp.3 | Exp.4 rectly for each learner group by Q4
Binary | Selection | Shell | Quick
search sort sort sort Choice for Q4
#students lor2 3ord
answered 72 73 69 67 Exp.1 Exp.2 | Exp.3 Exp.4 | Exp.1-4
1.02.03 #learners 53 58 37 38 18
Q1.Q2.Q Q1 69.8% | 93.1% | 75.7% | 80.0% 55.6%
#students Q2 67.9% | 69.0% | 54.1% | 84.2% | 27.8%
answered 58 66 49 44 (partially or
(%)
Q4,Q5 fully correct) 84.9% | 79.3% | 64.9% | 73.7% 44.4%
#samples of 6 3 3 3 Q3 - 759% | 67.6% | 68.4% 53.8%
source codes (partially or - 96.6% | 97.3% | 100% | 100%
fully correct)

Table 10: Comments for Q5

comment #comments
‘Understanding of the algorithm is 14
necessary to solve the question’
‘The exercises has opportunities to 9
read source-codes carefully’
‘It is interesting and like a game’ 10
Other positive comments 8
Negative comments 1
Suggestion about the exercise from 17
students’ point of view
Others 8

[2] M.C. Carlisle, T.A. Wilson, J.W. Humphries, and
S.M.Hadfield “RAPTOR: a visual programming
environment for teaching algorithmic problem
solving,” Proc. the 36th SIGCSE technical sym-
posium on Computer science education, pp.176-
180, Feb. 2005.

[3] T. Watts, “The SFC editor a graphical tool for
algorithm development,” Journal of Computing
Sciences in Colleges, Vol.20, No.2, pp.73-85,
Dec. 2004.

[4] D. Ginat, “The Greedy Trap and Learning from
Mistakes,” Proc. the 34th ACM Computer Sci-
ence Education Symposium - SIGCSE, ACM
Press, pp.11-15, Feb. 2003.

[5] K. Chiken, A. Hazeyama, Y. Miyadera, “A Pro-
gramming Learning Environment Focusing on
Failure Knowledge,” Proceedings of the Interna-

tional Conference on Computers in Education,
pp-1911-1920, 2004

[6] A. Kashihara, K. Kumei, K. Umeno, J. Toyoda,
“How to Make Fill-in-Blank Program Problems
and Its Evaluation,” Transactions of the Japanese
Society for Artificial Intelligence, Vol.16, No.4,
pp-384-391, 2001 (in Japanese).

205

