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Public key cryptosystem has many uses, such as to sign digitally, to realize electronic commerce.
Especially, RSA public key cryptosystem has been the most widely used, but its key for ensuring
sufficient security reaches about 2000 bits long. On the other hand, elliptic curve cryptosystem(ECC)
has the same security level with about 7-fold smaller iength key. Accordingly, ECC has been received
much attention and implemented on various processors even with scarce computation resources.

In this paper, we deal with an elliptic curve which is defined over extension field Fp'c and has a
prime order, where p is the characteristic and c is a non negative integer. In order to realize a fast
software implementation of ECC adopting such an elliptic curve, a fast implementation method of
definition field Fp'c especially F". is proposed by using a technique called successive extension. First,
five fast implementation methods of base field Fl" are introduced. In each base field implementation,
calculation costs of Fp.-arithmetic operations are evaluated by counting the numbers of Fp-arithmetic
operations. Next, a successive extension method which adopts a polynomial basis and a binomial as
the modular polynomial is proposed with comparing to a conventional method. Finally, we choose
two prime numbers as the characteristic, and consider several implementations for definition field Fp8

by using five base fields and two successive extension methods. Then, one of these implementations
is especially selected and implemented on Toshiba 32-bit micro controller TMP94C251(20MHz) by
using C language. By evaluating calculation times with comparing to previous works, we conclude
that proposed method can achieve a fast implementation of ECC with a prime order.

I. INTRODUCTION

Recently, in the modem information-oriented society,
various equipments are connected to the internet as termi­
nals. In order to protect the equipments or some important
informations from evil internet users, information security
technology has played a key role. Especially, public key
cryptosystem has many uses, such as to sign digitally, to re­
alize electronic commerce[1]""[3]. RSA cryptosystem is one
of public-key cryptosystems and has been the most widely
used, but its key for ensuring sufficient security reaches
about 2000 bits long[4]. Therefore, it is not efficient to
implement RSA cryptosystem on a terminal with scarce
computation resources, such as IC card and 32-bit micro
controller. On the other hand, elliptic curve cryptosys­
tem(ECC)[5],[6] has the same security level with about 7­
fold smaller length key as compared to RSA cryptosystem.
Accordingly, ECC has been received much attention and
implemented on various processors[7],[8].

Elliptic curve adopted in ECC will be almost given by

E(x, y) = y2 - x3 - ax - b = O. (1)

fE-mail: {nogami.morlkawa}Ocne.okayama-u.ac.jp

In addition, coefficients a, b are elements in some fi­
nite field, which is called coefficient field, and the solu­
tions (x, y) to Eq.(1) are called rational points. The ratio­
nal points over an elliptic curve form an additive Abelian
group, and the security of the ECC relies upon the diffi­
culty of discrete logarithm problem on this group. This
problem is so-called elliptic curve discrete logarithm prob­
lem(ECDLP)[5]. Since the additive Abelian group plays a
role of key space in the ECC, the order of the group, that
is the number of rational points, must be a large prime or
divisible by a large prime for ensuring sufficient security.
In practice, such a large prime should be 160 bits long at
least [5]. Correspondingly, the order of its definition field,
in which the coordinates of the rational points lie, has to
be 160 bits at least[5]. Therefore, if a concerned processor
has only scarce computation resources, we should especially
pay attention to its software implementation so as to satisfy
the following two requirements:

• Encryption and decryption can be carried out within
comfortable processing time.
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• Programs can be implemented even on a processor
with scarce computation resources.

Previous works achieving these requirements can be classi­
fied into two subjects as follows[9],[1O]:

• Fast implementation method of definition field.
• Fast scalar multiplication method for rational points.

These requirements are not separately dealt with in these
previous works. And moreover, the former can be classi­
fied roughly into two types according to the definition field
whether a prime field or an extension field. In this pa­
per, fast implementation method using an extension field
as the definition field is discussed. Accordingly, this paper
belongs to the former subject.

In the ECC defined over extension field Fpm, where p is
the characteristic and m is the extension degree, the pair
of p and m has to satisfy mlogp ~ 160 in order to en­
sure its security[lO]. For example, we may adopt a 30 bits
long prime and 6 as p and m, respectively. It yields easy
implementation even on a terminal with scarce computllr­
tion resources. Specifically, if the definition field has fast
arithmetic operations, then the encryption/decryption will
be fast carried out. From such a background, the authors
have already proposed a method to generate an elliptic
curve which is defined over extension field Fp'c [11], has
a prime order, and can resist against Frey-Ruck(FR) at­
tack[12], where c is constant and elliptic curve with a prime
order is abbreviated to EPO throughout this paper. The
paper[12] does not take Weil Descent attack into account
since this attack can be applied to a certain ECC only in
the case of characteristic p = 2,3 at present[13],[14].

Based on these researches, this paper realizes a fast soft­
ware implementation of extension field Fp'c especially Fps
by using a technique called successive extension. By using
the extension field as the definition field of ECC in which an
EPO is adopted, scalar multiplication for rational points,
which is needed in the encryption/decryption processes, is
programed onto 32-bits micro controller. Then, it is shown
that our implementation can achieve a fast implementation
of such an ECC with a prime order.

By using successive extension, Fp• over Fp, Fp4 over Fp"
and Fps over Fp4 are successively constructed. In this pllr­
per, five fast implementation methods of Fp' are intro­
duced, where each implemented field is used as the base
field for the successive extension. And then, we evaluate
calculation costs of Fp.-arithmetic operations, such as mul­
tiplication, in each base field by counting the numbers of
Fp-arithmetic operations needed for the implementation of
Fp.-arithmetics. After that, the efficiency of each imple­
mentation is discussed from a view point of a fast imple­
mentation of the base field.

Next, an efficient successive extension method for a fast
implementation of the definition field is discussed. At first,
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a general extension of base field Fq to extension field Fq• , in
which a binomial and a polynomial basis are adopted as the
modular polynomial and the basis respectively, is shown
with comparing to a conventional method[lO], in which a
trinomial and a normal basis are adopted. In addition, cal­
culation costs of the arithmetic operations of implemented
Fq• are evaluated by counting the numbers of Fq-arithmetic
operations. After that, we discuss the efficiency of these
two extension methods for a fast implementation of the
definition field.

Finally, we choose two prime numbers as the character­
istic and then especially consider several definition fields
with using the preceding two successive extension meth­
ods and five base fields. For each definition field Fps,
calculation costs of Fps-arithmetic operations are evalu­
ated by counting the numbers of Fp-arithmetic operations.
Based on the evaluation, some definition fields that are es­
pecially expected to carry out their arithmetic operations
fast on generally-used processor are selected. After that,
those definition fields are explicitly implemented on Intel
Celeron(400MHz) processor by using C language, then cal­
culation times of those Fps-arithmetic operations are mellr­
sured. Based on the calculation times and also the pre­
ceding discussions, one definition field which is expected to
be the best for a fast implementation of ECC is selected
and then implemented on Toshiba 32-bit micro controller
TMP94C251(20MHz) by using C language, after that the
average of the calculation time of a scalar multiplication
is measured. Concludingly, by comparing these calcu1llr­
tion times to previous works, it is shown that our proposed
method can achieve a fast implementation of ECC with a
prime order.

Notations: Throughout this paper, capital letters and
not capital letters, such as "A" and " a It, denote elements
in extension field and its base field, respectively. In addi­
tion, p denotes a prime number, and Greek letters, such
as w, denotes a zero of irreducible polynomial. Abbrevi­
ations ADDm, SUBm, MULm, SQRm, FROm, and INVm
means addition, subtraction, multiplication, square opera­
tion, Frobenius mapping, and inversion in extension field
Fpm, respectively, in other words lower suffix denotes ex­
tension degree over a prime field Fp •

II. FUNDAMENTALS

In this section, we deal with fundamentals of elliptic
curve, elliptic curve cryptosystem(ECC), and extension
field with fast arithmetic.

A. Elliptic curve

A.l Coefficient field and definition field

An elliptic curve over finite field Fq is defined as the set
of solutions to the equation

E(x,y) = y2 - x3 - ax - b = 0, (2)
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(4)

(3a)

with a,b E Fq and char(Fq ) =I: 2,3. The notation char(Fq )

shows the characteristic of Fq and it must be a prime. The
solutions (x, y) to Eq.(2) are called Fq-rational points when
the coordinates of x and Y lie in Fq • Previous work[ll] has
dealt with elliptic curves that the coordinates lie in some
extension field but the coefficients a, b is contained in its
proper subfield. In order to describe the difference clearly,
we call the field in which a, b is contained coefficient field
and that in which coordinates lie definition field.

A.2 Group of rational points

For Fq-rational points P(Xl, YI), Q(X2' Y2) and defining
equation(2), addition P+Q = (xa, Ya) is defined as follows:

{
~:=~~ P=l:Q

),=
3x~+a

P=Q
2YI

xa = ),2 - Xl - X2, Ya = (Xl - xa», - Yl, (3b)

In the following, if P =Q this addition is especially called
EC doubling(ECD), and else EC addition(ECA).

The elliptic curve has exactly one point at infinity, which
is denoted by O. Together with the point 0, the set of Fq­

rational points forms an Abelian group under the additive
law of Eq.(3a),(3b). The point at infinity 0 plays a role of
identity element in this group. In this paper, the set of the
Fq-rational points together with 0 is denoted by E(Fq),
and the number of the rational points, which is refered to
as the order of elliptic curve, is denoted by #E(Fq). In
addition, order #E(Fq) can be calculated by using SEA
algorithm[5].

Now, let us consider how to discover a Fq-rational point
on the curve Eq.(2). At first, for a random element a E Fq ,

calculate the LHS of Eq.(4) with (3 = -E(a, 0).

(3~ - { 1 or 0 ; QPR
- -1 ; QPNR '

For a certain Fq-rational point P, we can calculate k times
of P by using a certain algorithm even if the order #E(Fq )

is very large, such as 160 bits. But, it is too hard to in­
versely calculate coefficient k from only the coordinates of
P and Q, this problem is ECDLP.

The calculation defined by Eq.(5) is usually refered to as
scalar multiplication, and ECC needs several scalar mul­
tiplications in the encryption/decryption processes[5]. In
addition, if order #E(Fq ) is very large, it is not efficient
to recursively calculate the scalar multiplication as seen in
the center of Eq.(5). In order to carry out scalar multi­
plication fast, some efficient methods has been proposed,
such as Binary method[5] , Sliding Window method[5] , and
Frobenius method[lO]. Non-Adjacent Form signed binary
method(NAF method) is one of such methods and adopted
in this paper[16].

B. Extension field with fast arithmetics

The length of encryption/decryption key in ECC, that is
the size of the order of an elliptic curve, can be roughly es­
timated from the order of the definition field[5]. For exam­
ple, let us consider an extension field Fp~ as its definition
field, order #E(Fp~) becomes about 160 bits when mlogp
is about 160. For fast software implementation of ECC, the
extension field must have fast arithmetics, such as multi­
plication and inversion in the extension field. As conven­
tional methods satisfying such requirement, optimal exten­
sion field(OEF)[17] and all-one polynomial field(AOPF)[9]
are well known. Table I shows possible extension degrees
of OEF and AOPF, respectively.

TABLE I

POSSIBLE EXTENSION DEGREES OF OEF AND AOPF

2 4 5 6 7 8 9 10 16

OEF 0 0 0 0 0 0 0 0 0
AOPF 0 0 x 0 x x x 0 0

where QPR and QPNR are abbreviations of quadratic
power residue and quadratic power non residue, respec­
tively. If (3 is a QPR, then calculate its square roots±~ E
Fq by using the algorithm[15], and both of (a, ±~) be­
come Fq-rational points.

.'
(

A.3 Elliptic curve cryptosystem(ECC)

Elliptic curve cryptosystem[5] is based on the difficulty
of elliptic curve discrete logarithm probrem(ECDLP) in the
additive Abelian group which is introduced in the previous
subsection. ECDLP can be easily understood by using the
following equation,

Q= P+P+ .. ·+P =kP.
'---....-----"

k times

(5)

0·· ,posslble, x·· 'ImpossIble

In these fields, we restrict their characteristic and the
modular polynomial as follows.

1. Characteristic p is a pseudo Mersenne prime of com­
puter's word size, where we call a prime in the form of
2" ± c (log2 C ~ n/2) pseudo Mersenne prime.

2. Modular polynomial is an irreducible binomial(OEF)
or an irreducible all-one polynomial(AOPF).

III. FAST IMPLEMENTATION OF Fp'

For a fast software implementation of ECC which is de­
fined over extension field Fpm, we should choose its charac­
teristic p and entension degree m versus to the processor's
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word size as seen in Table II, in which p and m should
satisfy mlogp ~ 160. In addition, since this paper adopts

TABLE II

CHA.RACTERISTIC AND EXTENSION DEGREE VERSUS TO PROCESSOR'S

WORD SIZE

word size[bits] characteristic[bits] extension degree

8 4~8 20 ~40
16 1O~ 16 10 ~ 16
32 20~ 32 5~8

64 40 ~ 64 3,4

EPO generation algorithm[ll], we must restrict the exten­
sion degree to a certain power of 2. And moreover, since
we deal with an implementation on a 32-bit micro proces­
sor, it is desirable that the length of characteristic p is less
than 32 bits. Under these conditions, a case that extension
degree m equals to 8 is especailly suitable. In this paper,
a technique called successive extension[18] is introduced in
order to realize a fast implementation of extension field Fp8

as the definition field.
This section deals with a fast implementation of Fp'

which is used as the base field for successive extension.
First, we discuss five fast implementation methods for Fp'

which are specified by the modular polynomial as shown
in Table III, and these methods are refered to by the no­
tation with number, such as Fp.(l). Then, we evaluate

TABLE III

CORRESPONDENCE BETWEEN FIVE IMPLEMENTATION METHODS OF Fl"

AND THEIR MODULAR POLYNOMIALS

Method Modular polynomial Notation

z2 +1 Fo' (1)
OEF

z2 -2 Fo·(2)

AOPF z2+ z +1 Fo.(3)

z2 -z-1 Fo.(4)
NEF

z2- z +1 Fo·(5)

calculation costs of MUL2, SQR2, and INV2 in each imple­
mentation by counting the numbers of Fp-arithmetic op­
erations, such as ADDI and MULl. It should be noted
that Fp.(4) and Fp.(5) are both implemented by NTT
method[18], which is called NEF in the followings. In this
paper, there are no discussions of addition and subtraction
in the extension field except for ADD2 and SUB2, and de­
tails of a fast implementation of Fp-arithmetics can be seen
in Bailey et al.[17].
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A. Conditions for the modular polynomial to be irreducible

Modular polynomial has to be irreducible[19]. Table IV
shows the necessary and sufficient condition for each mod­
ular polynomial tabulated in Table III to be irreducible.

TABLE IV

CONDITIONS FOR THE MODULAR POLYNOMIAL TO BE IRREDUCIBLE

Condition Reference

Fl" (1) p;!!;l (mod 4) Section4

Fo.(2) 2(1'-1)/2 =-1 (mod p) Section4

Fo.(3) p=2 (mod 3) [9J

Fo·(4) 5(1'-1)/2 =-1 (mod p) Section4

Fo.(5) (_3)(1'-1)/2 =-1 (mod p) Section4

For example, let us consider a Mersenne prime 231 - 1
as characteristic p. Then, we can fast perform the basic
arithmetics in prime field Fp [17], however, only the mod­
ular polynomials of Fp' (1) and (4) tabulated in Table III
become irreducible. Therefore, it is possible to implement
Fp.(l) and (4) but not Fp.(2), (3) and (5).

B. Basis of extension field Fp '

The oerformance of basic arithmetic operations in ex­
tension field is closely related to the choise of basis. If the
choise is wrong, arithmetic operations in the extension field
will become complicated. The basis adopted in each Fp'

implementation is shown in Table V. Accordingly, the im­
plementations of arithmetic operations become simplified.
Since pseudo polynomial basis {w,w2 } of Fp.(3) is equal to
{w,wP}[9], it is also called optimal normal basis(ONB).

TABLE V

BASIS OF EACH IMPLEMENTATION METHOD

Basi. Basis type

Fo·(l) {l,w} polynomial basis

Fo·(2) {l,w} polynomial basis

Fu.(3) {w,w 2 } pseudo polynomial basis

Fu.(4) {w,wp } normal basis

Fu·(5) {w,wp } normal basi.

* w is a zero of the modular polynomial.

C. Implementation of MUL2, SQR2, and INV2

In this subsection, how to implement MUL2, SQR2, and
INV2 fast are explicitly discussed by using Fp.(l) arith­
metics as an example. For the others Fp' (2)"-'(5), refer
to Appendix.A. And then, calculation costs of these arith­
metic operations in each Fp' are concluded in Table VI.
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C.1 MUL2

In the case of Fp3 (1), arbitrary elements A, B E Fp 3 are
represented by using the basis of Fp3 (1), which is tabulated
in Table V, as follows:

Now, let us consider ITA in the case of Fp3(1). At first,
Frobenius mapping .p(A) = AP is given by Eq.(l1). It is
noted that w +wP = 0 is hold from a relation between the
coefficient and the zeros of the modular polynomial.

A = ao +alw, aO,al E Fp ,

B = bo+ blw, bo, bl E Fp •

For example, ADD2 and SUB2 are calculated by

(6a)

(6b)
(11)

Substituting Eq.(6a) and Eq.(ll) into Eqs.(lO), respec­
tively, we can calculate A-I as follows.

A ± B = (ao ± bo) + (al ± bt}w. (7)

Multiplication of A and B, that is MUL2, can be calculated
by the following equation, where a relation w 2 = -1 is used.

n = a~ - a~w2 = a~ + a~,

A-I = n-l(ao - alw).
(12a)

(12b)

AB = aobo + (aObl + albo)w + alblw2

= (aobo - albl ) + (aobl + albo)w. (8a)

where A is an arbitrary non-zero element in Fp 3 and n is its
norm[19]. Inversion n- l , that is INVlt can be implemented
by using extended Euclid algorithm(EEA) [20].

C.3 INV2

In each field Fp3 (1)"-'(5), Itoh-Tsujii algorithm(ITA)[21],
which is an inversion algorithm using Frobenius mapping
effectively, is adopted for a fast implementation of INV2.
In this case, ITA can be expressed by

Calculation of Eq.(8a) can be implemented by using an
ADDI, a SUBI , and 4 MULl'S. Now, if we calculate the
second term of RHS of Eq.(8a) by using Karatsuba alga­
rithm(KA)[20], then it follows that

aobl + albo = (ao + al)(bo + bl) - aobo - albl , (8b)

IV. EFFICIENT SUCCESSIVE EXTENSION FOR FAST

IMPLEMENTATION OF DEFINITION FIELD

Based on the calculation costs tabulated in Table VI, in
this section we discuss efficient successive extension for a
fast implementation of the definition field of ECC, which
will lead to a fast implementation of ECC.

First, let us consider a general extension of base field
Fq to extension field Fq3. Then, a fast implementation
method which adopts a polynomial basis and a binomial
as the modular polynomial is proposed with comparing to
the previous work[lO] which adopts a nonnal basis and a
trinomial. In addition, calculation costs of Fq3-arithmetic
operations are evaluated by counting the numbers of arith­
metic operations in the base field needed for the imple­
mentation of arithmetic operations in the extension field.
After that, we discuss the efficiency of these two extension
methods. Throughout this section, let q be pm.

D. Efficient base field Fp3 for fast implementation

Table VI shows calculation costs of MUL2, SQR2, and
INV2 in each base field of Fp3(1)"-'(5). It is noted that the
number of SUBI 's is counted into that of ADDI's because
their calculation times are almost the same to each other on
a generally-used processor, such as Celeron. In addition,
twice of a E Fp , that is 2a, is implemented by using an
addition like a + a, which can be seen in Eq.(9).

As described in Section2-1.3, ECC needs several scalar
multiplications. Accordingly, a lot of arithmetic opera­
tions in the definition field are needed. Since this paper
deals with extension field Fp8 especially, its base field Fp'

for successive extension should have fast basic arithmetic
operations, especially MUL2, SQR2, and INV2. Since a
MULl needs more calculation time than an ADDI on a
generally-used processor as mentioned in Section5, it can
be said that Fp3(1), (3), and (5) are superior to Fp3(2) and
(4), which is found by comparing the number of MULl'S
needed for each SQR2 implementation on Table VI.

(lOa)

(lOb)

n = AAP, n E Fp ,

A-I = n-IAP,

C.2 SQR2

Let us consider substitutions bo = ao and bl = al into
Eq.(8a), then A2 can be calculated as follows.

A2 = (a~ - an + 2aOalw

= (ao + al)(ao - al) + (aoal + aoal)w. (9)

where it is noted that terms aobo and albl have been al­
ready calculated in the first parenthesis of Eq.(8a). As seen
in Eq.(8b), the calculation by using KA increases the num­
ber of ADDI '8 and SUBI'S, however, that of MULl'S can
be decreased, and then which leads to substantial savings
of the calculation time, accordingly it is quite effective for
a fast implementaion of the definition field.
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TABLE VI
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THE NUMBERS OF ADD1'S, MULl'S, AND INV1's NEEDED FOR THE IMPLEMENTATIONS OF MUL2, SQR2' AND INV2

M UL2 SQR 2 INV2

ADDI MULl ADDI MULl ADDI MULl INVI

Fpo (1) 5 3 3 2 2 4 1

Fpo(2) 6 3 2 3 3 4 1

Fpo(3) 4 3 4 2 2 4 1

Fpo (4) 4 3 3 3 2 4 1

Fno (5) 4 3 4 2 2 4 1

A. Modular polynomial, irreducibility, and basis

Irreducible polynomials of degree 2 over Fq are classified
roughly into two types as follows, where u, VI' Vo E Fq •

x2 + u, (13a)

x 2 +VIX + Vo, VI =I- O. (13b)

Irreducibility of polynomial of degree 2 can be tested by
using its discriminant D as follows:

D'9 = {O,l j reducible (14)
-1 j irreducible .

Discriminant D for the polynomials shown in Eqs.(13) are
respectively given by

D = -4u, (15a)

D = v~ - 4vo. (15b)

Let us call extension methods using binomial Eq.(13a) and
trinomial Eq.(13b) as the modular polynomial OEX and
NEX [18], respectively. From Eq.(14) and Eqs.(15), the
correspondence between the modular polynomial and its
irreducible condition is given in Table VII. In addition,

TABLE VII

CORRESPONDENCE BETWEEN THE MODULAR POLYNOMIAL AND ITS

IRREDUCISLE CONDITION

Method Modular polynomial Irreducible condition

OEX x2 +u (_U)(q-l)/2 =-1

NEX X2 + 1I1X+ 1IO (11~ - 4110)(q-l)/2 = -1

the bases adopted in OEX and NEX are shown in Table
VIII, where T is a zero of each modular polynomial.

B. MU£-Jm

Let us consider arbitrary elements A, B E Fq for each
extension method OEX and NEX as follows:

TABLE VIII

BASIS ADOPTED IN OEX AND NEX

Method Basis Basis type

OEX {I, T} polynomial basis

NEX {T, Tq} normal basis

B = bo + biT, bo, bl E Fq (16b)

A=aIT+aqTq, allaqEFq (17a)

B = biT + bqTq, bll bq E Fq (17b)

In the case of OEX, multiplication of A and B, that is
MUL2m , can be calculated in the same manner of Eq.(8b),

AB = aobo + (aobl + albo)T + alblT2

= (aobo - ualbl) + (aobl + albo)T, (18a)

aObl + albo = (ao + al)(bo + bl) - aobo ...:. albl . (18b)

On the other hand, in the case of NEX, MUL2m can be
calculated as follows. We can see its details in NTT[lO].

(19a)

(19b)

C. SQR2m

In the case of OEX, substituting bo = ao and bl = al
into Eqs.(18), SQR2m can be calculated by

A2 = (a~ - ua~) + 2aOa1T. (20a)

It seems that it is the fastest to calculate A2 by Eq.(20a),
however, let us consider to calculate 2aoall which is second
term of the RHS of Eq.(20a), by using KA as follows:

(16a) (20b)
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From Table VI, we can easily find that a square operation
can be implemented faster than a multiplication. There­
fore, 2aOai should be calculated by using square operation
as seen in Eq.(20b). It is noted that terms a~ and a~ have
been already calculated in the parenthesis of Eq.(20a).

In the case of NEX, substituting bl = al and b2 = a2
into Eqs.(19), SQR2m can be calculated by

(21a)

(21b)

D. l'robenius mapping with respect to Fq

Eq.(ll) shows Frobenius mapping of arbitrary element
in Fp' with respect to subfield Fp • In this section's case,
we must consider Frobenius mapping of arbitrary element
A E Fq• with respect to base field Fq • In the case of OEX,
this mapping is given as follows:

F. Comparison between OEX and NEX

The calculation costs of Fq• -arithmetic operations, such
as MUL2m , are shown in Table IX corresponding to each
implementation method. Every data is evaluated by count­
ing the numbers of Fq-arithmetic operations and the others,
such as tI times, VI times, and so on. The reason why the
numbers of tI times, VI times, and such operations are in­
dividually counted is that the choice of coefficients tI, VI, Vo
of modular polynomial Eqs.(13) affects the performance of
Fq.-arithmetics. To choose them from the basis of Fq , such
as a zero of the modular polynomial of Fq , is the best for
a fast implementation of Fq.-arithmetic operations, where
it is noted that modular polynomials Eqs.(13) must be de­
fined over Fq . In order to see its efficiency, let us consider
a case that base field Fq is Fp.(l) introduced in Section3
and coefficient tI is w chosen from basis of Fp.(I) shown in
Table V. In this case, tI times, that is w times, for arbi­
traryelement A represented by Eq.(6a) can be calculated
as follows:

n = a~ - a~r2 = a~ + tla~, (25a)
A-I = n-l(ao - aIr), (25b)

In the case of OEX, the above equations can be devel­
oped by substituting Eq.(16a) and Eq.(22) into Eqs.(24)
and using relation r 2 = -ti,

(27)

(w ± I)A = (aow + alw2) ± (ao + alw)

= (±ao - al) + (ao ± adw. (28)

Consequently, w times, w ± 1 times, and w ± 2 times can be
implemented by using only additions or subtractions. By
evaluating calculation costs of these operations with the

where it is noted that w2 = -1 is hold. Therefore, the
heavy arithmetic operations, such as a multiplication, are
not required. Especially for NEX, coefficient VI should be
chosen to ±l because the number of VI times is the largest
among those of such operations as seen in Table IX.

As described in the previous paragraph, if we can choose
a zero of the modular polynomial of Fq as coefficients tI and
V2, supposing VI = ±l, tI times and such operations can
be fast implemented as seen in Eq.(27). For such choices,
conditions shown in Table VII must be satisfied in each im­
plementation method. In the case of OEX, let r be a zero
of modular polynomial x2 + tI, accordingly r is contained
in Fq., then x2 - r is irreducible if q == 1 (mod4). And
then, let () be a zero of x 2 - r, x2 - () is irreducible over Fq4

unconditionally. In the same way, let"Y be a zero of x2
- (),

then x 2 - "Y is irreducible over Fq8. And so forth, we can
choose a zero of each modular polynomial as coefficient tI.

On the other hand, since NEX does not have such a prop­
erty, a zero of the modular polynomial cannot be always
chosen as coefficient V2 even whether VI = ±1 or not. If
a zero of the modular polynomial cannot be chosen as the
coefficient, let w be a zero of the modular polynomial, it is
desirable that w ± 1 or w ± 2 are chosen as the coefficient,
because w ± 1 times and the others for arbitrary element
A can be also fast implemented as follows:

(22)

(24a)

(24b)

n = AAq,
A-I = n-1Aq.

n = (r+rq){_(al_aq)2
VO

-alaqVI}
VI

= alaqV~ + (al - aq )2vo , (26a)

A-I = n-l (aqr + al r q). (26b)

where n becomes a non-zero element of Fq •

In the case of NEX, Eqs.(24) can be developed by sub­
stituting Eq.(17a) and Eq.(23) into Eqs.(24) and using re­
lation r + r q = -VI,

in which a relation r + r q = 0 is used. In the case of NEX,
¢> needs no arithmetic operations because the adopted basis
is a normal basis, and this mapping is given as follows.

E.INV2m

As the same of INV2 introduced in Section3-3.3, both
OEX and NEX adopt ITA for the inversion, that is INV2m.
If we denote a non-zero element of Fq• by A, then ITA can
be expressed as follows:
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TABLE IX

MEM.FAC.ENG.OKA.UNI. Vol. 36. No.2

THE NUMBERS OF ADDm's, MULm '8, SQRm's, INVm 's, U TIMES, til TIMES, tlO TIMES, tlO/tll TIMES, AND tI? TIMES, NEEDED FOR THE

IMPLEMENTATIONS OF MUL2m, SQR2m, FRO2m , AND INV2m

Operation Method ADDm MULm SQRm INVm U til tlo tlO/tll tl2
1

OEX 5 3 - - 1 - - - -
MUL2m

NEX 4 3 2 1- - - - -
OEX 4 - 3 - 1 - - - -

SQR2m
NEX 3 3 2 1 -- - - .
OEX 1 - - - - . - - .

FR02m
NEX - - - - . - - - -
OEX 2 2 2 1 1 - - - -

1NV2m
NEX 2 3 1 1 1 1- - -

number of ADD1'S, the results are given in Table X, where
w is a zero of each modular polynomial seen in Table III.
In any base field Fp" a few times of ADD1 are needed,
however, such operations will scarcely affect a fast imple­
mentation.

TABLE X

THE NUMBER OF ADDl'S NEEDED FOR THE IMPLEMENTATIONS OF w

TIMES, W ± 1 TIMES, AND w ± 2 TIMES IN EACH Fl" (1)-(5)

w-2 w -1 w w+l w+2

Fp .(I) 5 3 1 2 4

Fp .(2) 4 2 1 2 3

Fp .(3) 6 4 2 1 3

Fp .(4) 4 2 2 3 4

Fp .(5) 4 2 1 3 5

• Bold faces are used in Table XI.

Based on the above discussions, the following remarks
are derived with comparing OEX and NEX on Table IX.

• With respect to MUL2m and SQR2m, NEX is superior.
• With respect to 1NV2m, OEX is superior.

The former can be easily found by comparing the numbers
of ADDm's, and the latter by comparing on MULm and
SQRm with noting that a square operation can be imple­
mented faster than a multiplication in the extension field,
where such a property can be seen in Table VI.

V. FAST IMPLEMENTATION OF ECC USING ELLIPTIC

CURVE WITH PRIME ORDER ON MICRO CONTROLLER

In this section, let us choose two prime numbers as the
characteristic and then consider definition field Fp8 by us­
ing successive extension methods OEX and NEX on each

base field of Fp.(1)~(5). For each definition field, the cal­
culation costs of Fp8-arithmetic operations, such as MULs,
are evaluated by counting the numbers of Fp-arithmetic op­
erations. Based on this evaluation, some definition fields
that are especially expected to carry out arithmetic oper­
ations fast on a generally-used processor are selected. Af­
ter that, these definition fields are explicitly implemented
on Intel Celeron(400MHz) processor by using C language,
then the calculation times of Fp8-arithmetic operations are
timed. Finally, based on this calculation times, two defi­
nition fields which will be especially suitable for a fast im­
plementation of ECC are selected and then implemented
on Toshiba micro controller TMP94C251(20MHz), which
is 32-bit micro controller, by using C language. After that,
the calculation times of ECA, ECD, and scalar multiplica­
tion are timed, then a comparison between the proposed
method and the previous works is given.

A. Fast implementation of definition field Fp8

Let us consider two prime numbers 231 - 1 and 229 - 3
as the characteristic. Accordingly, we can consider 20 vari­
eties of definition field FpB in combination with successive
extension methods OEX, NEX and base fields Fp.(1)"'(5).
In this paper, 10 definition fields were selected from them,
where the parameters of these fields were chosen as shown
in Table XI with paying attention to a fast implementa­
tion. In Table XI, polynomials h_4(X) and f4_s(x) de­
note the modular polynomial of Fp4 over Fp ' and that of
FpB over Fp4, and which are used for successive extensions
of Fp' --> Fp4 and Fp4 --> Fp8, respectively. In addition,
w and T are a zero of the modular polynomial of Fp' and
that of h_4(X), respectively. For example, in the case of
Fp8 (I-A), w and T are zeros of x2 + 1 and x2 - (w + 2).

According to Section4-6, coefficients of f4_s(x) shown in
Table XI are chosen to Vi = -1 and u, Va = ±T, -(T ± I),
where u, Vi, Va are defined in Eqs.(13). Table XII shows the
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TABLE XI

ENTRIES OF DEFINITION FIELD Fps CORRESPONDING TO BASE FIELD Fl'o AND SUCCESSIVE EXTENSION METHOD WITH THE MODULAR POLYNOMIAL

Characteristic p Bue field Extension method h~4(z) t 14_s(z) t Entry No.

F"o(l) OEX,OEX z2 _ (w + 2) tt z2 _ r tt F"s(l-A)

231 - 1
F"o (1) NEX,NEX z2 - z - (w + 1) z2 -z+r F"s(l-B)

F"o(4) OEX,OEX x2 -w z2 -T F"s(4-A)

F"o(4) NEX,NEX x 2 - x+w x2 - x - (r + 1) F,,8(4-B)

F".(2) OEX,OEX x 2 -w z2 -r F"s(2-A)

F"o(2) NEX,NEX x2 -x-w x 2 -x-(r+l) F"s(2-B)

229 - 3
F".(3) OEX,OEX x 2 - (w + 2) x 2 -r F,,8(3-A)

F".(3) NEX,NEX x 2 - x+w x 2 -x-(r+l) F"s (3-B)

F"o(5) OEX,OEX x2 - (w + 1) x 2 -r F"s(5-A)

F".(5) NEX,NEX x 2 - x-w x 2 - x - (r + 1) F"s(5-B)

t h_4(x) and 14_s(x) denote modular polynomisl of Fl" over Fl" and that of Fp8 over Fp" respectively.

ttw and r are a zero of modular polynomial of bue field Fpo and a zero of h_4(x), respectively.

calculation costs of 7 times, 7 ± 1 times, and 7 ± 2 times,
which are evaluated in the same manner of Table X and
the details are shown in Appendix.B. The calculation cost

TABLE XII

THE NUMBER OF ADDI 's NEEDED FOR THE IMPLEMENTATION OF r

TIMES, r ± 1 TIMES, AND r ± 2 TIMES IN EACH FpS (1-A)-(5-B)

r-2 r-l r r+l r+2

F"s(l-A) 9 6 4 6 9

F,,8(I-B) 10 6 6 9 13

Fp8(4-A) 10 6 2 6 10

Fp8(4-B) 10 6 6 10 14

F,,8(2-A) 9 5 1 5 9

F,,8(2-B) 9 5 5 9 13

F,,8(3-A) 9 5 3 5 9

F"s(3-B) 10 6 6 10 14
I

F,,8(5-A) 9 5 3 5 9

F,,8(5-B) 9 5 5 9 13

* Bold faces are used in Table XI.

of -7 times should be also evaluated, however, difference
of sign of T makes a trifling change between addition and
subtraction as seen in Eq.(18a). Since it is supposed that
the calculation costs of addition and subtraction are almost
the same to each other as described in Section3-4, it is also
considered that the calculation costs of ±7 times are the
same to each other. By the way, it is noted that all of
coefficients of h_4(X) and f4_S(X) tabulated in Table XI
are chosen not only so as to be implemented fast but also

so as to be irreducible as the modular polynomial.
The calculation costs of MULs, SQRa, and INVa in each

definition field Fp8(1-A) '" (5-B) can be evaluated from
Table VI, IX, X, and XII by counting the numbers of Fp­

arithmetic operations as shown in Table XIII. The numbers
in parenthesis are of ADDI's, MULl'S, and INV1's from
the left, respectively. From the table, we can easily find

TABLE XIII

THE NUMBERS OF ADDl'S, MULl'S, AND INV1 's NEEDED FOR THE

IMPLEMENTATION OF MULa, SQRa, AND INVa

MULs SQRs INVs

F"s(I-A) (111,27,O)tt (83,18,0) (138,44,1)

F,,8(I-B) (97,27,0) (69,18,O)t (132,48,1)

F,,8(4-A) (94,27,0) (75,27,0) (118,52,1)

F,,8(4-B) (92,27,0) (73,27,0) (124,52,1)

Fp8(2-A) (108,27,0) (62,27,0) (121,52,1)

Fp8(2-B) (106,27,0) (60,27,0) (139,52,1)

Fp8(3-A) (98,27,0) (88,18,0) (132,44,1)

F,,8(3-B) (92,27,0) (82,18,0) (128,48,1)

Fps(5-A) (98,27,0) (88,18,0) (132,44,1)

F,,8(5-B) (88,27,0) (78,18,0) (122,48,1)

t Bold faces are especislly expected to be fut implemented.

tt The numbers in parenthesis are of ADDl'S, MULl'S, and INVl'S

from the left, respectively.

that NEX is superior than OEX with respect to MULa
and SQRa, on the other hand, OEX is superior than NEX
with respect to INVs, which has been also concluded in
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Section4-6. By the way, though the nwnbers of ADD1's
are widely distributed as compared to those of MULl's,
it is because the calculation costs tabulated in Table X
and XII are distributed. Let us compare the nwnber of
ADD1's needed for the implementation of MULs in each
Fps(l-A) and Fps(5-B) on Table XIII, for example. The
former needs 111 ADD1's but the latter needs 88 ADD1's
only. As seen in Table X, the choise of the coefficients
of h_4(X) is mainly causing this difference. To be more
precise, the latter selected w + 2 as the coefficient, that is
not the best, but the former selected w, that is the best.
It depends on the irreducibility whether we can select the
best coefficients for the modular polynomial or not.

Since our purpose is to achieve a fast implementation
of ECC, now let us consider ECA and ECD implementa­
tions. These implementations need several Fps-arithmetics
as shown in Eqs.(3) , and which are concluded in Table XIV.

TABLE XIV

THE NUMBERS OF ADDs's, MULs's, SQRs'S, AND INVs's NEEDED

FOR THE IMPLEMENTATION OF ECA AND ECD

ADDs MULs SQRs INVs

ECA 6 2 1 1

ECD 8 2 2 1

It is noted that 3x~ and 2YI in Eq.(3a) are implemented
by using x~ + x~ + x~ and YI + YI, respectively. From
Table XIII and Table XIV, the calculation costs of ECA
and ECD can be evaluated by using the nwnbers of Fp­

arithmetic operations as shown in Table XV. Based on
the results shown in Table XV, let us select five definition
fields as follows, which are especially suitable for a fast
implementation of ECC.

Fps (I-A), Fps(l-B), Fps (3-A) , FilS (3-B), FilS (5-B).

For the above definition fields, Fils-arithmetic operatations,
ECA, and ECD are explicitly implemented on Intel Celeron
processor by using C language, after that, the averages of
the calculation times of these operations are timed. The re­
sults are shown in Table XVI. On this table, we can find a
question why ECA calculation over Fps (I-A) is carried out
faster than over Fp8(5-B), though the nwnber of ADD1's
needed for the implementation of ECA over FilS (I-A) is
much smaller than that over Fps (5-B) as shown in Table
XV. Its ansewr lies in the difference between the numbers
of MULl's, that is 4 MULl'S. To be more precise, one is the
difference between the characteristics adopted in Fps (I-A)
and FilS (5-B) and the other is the calculation time ratio of
a MULl to an ADDI on Intel Celeron processor, which is
denoted by RM/A in the following.

MEM.FAC.ENG.OKA.UNI. Vo1.36, No.2

TABLE XV

THE NUMBERS OF ADDI'S, MULl'S, AND INVI's NEEDED FOR THE

IMPLEMENTATION OF ECA AND ECD

ECA ECD

F~s(l.A) (491,116,1) (590,134,1)

F~s(l-B) (443,120,1) (528, 138, 1)

F~s(4-A) (429,133,1) (520,160,1)

F~s(4-B) (429,133,1) (518,160,1)

F~s(2-A) (447,133,1) (525,160,1)

Fps (2-B) (459,133,1) (535,160,1)

F~s(3-A) (464,116,1) (568,134,1)

F~s (3-B) (442,120,1) (540, 138, 1)

F~s(5-A) (464, 116, 1) (568, 134, 1)

Fps(5-B) (424, 120, 1) (518,138,1)

• The numbers in parenthesis are of ADDI'S, MULl'S,

and INVI 's from the left, respectively.

TABLE XVI

AVERAGE CALCULATION TIMES OF Fps-ARITHMETIC OPERATATIONS

AND ECA, ECD

unit: /.1.8

MULs SQRs INVs ECA ECD

F~s(l-A) 1.51 1.08 3.42 8.00 9.05

Fps(l-B) 1.30 0.97 3.46 7.74 8.66

Fps(3-A) 2.04 1.56 4.44 10.9 12.5

Fps(3-B) 1.89 1.50 4.50 10.9 12.6

Fps(5-B) 1.95 1.51 4.55 10.5 12.2

• By using Intel Celeron(400MHz) processor.

In order to make sure of the former, that is the difference
of the characteristic, let us consider the calculation flow of
MULl of two elements x, Y E Fp as schematically shown
in Fig.!. In this flow, n bits prime 2n - 8 is considered
as the characteristic. First, calculate product z of x and Y
as shown at (A), where (xo"", Xn-l),(YO,' .. ,Yn-l), and
(zo,"', Z2n-2) in Fig.l show the binary representations of
x, Y, and z, respectively. And then, modulo p operation
can be carried out as shown at (B), that is, calculate upper
digits Zn,'" ,Z2n-2 times 8, and then add it to lower digits
Zo,' ", Zn-l. If the result is larger than p, then modulo p
operation must be carried out again as shown at (C). If we
consider the probability that modulo p operation must be
carried out twice in a MULl operation like at (C), then in
the case of Mersenne prime 231 - 1 as the characteristic
the second modulo p operation is not needed but in the
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+

Step3: Determine #E'(Fp'c) by

#E'(Fp'c) = p
2c + 1 + D2c(tl,P), (29)

where tl and D 2c (tl, p) are respectively given by

tl = P + 1 - #E(Fp), (30)
2c - 1

D2c(tl'P) = L 2c2~ . (2
C

:-i)(_p)it12
C

-2i. (31)
i=O t t

After that, test whether #E'(Fp'c) is prime or not.

{
prime -> go to Step4,
composite -> go to Stepl.

Step4: Determine E'(x, y) = y2 - x3 - aA2x - bA3 by
using a quadratic power non residue A E Fp'c, conse­
quently, we obtaine an EPO E'(Fp'c),

( End of algorithm )

Since this paper especially deals with a case of extension
degree m = 8, exponent c is determined to be 3. In addi­
tion, let Fps(l-A) be the definition field and let a Mersenne
prime 231 - 1 be the characteristic, then we can obtain an
EPO E'(Fps) by using the preceding algorithm. And its
defining equation and the order are given as follows: '

E'(x, y) = y2 - x3 - 302x - 9603 = 0, (32)

#E' (Fps) = 4523128468982697244226411\

7969754366746209075032258\

3598346095036305012010449, (33)

where the above order #E'(Fps) is a 248 bits prime and
O' is a zero of k ...s(x) of Fps (l-A), that is x2 - T as seen
in Table XI. The reason why we used 0 as a quadratic
power non residue as seen in Eq.(32) is that such a zero 0 is
always a quadratic power non residue, which is one of useful
properties of OEX, accordingly we need no calculation to
obtain a quadratic power non residue. But, NEX does not
have such a property, in other words, a zero of the modular
polynomial in NEX is not always a quadratic power non
residue. Accordingly, precomputation is needed to obtain
a quadratic power non residue.

Next, according to Section2-l.2, we can obtain the fol­
lowing rational point P on elliptic curve E'(Fps).

P.x = [1,1,1,1,1,1,1,2]. (34a)

P.y = [775160346,1044745940,1474766701,

1301969604,532588157,311746614,

1343273066,581896508], (34b)

where P.x and P.y denote x-coordinate and y-coordinate,
respectively, and let the basis for their vector representa­
tion be explicitly ordered as follows:

,O_l n_- 1 n 2n - 2

x Ixo: ~njl }

X Y 11/0: lInjl (A)

• IzO: :Zn~l%n: :%2n~2

+ ~IBZn:='~~:BZ~S~!.2=~';:;X8~' } (B)

xy I : ~r than p ?

... . . . . . . . . . .

............~ ~: .. , X8 } (C)

xy'.. . .'. . . . . . , . ... . ~ . . . :

Fig.!. Calculation flow of MULl

case of pseudo Mersenne prime 229 - 3 as characteristic
it is sometimes needed. Next, in order to make sure of
the latter, calculation time ratio RM / A was measured on
Celeron and also TMP94C251, then the results were both
about 7. Accordingly 4 MULl'S are almost equivalent to 28
ADD1's. Concludingly, we should choose a Mersenne prime
as characteristic and the number of MULl'S is prefered not
to be large for a fast implementation of the definition field.

From the above discussion, the choise of characteristic
and the number of MULl'S have keys for a fast implemen­
tation. To decrease the number of MULl'S, we should use
OEX for successive extension from the discussion in Sec­
tion4. On the other hand, to choose a Mersenne prime as
the characteristic, we must adopt Fl" (1) or Fp .(4) as the
base field from the discussion in Section3. Based on these
remarks, it can be considered that Fps (l-A) is the best of
all entries tabulated in Table XI. In the next subsection
scalar multiplication is implemented over Fps (l-A) on pr;
cessors in particular.

B. Fast implementation of EGG using EPO

At first, EPO can be generated by using Danno, et al.
algorithm[ll] as follows.

EPO generation algorithm

Input: Characteristic p and extension degree 2C
•

Output: Elliptic curve with prime order E'(Fp'c),
Step1: Choose coefficients a, b E Fp of E(x, 0), which
is defined by Eq.(2), at random. Then, test the irre­
ducibility of E(x, 0) by using Hiramoto, et al.[22].

{
irreducible -> go to Step2,
reducible -> go to Stepl.

Step2: Compute order #E(Fp) of E(x, y) over prime
field Fp by using SEA algorithm[5]. {1, W, T,WT, 0, wO, TO,WTO}. (35)
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TABLE XVII

COMPARISON OF THE CALCULATION TIMES OF ECA, ECD, AND SCALAR MULTPLICATION

Extension Scalar
Processor (clock[MHz]) Order #E[bits] ECA[/IS] ECDlIIS] Method and cf.

multi.[ms]degree m

Celeron (400) 8 248 8.00 9.011 NAF 2.12

Celeron (400) 8 ft 248 7.74 8.66 NAF 1.811

Pentium II (400) 8 248t 9.66 11.14 -,- -
Pentium II (400) 7 186 13.2 19.7 Frobenius, cf. [10] 1.95

Pentium II (400) 7 186 13.2 19.7 NAF, cr. [10) 3.89

Pentium II (400) 1 160 37.3 58.2 SlidingWindow, cr. [23] 9.10

Pentium II (400) 1 224 63.0 96.3 SlidingWindow, cf. [23] 20.6

Alpha 21164 (533)""" 7 168 9.13 10.4 -, cf. [25] 2.02

Pentium/MMX (233) 6 186 44.8 52.4 -, cf. [26] 11.4

TMP94C2111 (20) 8 248 10011 1172 NAF 214

TMP94C2111 (20) 8 ft 248 91111 1127 NAF 209

M16C (10)" 1 160 - - Binary, cf. [7] 480

MSP430 (1)" 1 128 15100 20700 Binary, cf. [8] 3400

Notice: Bold faces are the results of this paper. ": MI6C, Mitsubishi 16-bit micro controller. With in-line &ll8embly.

"": MSP430, TI 16-bit micro controller. """: With in-line assembly. t: This is not prime order. ft: This is Fps(l-B).

It should be noted that P.x and P.71 are elements in defi­
nition field F". (l-A) constructed by successive extensions.
Since order #E'(Fps) is prime, we can see that E'(Fps)
forms cyclic group by using P as the base point[19]. For
this base point P, let us measure calculation time of a scalar
multiplication under the following conditions:

• Let scalar k be chosen at random.
• Use C language and in-line assembler for programming.
• Use NAF method for scalar multiplication[16].

The programs are implemented on two processors: Intel
Celeron(400MHz) and Toshiba TMP94C251(20MHz). And
then, the results are concluded in Table XVII, where the
calculation times of ECA, ECD, and the previous works
are tabulated together for comparison.

As seen in Table XVII, order #E of the elliptic curve
dealt with in this paper is not only prime but also the
largest among all of entries, however, the calculation times
of ECA and ECD are the fastest among them. The cal­
culation time of a scalar multiplication of our implemen­
tation is not faster than the second entry which is using
Frobenius method but about 30% faster than the other
entries. Therefore, we can conclude that our proposed
method has achieved fast implementation of ECC with a
prime order. For future works, scalar multiplication using
Frobenius method can be also applied to our proposed im­
plementation method according to Iijima et a1. research
report[24] , therefore, it is expected that our method can
become much faster. The followings should be noticed:

• #E ofthe second entry is a 248-bit composite number.
• Implementations[71,[25] used in-line assemblyonly.
• Alpha 21164 is a 64-bit processor.
• The implementation on MSP430 is not enough secure

because the order is smaller than 160 bits.

At last, the memory size of our implementaion which
consists of Fps (l-A) arithmetics and various operations of
ECC are concluded in Table XVIII.

TABLE XVIII

SIZE OF RAM/ROM NEEDED FOR THE IMPLEMENTAION OF FpS (I-A)

ARiTHMETICS AND VARIOUS OPERATIONS FOR ECC ON TMP94C251

unit:byte

Library RAM ROM

Fps (I-A) arithmetics 64 14K (10K)!

ECA. ECD 128 0.9K

scalar multiplication 656 4K

Total amount 848 18.9K (14.9K)t

!: In parenthesis, the case that memory size is top priority.

Notice: K means x 103.

As compared to a previous work[7], a little more memory
is required because our programs are almost written in C
language, partially using in-line assembly.
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A.I MUL2

Fp' (2): Let us consider arbitrary elements A, B shown
in Eqs.(6), multiplication of A and B can be calculated by

where we used w2 = 2. And then, the second term of the
RHS of Eq.(A.36) must be calculated by Eq.(8b).

Fp' (3): Arbitrary elements A, B are represented by

ApPENDIX

A. Implementation of MU~, SQR2, FROz, and INV2

In this section, how to implement MUL2, SQR2, FR02,
and INV2 in each extension field Fp .(2)"-'(5) is shown.

(A.38a)

(A.38b)

t = (al - (2)(bl - b2),

AB = (t - albl)w + (t - a2b2)w2.

A.2 SQR2

Fp.(2): A2 is calculated by the following equation,
where 2al is once calculated and then used repeatedly.

A2 = (a~ + 2a~) + 2aOalw,
= {a~ + al(2al)} + ao(2al)W, (A.42)

Fp.(3) : By substituting bl = all bp =a2 into Eqs.(A.38),
A2 is calculated as follows:

t = (al - a2)2, (A.43a)

A2 = (t - anw + (t - a~)w2

= {a2(a2 - 2al)}W + {al(al - 2a2)}W2. (A.43b)

Fp.(4): By substituting bl = aI, bp =ap into Eqs.(A.40),
A2 is calculated as follows:

t = (al - ap?, (A.44a)
A2 = (t + anw + (t + a:)wp. (A.44b)

Fp' (5) : By substituting bl = aI, bp =ap into Eqs.(A.4I),
A2 is calculated as follows:

t = (al - ap )2, (A.45a)

A2 = (a~ - t)w + (a: - t)wP

= {ap(2al - ap)}w + {al(2ap - al)}wP • (A.45b)

Fp.(4): Arbitrary elements A,B are represented by

A = alW + apwP , all ap E Fp, (A.39a)

B = blw + bpwP , bll bp E Fp. (A.39b)

In this case of NEF, multiplication of A and B is calculated
as follows, and the details can be seen in NTT[lO].

t = (al - ap)(bl - bp), (A.40a)

AB = (t + albI)w + (t + apbp)wP • (A.40b)

The above equations can be written by Eqs.(19) in general,
accordingly these are given by substituting VI = Vo = -1,
and 7 = w into Eqs.(19), respectively. In addition, with
comparing Eqs.(A.38) and Eqs.(A.40), we can easily find
that only AOPF of extension degree 2 can also be consid­
ered as a special case of NEF.

Fp' (5): For arbitrary elements A, B represented by
Eqs.(A.39), multiplication of A and B is calculated by

t = (al - ap)(bl - bp), (A.4Ia)

AB = (albl - t)w + (apbp - t)wP , (A.4Ib)

and these are given in the same way of previous Fp• (4).

In AOPF of extension degree 2, that is Fp' (3), multiplica­
tion of A and B is calculated as follows[9]:

(A.36)

(A.37a)
(A.37b)

A=alw+a2w2, al,a2 EFp,
B = blw + b2W2, bl , b2 E Fp.

By the way, one of 8 ADDs's needed for the implemen­
tation of ECD which can be seen in Table XIV is an ad­
dition +a as seen in Eq.(3a). In our implementation using
Eq. (32) as defining equation, since coefficient a = 302 , such
an addition +a is implemented by an addition +37, where
it is noted that 82 = 7. Moreover, this addition +37 can
be carried out by only adding 3 to the third coefficient of
vector representation of addend, which can be easily under­
stood from adopted basis Eq.(35). OEX has such a useful
property but NEX does not.

VI. CONCLUSION

In this paper, we dealt with an elliptic curve which has
a prime order and is defined over extension field Fp'c,
Then, in order to realize a fast software implementation
of ECC adopting such an elliptic curve, a fast implemen­
tation method of definition field Fp'c especially Fp8 was
proposed by using a technique called successive extension.
First, five fast implementation methods for base field Fp'

were introduced. For each implemented base field, the
calculation costs of Fp.-arithmetic operations were eval­
uated by counting the numbers of Fp-arithmetic opera­
tions. Next, a successive extension method which adopts
a polynomial basis and a binomial as the modular poly­
nomial was proposed with comparing to a conventional
method. Finally, we chose two prime numbers as char­
acteristic p, and then considered definition field Fp8 with
using five base fields and two successive extension meth­
ods. Among such definition fields, one definition field was
selected and then implemented on Toshiba 32-bit micro
controller TMP94C25I(20MHz) by using C language. By
evaluating the calculation times as compared to previous
works, it was concluded that the proposed method could
achieve a fast implementation of ECC with a prime order.
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A.3 FR02

Fp' (2): It is the same of Eq.(ll).
Fp.(3): Since pseudo polynomial basis {w,w2

} is equal
to {w, wP}, that is normal basis, FR02 is given as follows:

AP = afwP+ aHw2)P

= alwP+ a2(wP)p

= a2W + alwP

= a2W + alw2. (A.46)

Fp.(4): Because of normal basis, by substituting a2 =ap
and w2 = wP into Eq.(A.46), FR02 is given by

where T is a zero of h~4(X) = x 2 - (w + 2) and then
a relation T 2 = W + 2 is used. In the case of Eq.(A.52),
it is enough to calculate one w + 2 times, therefore, its
calculation cost is evaluated to 4 ADDl'S from Table X.
In the same way, it is enough to calculate one w + I times
and two ADD2's in the case of Eq.(A.53), therefore, its
calculation cost is evaluated to 6 ADDl's.

C. Calculation costs of Fps -arithmetic operations

Consider the case of MULs in Fps(l-A), for example.
Since the adopted extension method is OEX, the calcula­
tion cost C of MULs is given from Table IX as follows:

(A.47) (A.54)

Fp' (5): In the same manner of Eqs.(A.50), inverse can
be calculated as follows:

Fp' (5): It is the same of Eq.(A.47).

A.4 INV2
Fp.(2): As the same of Eqs.(12), inverse of non-zero

element A represented by Eq.(6a) can be calculated by

(A.56)

(A.55)

(A.57)
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