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The effects of Ir doping on the thermoelectric properties of Pt1–xIrxSb2 (x¼ 0, 0.01, 0.03, and 0.1)

with pyrite structure were studied. Measurements of electrical resistivity q, Seebeck coefficient S,

and thermal conductivity j were conducted. The results showed an abrupt change from

semiconducting behavior without Ir (x¼ 0) to metallic behavior at x¼ 0.01. The sample with

x¼ 0.01 exhibited large S and low q, resulting in a maximum power factor (S2=q) of 43 lW/cmK2

at 400 K. The peculiar “pudding mold”-type electronic band dispersion could explain the enhanced

thermoelectric properties in the metallic state. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4729789]

Thermoelectric materials are of considerable practical

interest because they could be used to generate electricity

directly from waste heat. A practical thermoelectric material

should have high efficiency, which is represented by the

dimensionless figure of merit ZT ¼ S2T=qj, where S, T, q,

and j are the Seebeck coefficient, absolute temperature, elec-

trical resistivity, and thermal conductivity, respectively. In

addition, the electric power that a thermoelectric material

can generate is characterized by the power factor PF¼ S2/q.

Thus, the goal for current research is the development of

materials that exhibit both a large Seebeck coefficient S and

low (metallic) electrical resistivity q.

However, most common materials exhibit a trade-off in

S and q. Specifically, a large Seebeck coefficient S is gener-

ally associated with semiconducting behavior due to the

large asymmetry in the velocity of charge carriers about the

chemical potential when the chemical potential is located

near the edge of the conduction or valence band. Moreover,

low electrical resistivity q (¼ 1=nel) is associated with me-

tallic behavior, due to the large carrier density n (i.e., large

Fermi surface) and/or large carrier mobility l. An increase in

n typically reduces the asymmetry in the velocity of charge

carriers about the chemical potential, causing a reduction in

S. Thus, typical metals exhibit a negligibly small S.

Recently, Kuroki and Arita theoretically showed that a

metal with a peculiarly shaped band, referred to as the

“pudding mold” type, which consists of a dispersive portion

and a flat portion, should exhibit enhanced thermoelectric

properties.1 When the chemical potential is located in the

dispersive portion but near the flat portion, large asymmetry

appears in the carrier velocity about the chemical potential,

yielding large S even for a metal with a large Fermi surface.

Subsequently, the existence of such a “pudding mold” band

was discovered in the thermoelectric oxide NaxCoO2 by

angle-resolved photoemission spectroscopy.2–4 As predicted,

NaxCoO2 exhibits large S (’100 lV/K) and low q
(’ 200 lX cm) at 300 K,5,6 which yields a large PF of

’ 50 lW/cmK2, comparable with that of a typical thermo-

electric material Bi2Te3 (PF’ 40 lW/cmK2).7 In addition,

the thermoelectric properties of NaxCoO2 are further

enhanced at elevated temperatures: ZT reaches a value of 1

at 800 K.8 In addition, enhanced thermoelectric properties

have also been observed in a number of cobalt oxides9,10 and

rhodium oxides,11,12 where the “pudding mold” type band is

also thought to play an important role.13,14

The title compound PtSb2 crystallize in a cubic pyrite

structure (space group Pa�3), which consists of edge-sheared

PtSb6 octahedra that are tilted to form diatomic molecules of

[Sb2]4�. The filled t2g orbital of Pt4þ (5d6 low-spin state) is

analogous to the Co3þ (3d6 low-spin state) of NaCoO2 and

accounts for the semiconducting nature of PtSb2. Interest-

ingly, band calculations for PtSb2 suggest the existence of a

“pudding mold” type valence band,15 suggesting that it may

also exhibit enhanced thermoelectric properties. In this letter,

we report the occurrence of a semiconductor-to-metal transi-

tion upon partial substitution of Ir for Pt in Pt1–xIrxSb2 at

x< 0.01. A large Seebeck coefficient emerges in the metallic

state of doped Pt1–xIrxSb2, resulting in a large PF of 43 lW/

cmK2 at 400 K. Here we discuss whether the presence of a

“pudding mold” type band is responsible for the enhanced

thermoelectric properties of Ir-doped PtSb2.

Polycrystalline samples of Pt1–xIrxSb2 with x¼ 0.0, 0.01,

0.03, and 0.1 were synthesized by a solid-state reaction in

two steps. First, stoichiometric amount of starting materials

Pt (99.99%), Ir (99.99%), and Sb (99.99%) were mixed and

ground. They were heated in an evacuated quartz tube at

1150 �C for 1 week. Then the product was powdered, pressed

into pellets, and sintered at 1000 �C for 10 h. The obtained

samples were characterized by powder x-ray diffraction

(XRD) and confirmed to be a single phase of Pt1–xIrxSb2.

Thermoelectric properties, namely, electrical resistivity q,

Seebeck coefficient S, and thermal conductivity j, were

measured using a Physical Property Measurement System

(PPMS, Quantum Design) in the temperature range from 2 to

300 K. High-temperature q and S were measured using a

thermoelectric measurement system (ZEM-3, ULVAC-

RIKO) in the temperature range from 320 to 800 K.a)Electronic mail: nohara@science.okayama-u.ac.jp.
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As shown in Fig. 1(a), non-doped PtSb2 exhibits semi-

conducting behavior, consistent with the previous reports.16

The finite value of q(¼0.35 X cm) in the T¼ 0 limit suggests

the presence of extrinsic charge carriers for the PtSb2 sam-

ple. Then, both the magnitude and temperature dependence

of q changed abruptly by Ir doping from semiconducting to

metallic. The q values on the order of 100 lX cm and the

positive temperature coefficient of q suggest that a metallic

state is realized for Pt1�xIrxSb2 (x¼ 0.01, 0.03, and 0.1). The

Seebeck coefficient S exhibits a positive value for all sam-

ples, as shown in Fig. 1(b), indicating that the majority of the

charge carriers are holes. The S value of the non-doped

PtSb2 exhibits a large maximum value of þ250 lV/K at

approximately 120 K, which is consistent with the literature

data.16 The temperature dependence of S is changed abruptly

by Ir doping. S increases with temperature over the wide

temperature range investigated in the present study for

Pt1�xIrxSb2 (x¼ 0.01, 0.03, and 0.1). The S value of the

x¼ 0.01 sample reaches a maximum of þ112 lV/K at

approximately 400 K. In this way, metallic q is compatible

with a large S for Pt1�xIrxSb2. The sample with x¼ 0.01

exhibited the highest PF value of 43 lW/cmK2 at approxi-

mately 400 K, as shown in Fig. 2(a). This value is compara-

ble to that for Bi2Te3 (40 lW/cmK2).7

Furthermore, we found that partial substitution of Sn for

Sb results in similar behaviors. Pt(Sb1�xSnx)2 with x¼ 0.01

exhibits metallic behavior as well as a large S, resulting in a

PF of ’20 lW/cmK2 at 300 K.

The origin of the enhanced PF of the Ir- and Sn-doped

PtSb2 is inferred from the previous band calculations.15 For

PtSb2, the calculations suggest that the valence band exhibits

very shallow maxima on h100i axes and a minimum at the C
point with an energy difference of 0.011 eV,15 which can be

viewed as the flat portion of the “pudding mold” type band.

Six hole pockets are expected on the h100i axes for very

slightly doped PtSb2 when the chemical potential lies

between the band maxima and minima, as have been

observed experimentally.17 The pockets would fuse into a

single (large) Fermi surface when the chemical potential is

lowered across the band minima upon further doping. Such a

topological change in the Fermi surface can be expected to

occur at a carrier density of nc¼ 3� 1019 cm�3 according to

the number of electronic states.15

For Pt1�xIrxSb2 with x¼ 0.01, we estimate the number

of charge carriers n to be 4.5� 1020 cm�3, which is larger

than nc, by assuming that one hole is introduced per Ir atom

because Ir has one less electron than Pt. Thus, the chemical

potential is expected to lie at the dispersive portion of the

band but not far below the flat portion. This results in a large

asymmetry in the velocity of charge carriers about the chem-

ical potential, which leads to a large S along with metallic

conductivity due to the large Fermi surface. Further studies,

such as photoemission spectroscopy, can be invaluable to

further elucidate the causes for these enhanced properties.

FIG. 1. Temperature dependence of (a) electrical resistivity qðTÞ, (b) See-

beck coefficient SðTÞ, and (c) thermal conductivity jðTÞ of polycrystalline

Pt1�xIrxSb2 with x¼ 0.0, 0.01, 0.03, and 0.1. The inset of (c) shows jðTÞ
data between 220 and 300 K.

FIG. 2. Temperature dependence of (a) power factor (PF) and (b) thermo-

electric dimensionless figure of merit ZT of polycrystalline Pt1�xIrxSb2 with

x¼ 0.0, 0.01, 0.03, and 0.1. We estimated ZT values at T> 320 K using a

value of j¼ 0.1 W/cmK at 300 K.
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Finally, we examine the thermoelectric efficiency of the

doped Pt1�xIrxSb2. As shown in Fig. 1(c), the j values

decrease dramatically with increasing Ir content x and con-

verge to j ’ 0:1 W=cmK at 300 K for the doped samples.

However, this value is approximately one order of magnitude

larger than that for Bi2Te3.7 This is the main reason for the

suppressed value of the dimensionless figure of merit

(ZT ¼ S2T=qj).

As shown in Fig. 2(b), the calculated dimensionless fig-

ure of merit ZT for the sample with x¼ 0.01 reaches a maxi-

mum of 0.17 at approximately 480 K. Here, we assumed that

j is independent of temperature at T> 300 K and used a

value of j ¼ 0:1 W=cmK at 300 K to estimate ZT at

T> 300 K. The sample shows a relatively high PF at approx-

imately 400 K, lending support for further investigation into

the present system to reduce thermal conductivity j and

enhance ZT.

We estimated the electronic thermal conductivity val-

ues, je, using the Wiedemann–Franz relation (je ¼ L0T=q,

where L0 is the Lorenz number 2.44� 10�8 WX/K2) from

the measured q values. We found that je ¼ 0:025 W=cmK

for Pt1�xIrxSb2 (x¼ 0.01) at 300 K. The j value at 300 K can

be then calculated as the sum of the electronic and lattice

components. This lattice part, jlattice ’ 0:075 W=cmK,

should be reduced further to realize improved thermoelectric

properties in Ir-doped PtSb2.

In summary, polycrystalline samples of Pt1�xIrxSb2 with

x¼ 0.0, 0.01, 0.03, and 0.1 were prepared, and their thermo-

electric properties were investigated at 2–800 K. The doped

samples exhibited metallic conductivity and a large Seebeck

coefficient, which resulted in an enhanced power factor of

approximately 43 lW/cmK2 at 400 K for Pt1�xIrxSb2 at

x¼ 0.01. The abrupt changes in q and S upon doping at

x< 0.01, together with the band calculation,15 suggests that a

“pudding mold” type band with shallow energy minima and

maxima is present in PtSb2 and plays an important role in

the observed metallic conductivity and large Seebeck coeffi-

cient, which are a key features for practical thermoelectric

materials.
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