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Abstract 
 
Treatment of aromatic aldimines with terminal alkenes in the presence of a rhenium 
catalyst, [HRe(CO)4]n, gives 2-alkenylbenzylamines in good to excellent yields.  This 
reaction proceeds via the insertion of the alkene into a C-H bond at the ortho-position of 
the imino group of the aromatic aldimine followed by sequential β-hydride elimination 
from the formed alkyl rhenium intermediate and then by hydrogenation of the imino 
group of the aldimine. 
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1. Introduction 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12539661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 C-H functionalization is one of the most efficient and direct methods in 
synthetic organic chemistry.  There have, therefore, recently been many efforts to 
develop new transformations via C-H bond activation.1  In such transformations, 
insertion of unsaturated molecules into a C-H bond is well known, and the reactions 
usually stop at the insertion step.  Our group has also reported on transformations via 
C-H bond activation using rhenium complexes as catalysts.2  In some of these 
reactions, intramolecular nucleophilic cyclization occurs after the insertion of 
unsaturated molecules into a formed C(sp2)-Re bond.2  During investigations of 
rhenium-catalyzed C-H transformations, we discovered the alkenylation reaction of 
aromatic compounds. 
 There have been several reports of alkenylation reactions of aromatic C-H 
bonds.  The first approach involves the cross coupling reaction between aromatic 
compounds and alkenyl halides (Figure 1(a)),3 and the second strategy is based on 
insertion of alkynes into a C-H bond of aromatic compounds (Figure 1(b)).4  The third 
process is oxidative-dehydrogenative alkenylation of C-H bonds using stoichiometric 
amount of an oxidant (Figure 1(c)).5  The fourth route, which we also report herein, is 
the insertion of alkenes into a C-H bond of aromatic compounds followed by 
dehydrogenation of the formed alkylated aromatic compounds (Figure 1(d)).6 
 

R
X

R

R

dehydrogenation

DG

− H2

Figure 1. Four Methods for Alkenylation of Aromatic C-H Bonds.

− HX

DG

R

DG

R

(a)

(b)

(d)

R(c) oxidant

 
 
2. Results and Discussion 
 
 First, we investigated the reaction between aromatic aldimine 1a and styrene 
(2a) using the rhenium complex, [ReBr(CO)3(thf)]2, as the catalyst.  Quinoline 
derivative 3 was formed in 31% yield (eq 1).7  In this reaction, the rhenium complex 
worked as a Lewis acid and promoted a regioselective aza-Diels-Alder reaction.8  



N-Benzylaniline was also formed as a side product.  This result indicated that aldimine 
1a also worked as a hydrogen acceptor to produce quinoline 3 from tetrahydroquinoline, 
which is part of an aza-Diels-Alder adduct between 1a and 2a.  Therefore, by 
increasing the amount of 1a (3.0 equiv), the yield of 3 was improved to 66% (eq 1).   
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 Since a rhenium complex, [ReBr(CO)3(thf)]2, has a higher Lewis acidity than 
[HRe(CO)4]n, [ReBr(CO)3(thf)]2 promoted aza-Diels-Alder reaction without promoting 
C-H transformation.  The possible mechanism for the formation of a quinoline 
derivative is shown in Scheme 1: (1) Aza-Diels-Alder reaction between an 
N-arylaldimine and styrene; (2) tautomerization; (3) transfer dehydrogenation of the 
formed tetrahydroquinoline with two equivalents of N-arylaldimine.  In this 
mechanism, the regioselectivity must be determined by electron densities of 
N-arylaldimine and styrene. 
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Scheme 1. Proposed Mechanism for the Formation of Quinoline Derivative 3.

 



 
 By changing the rhenium catalyst, [ReBr(CO)3(thf)]2, to [HRe(CO)4]n, the 
product of the reaction between aromatic aldimine 1a and styrene (2a) changed 
dramatically.  Treatment of 1a with 2a in the presence of a catalytic amount of the 
rhenium-hydride complex, [HRe(CO)4]n, gave N-(2-styrylbenzyl)benzenamine (4a) in 
80% yield (eq 2).9-12  The catalytic activity for the formation of 4a is much higher than 
that of other rhenium complexes that we have previously reported as being effective in 
C-H bond transformations.13  There have been several reports of the transition 
metal-catalyzed insertion of styrene (or other alkenes) into an aromatic C-H bond; 
however, transfer of dihydrogen did not occur after the insertion step.14  In this 
reaction, the loss of the imino group 1a may be disadvantage.  However, it must be 
valuable to synthesize N-(2-alkenylbenzyl)benzeneamines from aldimines and alkenes 
because the synthesis can be achieved without addition of any oxidant or hydrogen 
acceptor.15 
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 We next investigated the scope and limitations of the reaction, specifically 
evaluating the imines that are suitable for the transformation (Table 1).  Aromatic 
aldimines with an electron-donating group, 1b and 1c, produced 2-alkenylbenzylamines 
4b and 4c in 70% and 76% yields, respectively (entries 1 and 2).  The corresponding 
2-alkenylbenzylamine 4d was generated in 82% yield when aromatic aldimine bearing 
an electron-withdrawing group, 1d, was employed.  In the case of the aromatic 
aldimine with a methyl group at the meta-position, 1e, only one isomer 4e was formed 
regioselectively in 75% yield (entry 4).  Furthermore, the reaction was not inhibited by 
steric hindrance at the ortho-position; the corresponding 2-alkenylbenzylamine 4f was 
produced in 80% yield when aromatic aldimine 1f with a methyl group at the 
ortho-position was employed (entry 5).  Only one product 4g was obtained with 
(E)-N-((naphthalen-2-yl)methylene)benzenamine (1g), which has two possible reaction 
points (entry 6).  However, reaction between the aromatic ketimine 
N-(1-phenylethylidene)benzenamine and styrene (2a) did not provide the corresponding 
alkenylated product, but produced alkylated aromatic ketimine 
[(E)-N-(1-(2-phenethylphenyl)ethylidene)benzenamine] in 7% yield. 
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Table 1. Reactions of Aldimines 1 with Styrene (2a)a

a 2a (2.0 equiv).
b Isolated yield. Yield determined by 1H NMR is reported in parentheses. 
c 30 h. 
d After 24 h, [HRe(CO)4]n (Re: 5.0 mol%) and 2a (2.0 equiv) were added, 
and the reaction mixture was stirred at 180 °C for 24 h.
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 Next, we investigated the reactivity of several alkenes (Table 2).  Styrene with 
an electron-donating group, 2b, gave 2-alkenylbenzylamine 4h in 90% yield (entry 1).  
The corresponding 2-alkenylbenzylamine 4i was obtained using styrene bearing a 
fluorine atom at the para-position, 2c (entry 2).  2-Vinylnaphthalene (2d) also afforded 
2-alkenylbenzylamine 4j in 63% yield (entry 3).  A mixture of 2-alkenylbenzylamines 
4k, 4k′ and 4k′′ was formed in 85% total yield when aliphatic alkene 2e was used as an 
olefinic substrate (entry 4).16  By investigating the ratios between 4k (trans-form) and 
4k′ (cis-form) during the reaction, it was clarified that 4k′ should be formed from 4k by 
isomerization.17 
 



R

HN
Ph

H

N
Ph

1a 2

+ [HRe(CO)4]n (Re: 5.0 mol%)

toluene, 180 °C, 24 h
4

R

Table 2. Reactions of Aldimine 1a with Alkenes 2a

a 2 (2.0 equiv). 
b Isolated yield. Yield determined by 1H NMR is reported in parentheses. 
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 The proposed mechanism for reaction is as follows (Scheme 2): (1) oxidative 
addition of an aromatic aldimine to a rhenium center (C-H bond activation);2 (2) 
insertion of an alkene into the formed rhenium-carbon bond; (3) β-hydride elimination;6 
(4) insertion of a carbon-nitrogen double bond of the imino group into a 
rhenium-hydrogen bond;18 (5) and reductive elimination to give 2-alkenylbenzylamines 
4 and regenerate the rhenium catalyst.  It is interesting to note that β-elimination from 
5 proceeds preferentially instead of intramolecular nucleophilic cyclization, which 
occurs in previously reported rhenium-catalyzed C-H transformations.2 
 



Scheme 2. Proposed Mechanism for the Formation of 2-alkenylbenzylamines 4.
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3. Summary 
 
 We have succeeded in developing the rhenium complex [HRe(CO)4]n, which 
catalyzes the synthesis of 2-alkenylbenzylamines from aromatic aldimines and alkenes.  
This reaction proceeds via aromatic C-H bond activation, insertion of the alkene into a 
C-H bond of the aromatic compound, β-hydride elimination and hydrogenation of the 
imino group of the aromatic aldimine.  The β-hydride elimination and hydrogenation 
steps are rare examples in transformations that proceed via aromatic C-H bond 
activation.  By changing the rhenium catalyst to [ReBr(CO)3(thf)]2, a quinoline 
derivative was produced from an aromatic aldimine and styrene via an aza-Dields-Alder 
reaction. 
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