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We study the problem of segmenting independently moving objects in a video sequence.
Several algorithms exist for classifying the trajectories of the feature points into inde-
pendent motions, but the performance depends on the validity of the underlying camera
imaging model. In this paper, we present a scheme for automatically selecting the best
model using the geometric AIC before the segmentation stage. Using real video sequences,
we confirm that the segmentation accuracy indeed improves if the segmentation is based
on the selected model. We also show that the trajectory data can be compressed into
low-dimensional vectors using the selected model. This is very effective in reducing the
computation time for a long video sequence.

1. Introduction

Segmenting individual objects from backgrounds is
one of the most important tasks of video processing.
For images taken by a stationary camera, many seg-
mentation algorithms based on background subtrac-
tion and interframe subtraction have been proposed.
For images taken by a moving camera, however, the
segmentation is very difficult because the objects and
the backgrounds are both moving in the image.

While most segmentation algorithms combine var-
ious heuristics based on miscellaneous cues such as
optical flow, color, and texture, Costeira and Kanade
[1] presented a segmentation algorithm based only on
the image motion of feature points.

Since then, various modifications and extensions of
their method have been proposed [3, 6, 10, 13, 15, 16].
Gear [3] used the reduced row echelon form and graph
matching. Ichimura [6] applied the discrimination cri-
terion of Otsu [20] and the QR decomposition for fea-
ture selection [7]. Inoue and Urahama [10] introduced
fuzzy clustering. Incorporating model selection using
the geometric AIC [12] and robust estimation using
LMedS [22], Kanatani [13, 15, 16] derived segmenta-
tion algorithms called subspace separation and affine
space separation. Maki and Wiles [18] and Maki and
Hattori [19] used Kanatani’s idea for analyzing the ef-
fect of illumination on moving objects. Wu, et al. [27]
introduced orthogonal subspace decomposition.
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To begin the segmentation, the number of indepen-
dent motions needs to be estimated. This has usually
been handled using empirical thresholds. Recently,
Kanatani and Matsunaga [17] and Kanatani [15] pro-
posed the use of model selection for this.

For tracking moving feature points, most authors
use the Kanade-Lucas-Tomasi algorithm [24]. To im-
prove the tracking accuracy, Huynh and Heyden [5]
and Sugaya and Kanatani [23] showed that outlier
trajectories can be removed by robust estimation us-
ing LMedS [22] and RANSAC [2]. Ichimura and
Ikoma [8] and Ichimura [9] introduced nonlinear fil-
tering.

In this paper, we propose a new method for im-
proving the accuracy of Kanatani’s subspace separa-
tion [13, 15] and affine space separation [16]. Ac-
cording to Kanatani [13, 16], the trajectories of fea-
ture points that belong to a rigid object are, under
an affine camera model, constrained to be in a 4-
dimensional subspace and at the same time in a 3-
dimensional affine space in it. If the object is in a
2-dimensional rigid motion, the resulting trajectories
are constrained to be in a 3-dimensional subspace or
more strongly in a 2-dimensional affine space in it.
Theoretically, the segmentation accuracy should be
higher if we use stronger constraints. However, it has
been pointed out that this is not necessarily true due
to the modeling errors of the camera imaging geome-
try [16].
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To cope with this, Kanatani [15, 16, 17] proposed
a posterior: reliability evaluation using the geomet-
ric AIC [12] and the geometric MDL [14]. How-
ever, his procedure is based on the assumption that
the segmentation is correctly done. In reality, if the
final result is rejected as unreliable by Kanatani’s
method, one cannot tell whether the assumed model
was wrong or the segmentation was not correctly
done.

In this paper, we introduce model selection a pri-
ori for choosing the best camera model and the as-
sociated space before doing segmentation. Using real
video sequences, we demonstrate that the segmen-
tation accuracy indeed improves if the segmenta-
tion is based on the selected model. We also show
that we can compress the trajectory data into low-
dimensional vectors by projecting them onto the sub-
space defined by the selected model. This is very
effective in reducing the computation time for a long
video sequence.

In Sec. 2, we summarize the subspace and affine
space constraints that underlie our method. In Sec. 3,
we discuss how the segmentation procedure is affected
by the camera imaging model and motion patterns.
In Sec. 4 and 5, we describe our procedure for select-
ing the best camera model a priori using the geo-
metric AIC. In Sec. 6, we show how the trajectory
data can be compressed into low-dimensional vec-
tors. Sec. 7 summarizes our procedure. In Sec. 8,
we demonstrate the effectiveness of our procedure by
real video experiments. Sec. 9 is our conclusion.

2. Trajectory of Feature Points

We track N rigidly moving feature points over M
frames and let (Zxq,Yxo) be the image coordinates
of the ath point in the xth frame. We stack all the
image coordinates vertically and represent the entire
trajectory by the following trajectory vector:

Po = (Tia Yia T2a Yoo TMa UMa) - (1)

We regard the XY Z camera coordinate system as
the world coordinate systemn and fix a 3-D object co-
ordinate system to the moving object. Let t. and
{3x,J,., kx} be, respectively, its origin and 3-D or-
thonormal basis in the xth frame. If we let (a4, ba, Ca)
be the 3-D object coordinates of the ath point, its 3-D
position in the xth frame is

Tha = tn + aain + bajn + Cakn (2)

with respect to the world coordinate system.

If an affine camera model (e.g., orthographic,
weak perspective, or paraperspective projection) is
assumed, the 2-D position of r,, in the image is given
by

( ;na ) = Alcrna + bn» (3)
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where A, and b, are, respectively, a 2 x 3 matrix
and a 2-dimensional vector determined by the posi-
tion and orientation of the camera and its internal
parameters in the xth frame. From eq. (2), we can
write eq. (3) as

( ;];Ka ) = Tth + aamln + bamZN + caﬁlsm (4)
[ 701

where g, M., Mo,, and g, are 2-dimensional
vectors determined by the position and orientation
of the camera and its internal parameters in the sth
frame. From eq. (4), the trajectory vector p, of
eq. (1) can be written in the form

Po = Mo + aaMy + bama + cams, (5)

where my, my, mq and mg, are the 2M-dimensional
vectors obtained by stacking gk, 1., Miok,and
g3, vertically over the M frames, respectively.

3. Constraints on Image Motion

Eq. (5) implies that the trajectory vectors of the
feature points that belong to the same object are con-
strained to be in the 4-dimensional subspace spanned
by {mo, mi,ma,m3} in R?M, It follows that mul-
tiple moving objects can be segmented into individ-
ual motions by separating the trajectory vectors {p,}
into distinct 4-dimensional subspaces. This is the
principle of the subspace separation [13, 15].

However, we can also see that the coefficient of my
in eq. (5) is identically 1 for all . This means that the
trajectory vectors are also in the 3-dimensional affine
space within that 4-dimensional subspace. It follows
that multiple moving objects can be segmented into
individual motions by separating the trajectory vec-
tors {p,} into distinct 3-dimensional affine spaces.
This is the principle of the affine space separation
(16].

Theoretically, the segmentation accuracy should
be higher if a stronger constraint is used. However,
eq. (5) was derived from an affine camera model, while
the imaging geometry of real cameras is perspective
projection. It can be shown [16] that the modeling er-
rors for approximating the perspective projection by
an affine camera are larger for the affine space con-
straint than for the subspace constraint. In general,
the stronger the constraint, the more vulnerable to
modeling errors. Conversely, the solution is more ro-
bust to modeling errors, if not very accurate, when
weaker constraints are used.

According to Kanatani [16], the choice between the
subspace separation and the affine space separation
depends on the balance between the camera model-
ing errors and the image noise. The subspace sepa-
ration performs well when the perspective effects are
strong and the noise is small, while the affine space
separation performs better for large noise with weak



November 2002

perspective effects. However, we do not know a priori
which is the case for a given video sequence.

If the object motion is planar, ie., if the ob-
ject merely translates, rotates, and changes the scale
within the 2-dimensional image, one of the three vec-
tors my, mgy, and m3 can be set 0. Hence, p, is
constrained to be in a 3-dimensional subspace. Since
the coeflicient of my is identically 1, p, is also in a
2-dimensional affine space within that 3-dimensional
subspace. It follows that we can segment multi-
ple planar motions into individual objects by sep-
arating the trajectory vectors {p,} into distinct 3-
dimensional subspaces or distinct 2-dimensional affine
spaces. However, we do not know a priori if the ob-
ject motion is planar or which constraint should be
used for a given video sequence.

4. A Priori Camera Models

For simplicity, let us hereafter call the constraint
that specifies the camera imaging model and the type
of motion the camera model. As we have observed,
we can expect high accuracy if we know which camera
model is suitable and accordingly use the correspond-
ing algorithm. We may test all the models and the
associated segmentation methods and evaluate the re-
liability of the results a posteriori, as Kanatani sug-
gested [15, 16, 17]. However, this works only if the
segmentation is done correctly; if the final result is
rejected as unreliable, one cannot tell whether the
assumed model was wrong or the segmentation was
not correctly done.

To overcome this difficulty, we introduce camera
models that should be valid irrespective of the seg-
mentation results. If, for example, one object is mov-
ing relative to a stationary background while the cam-
era is moving, two independent motions are observed
in the image: the object motion and the background
motion. Since the trajectory vectors for each mo-
tion is in a 4-dimensional subspace or a 3-dimensional
affine space in it, the entire trajectory vectors {p,}
should be in an 8-dimensional subspace L8 or a 7-
dimensional affine space A7 in it!.

If the object motion and the background mo-
tion are both planar, the trajectory vectors for each
motion are in a 3-dimensional subspaces or a 2-
dimensional affine spaces in it, so the entire trajectory
vectors {p,} should be in a 6-dimensional subspace
L8 or a 5-dimensional affine space A°® in it.

It follows that in the pre-segmentation stage we
have £8, A7, £8 and A% as candidate models irre-
spective of the segmentation results. They are related
by the following inclusion relationships (the left-hand

1The minimal subspace that includes an n ;-dimensional
subspace and an nz-dimensional subspace has dimension n 1 +
ny, while the minimal affine space that includes an m ;-
dimensional affine space and an m ;-dimensional affine space
has dimension m1 + mz2 + 1.
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side of « is a subspace of the right-hand side):

CG
cs8 < N A3 (6)
N g 7

If the number of independent motions is m, the
above L8 A7 8 and A% are replaced by L£*™,
Adm-1£3m and A3™ 1 respectively.

5. Model Selection

A naive idea for model selection is to fit the can-
didate models to the observed data and choose the
one for which the residual, i.e., the sum of the square
distances of the data points to the fitted model, is the
smallest. This does not work, however, because the
model that has the largest degree of freedom, i.e.,
the largest number of parameters that can specify
the model, always has the smallest residual. It fol-
lows that we must balance the increase in the resid-
ual against the decrease in the degree of freedom. For
this purpose, we use the geometric AIC [11, 12] (see
[25, 26] for other criteria).

Let n = 2M. For the N trajectory vectors {p,}
in an n-dimensional space, define the n x n moment
matriz by

N
M= p.p,. (7)

a=1
Let Ay > A2 > .-+ > A, be its eigenvalues. If we
optimally fit a d-dimensional subspace to {p,}, the
resulting residual J.a is given by

JLd = Z )\i- (8)

i=d+1
The geometric AIC has the following form [11, 12]:
G-AIC s = Jpa + 2d(N +n — d)é?. (9)

Here, ¢, which we call the noise level, is the standard
deviation of the noise in the coordinates of the feature
points.

For fitting a d-dimensional affine space to {p,},
the geometric AIC is computed as follows. Define the
n X n moment matrix matrix by

N
M'=3 (pa-Pc)Pa—pc).  (10)

a=1

where po is the centroid of {p,}. Let A} > A; >
.+» > M be the eigenvalues of the matrix M’. The
residual J 4a of fitting a d-dimensional affine space to

{p,} is given by

Jaz= Y M. (11)

i=d+1
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The geometric AIC has the following form [11, 12]:
G-AIC 4u = J4a + 2(dN +(d+1)(n - d))ez. (12)

We compare the geometric AIC for each candidate
model and choose the one that has the smallest geo-
metric AIC.

6. Trajectory Data Compression

The segmentation procedure involves various vec-
tor and matrix computations. The trajectories over
M frames are represented by 2M-dimensional vec-
tors. If, for example, we track 100 feature points over
100 frames, we have 100 200-dimensional vectors as
input data. The computation costs increases as the
number of frames increases.

However, all the trajectory vectors are constrained
to be in a subspace of dimension d, which is deter-
mined by the number of independent motions, irre-
spective of the number M of frames. Usually, d is a
very small number.

In the presence of noise, the trajectory vectors may
not exactly be in that subspace, but the segmen-
tation computation is done there. This observation
suggests that we can represent the trajectories by d-
dimensional vectors by projecting them onto that d-
dimensional subspace and taking a new coordinate
system in such a way that the first d coordinate axes
span the d-dimensional subspace. If, for example, one
object is moving relative to a stationary scene, all tra-
jectories are represented by 8-dimensional vectors.

This coordinate change is justified, since the sub-
space separation procedure is based only on the sub-
space structure of the data, which is invariant to lin-
ear transformations of the entire space, resulting in
the same segmentation.

The actual procedure goes as follows. Let A; >
Az > -+« 2> Ay be the eigenvalues of the matrix M
givenineq. (7), and {u1, ua,..., %, } the orthonormal
system of the corresponding eigenvectors. All we need
to do is replace the n-dimensional vectors p, by the
d-dimensional vector

(pavul)

i)a _ (pnwu?) , (13)

(Pa; uq)

where (a, b) denotes the inner product of vectors a
and b.

It seems that we can similarly convert the trajec-
tory vectors {p,} into d-dimensional vectors when a
d-dimensional affine space .4% is chosen as the cam-
era model. Namely, we take a new coordinate system
such that its origin is in A% and the first d coordinate
axes span A?. The affine space structure should be
invariant to such a coordinate change.
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However, the affine space separation described in
[11, 16] also uses part of the subspace separation pro-
cedure as internal auxiliary routines. Since affine
transformations destroy the subspace structure, affine
coordinate changes are not allowed as long as we use
Kanatani’s affine space separation.

If a d-dimensional affine space A% is chosen, we
instead compress {p,} into (d + 1)-dimensional vec-
tors by projecting them onto the (d + 1)-dimensional
subspace £3%! in which .A¢ is included, and the pro-
jecting them onto .A%. The computation of the latter
part goes as follows.

We calculate a (d + 1) x (d + 1) matrix M’ in
the same way as eq. (10) in the (d + 1)-dimensional
subspace £4t1, Let Xy > Xy > ... > :\:1 be its eigen-
values, and {&}, @3, . .., %} the orthonormal system
of the corresponding eigenvectors. We compute the
(d+1) x (d + 1) projection matrix

d
Py=Y wa, (14)
i=1

and replace (d + 1)-dimensional vectors p, by the
following (d + 1)-dimension vectors:

. - Zr _
P = Do+ Py(p, — Pe)- (15)

The subspace separation [13, 15] and the affine
space separation [16] both internally use model selec-
tion by the geometric AIC, which involves the codi-
mension of the constraint. If we use the compressed
data as input, the codimension should be the differ-
ence of the dimension of the constraint not from the
original dimension of the data but from their com-
pressed dimension.

7. Summary of the Procedure

Our segmentation procedure is summarized as fol-
lows.

1. Detect feature points in the first frame using
the Harris operator [4], and track them through
the entire video stream using the Kanade-Lucas-
Tomasi algorithm [24].

2. Estimate the number of independent motions us-
ing the method described in (17, 15]2.

3. Remove outlier trajectories using the method de-
scribed in [23]2.

4. Test if the trajectory vectors span a 4m-

dimensional subspace L™, a (4m —1)-
dimensional affine space AY™-! a 3m-
dimensional subspace £3™, or a (3m — 1)-
dimensional affine space £3™~!, using the

geometric AIC.

2The source program is publicly available at
http://www.suri.it.okayama-u.ac.jp/e-program.html.
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(e)

Model | £8 | A" | £5 | A5
G-AIC || 836.9 | 779.1 | 688.9 | 631.1

(b) Geometric AIC

(¢) Background points (d) Object points

Method || Costeira-Kanade | Ichimura | Shi-Malik | £8 | A7 | £8 | A°

Correctness (%) || 85.3 |

926 | 868 [75.0[86.0 |97.7 | 100

(e) Correctness of segmentation

Figure 1: (a) Input video sequence (1st, 8th, 15th, 22th

, 30th frame) and successfully tracked 136 feature points. (b)

The geometric AIC for each model. (c¢) The segmented trajectories of background points. (d) The segmented trajectories
of object points. (e) The correctness of segmentation for different methods.

5. Select the model for which the geometric AIC is
the smallest.

6. Compress the trajectories into low-dimensional
vectors by projecting them onto the subspace de-
fined by the selected model.

7. Do segmentation by subspace separation® [13, 15
or by affine space separation?® [16] according to
the selected model.

In the following, we show real video experiments fo
confirm the effects of Steps 4, 5, 6, and 7, specifically.

8. Real Video Experiments
8.1 Segmentation performance

We tested our proposed method using real video
sequences. The image size is 320 x 240 pixels. In
order to focus only on the segmentation performance,
we assumed that the number of independent motions
was two in the following examples.

Fig. 1(a) shows five frames decimated from a 30
frame sequence taken by a moving camera. We cor-
rectly tracked 136 points, which are indicated by the
symbol O in the images.

We fitted to them an 8-dimensional subspace L8,
a 7-dimensional affine space A7, a 6-dimensional sub-
space £° and a 5-dimensional affine space A% and
computed their geometric AICs. Fig. 1(b) shows their
values. As we can see, the 5-dimensional affine space
A® was chosen as the best model.

In order to compute the geometric AIC as given in
egs. (9) and (12), we need to know the noise level e.

Theoretically, it can be estimated from the residual of
the most general model £° if the noise in each frame
is independent and Gaussian [11]. In reality, however,
strong correlations exist over consecutive frames, so
that some points are tracked unambiguously through-
out the sequence, while others fluctuate from frame
to frame [23]. Considering this, we empirically set €
to 0.5 pixels®. We have confirmed that changing this
value over 0.1 ~ 1.0 does not affect the selected model
in this and the subsequent experiments.

The video sequence of Fig. 1(a) was taken from a
distance, and the object (a car) and the background
are moving almost rigidly in the image. Hence, the
selection of A® seems reasonable.

Figs. 1(c) and (d) show the trajectories of the
object points and the background points segmented
by the affine space separation based on the selected
model A°.

Fig. 1(e) compares the correctness of segmenta-
tion measured by (the number of correctly classified
points)/(the total number of points) in percentage
for different methods. The correctness of individual
matches was judged by visual inspection.

In the table, “Costeira-Kanade” means the method
of Costeira and Kanade [1], which progressively inter-
changes the rows and columns of the (shape) interac-
tion matriz (Appendix A) to make it approximately
block-diagonal in such a way that the off-diagonal ele-
ments have small absolute values. “Ichimura” means
the method of Ichimura [6], who applied the Otsu
discrimination criterion [20] to each row of the inter-

3We also used this value for the outlier removal procedure
{23].

45
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(a) Input sequence

i ———=
]
Model | £8 | A7 | £8 | A (HEE T
G-AIC || 4346 | 413.6 | 398.7 | 379.8 ot
(b) Geometric AIC
(¢) Background points (d) Object points
Method || Costeira-Kanade | Ichimura | Shi-Malik | £3 | A7 | £5 | A°
Correctness (%) || 57.1 | 571 | 571 | 92.0 [61.9 | 619 | 100

(e) Correctness of segmentation

Figure 2: (a) Input video sequence (1st, 5th, 9th, 13th, 17th frame) and successfully tracked 63 feature points. (b) The
geometric AIC for each model. (c¢) The segmented trajectories of background points. (d) The segmented trajectories of
object points. (e) The correctness of segmentation for different methods.

action matrix and segmented the elements according
to the row with the highest discrimination measure.
“Shi-Malik” indicates the result obtained by parti-
tioning the graph defined by the interaction matrix
(the feature points as vertices and the absolute val-
ues of its elements as the weights of the corresponding
edges) in such a way that the normalized cut [21] is
minimized (Appendix B). The fuzzy clustering of In-
oue and Urahama [10] is also based on a similar idea.
The symbols £8, A7, L%, and A® indicate the sub-
space separation and affine space separation using the
corresponding models. As expected, the affine space
separation using the selected model A% alone achieved
100% correct segmentation.

Fig. 2(a) shows another video sequence, through
which 63 points are tracked over 17 frames. The re-
sults are arranged in the same way as Figs. 2(b)-
(e). Again, A® was chosen as the best model, and
the affine space separation using this model alone
achieved 100% correct segmentation. This sequence
was also taken from a distance, and the object and the
background are moving almost rigidly in the image,
so the choice of A® seems reasonable.

Fig. 3(a) shows a different sequence, through which
73 points are tracked over 100 frames. This sequence
was taken near the moving object (a person) by a
moving camera, so the perspective effects are rela-
tively strong. As expected, the 8-dimensional sub-
space £® was chosen as the best model, and the sub-
space separation using it gave the best result.

The reason why the subspace separation did not
achieve 100% correct segmentation seems to be that
the method is based on the affine camera model, al-

though the modeling error is smaller than for the
affine space separation. In fact, we observed that the
accuracy unexpectedly decreased as we increased the
number of the internally used LMedS iterations to
impose the subspace constraint very strictly.

8.2 Effects of data compression

Table 1 shows the computation time and its reduc-
tion ratio brought about by our dimension compres-
sion for the above three examples. Here, we converted
the trajectories into 8-dimensional vectors, irrespec-
tive of the selected model. The reduction ratio is
measured by (the computation time for compressed
data)/(the computation time for the original data) in
percentage.

The sequence in Fig. 1 is only 30 frames long, but
the number of feature points is very large. In this
case, the reduction ratio is only 94.7%. The sequence
in Fig. 2 is also short, and the number of feature
points is very small. Again, the reduction ratio is
merely 71.4%. In contrast, the sequence in Fig. 3 is
very long with relatively a small number of feature
points. In this case, the computation time is dramat-
ically reduced to 15.2%.

Thus, the reduction of computation time is partic-
ularly significant for a long sequence. This is because
the compressed dimension d of the data depends only
on the camera model, irrespective of the number M
of the frames. As a result, the computation time is
approximately a function of the number N of feature
points alone. From Table 1, we can guess that the
computation time is approximately O(N5) or O(N9),
through rigorous analysis is very difficult.
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Model | £8 | A" | £5 | A°
G-AIC || 2117.9 | 2281.5 | 3158.5 | 3340.1

(b) Geometric AIC

Method

(¢) Background points
|| Costeira-Kanade | Ichimura | Shi-Malik | £8 | A7 | £8 | A5

(d) Object points

Correctness (%) || 76.7 |

58.9

| 767 931602575 |89.0

(e) correctness

Figure 3: (a) Input video sequence (1st, 25th, 50th, 75th, 100th frame) and successfully tracked 73 feature points. (b)
The geometric AIC for each model. (c) The segmented trajectories of background points. (d) The segmented trajectories
of object points. (e) The correctness of segmentation for different methods.

Table 1: The computation time and its reduction ratio.

| Fig. 1 | Fig. 2 | Fig. 3

Number of frames 30 17 100
Number of points 136 63 73
Computation time (sec) 373 5 12
Reduction ratio (%) 94.7 71.4 15.2

9. Concluding Remarks

We have proposed a technique for automatically
selecting the best model by using the geometric AIC
in an attempt to improve the segmentation accuracy
of the subspace separation [13] and the affine space
separation [16] before doing segmentation. Using real
video sequences, we demonstrated that the separation
accuracy indeed improves if the segmentation is based
on the selected model.

We also confirmed that we can compress the tra-
jectories into low-dimensional vectors, irrespective of
the frame number, by projecting them onto the sub-
space defined by the selected model. This is very
effective in reducing the computation time for long
video sequence.
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Appendix A: Interaction Matrix

Consider a set of N points {p,} € R™. Suppose
each point belongs to one of the m r-dimensional sub-
spaces L] of R", i = 1, ..., m, in such a way that each
L7 contains more than r points. Let d = rm.

Define the N x N metric matriz G = (Gap) by

Gaﬁ = (paapﬁ)' (16)
Let A\ > > An be its eigenvalues, and
{vi,...,un} the orthonormal system of the corre-

sponding eigenvectors. Define the N x N (shape) in-
teraction matriz Q by

d
Q= Z viv;r.
=1

Theorem 1 The (o) element of Q is zero if the ath
and Bth points belong to different subspaces:

(17)

Qap =0, Pq € L7, pﬂeL"} i#J (18)

This theorem, which is the essence of the Costeira-
Kanade algorithm [1], is proved as follows. Since
N (> n) vectors {p,} are linearly dependent, there
exist infinitely many sets of numbers {c,}, not
all zero, such that Zgzl €aP, = 0, but if the
points {p,} belong to two separate subspaces L,
and L3 such that £; & L2 = R™ (@ denotes di-
rect sum), the set of such “annihilating coefficients”
{ca} (“null space” to be precise) is generated by
those for which Zpue £, CaPo = 0 and those for
which Ep(,e £, CaPo = 0 (A formal proof is given
in [13]). This theorem also plays an important role
in Kanatani’s subspace separation [13, 15] and affine
space separation [16].

The eigenvalues and eigenvectors of the metric ma-
trix G can also be obtained by computing the eigen-
values and eigenvectors of the N x N moment matriz

N
a=1

Let \; > > AN be its eigenvalues, and
{v1,...,vn} the orthonormal system of correspond-
ing eigenvectors. The matrices G and M are both
positive semi-definite symmetric and of the same
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rank, sharing the same nonzero eigenvalues. Their
eigenvectors for the nonzero eigenvalues are converted
to each other in the form

1 (plyui)

N
. 1
= —\/T . y U; = \/)\_ Z ViaPq:s (20)
(Pn>wi) "=l

where vy, is the ath component of v;.
A third way* is to do the singular value decompo-
sition (SVD) of the n x N observation matriz

W={(p PN ) (21)

into the form
W = Uandiag(O'l, 0'2;~--»0'n)v}\.'-xnv (22)

where diag(oy,02,...,0,) denotes the diagonal ma-
trix with the singular values o7 > 09 > -+ > op
as its diagonal elements in that order. It is easy to
see that o7,...,02 coincide with \;,...), and that
V nxn and Uy, are, respectively, the N x n matrix
consisting of v1,...,v, as its columns and the n x n
matrix consisting of uy,...,u, as its columns.

We can choose from among the above three meth-
ods the most efficient one®, which generally depends

on the relative magnitude of N and n.
Appendix B: Normalized Cut Minimization

Consider the problem of partitioning a weighted
undirected graph with N vertices. Regarding the
weight of each edge as the similarity between the two
vertices connected by that edge, we want to partition
the vertices into two groups A and B in such a way
that the similarities between the vertices within each
group are large while the similarities between the ver-
tices that belong to different groups are small.

Let W,p be the weight of the edge that connects
vertices a and 3, and d,, (= Zgzl Wag) the degree of
the vertex a, i.e., the sum of the weights of the edges
starting from it.

Let z, be the group indicator of vertex o, taking
the value 1 if it belongs to group A and the value 0 if
it belongs to group B. Shi and Malik [21] proposed to
partition the graph in such a way that the following
normalized cuts is minimized:

2 Was

D Was
Toa=—1l,2p5=1

To=lzg=-1

Ncut = + . (23)

Y de > de

Te=1 T=—1

4This is the original form described by Costeira and Kanade
(1], but their proof is rather difficult to understand. Theoreti-
cally, it is more consistent to start from the metric matrix G
and regard the SVD as a computational tool.

51n theory, the use of SVD should be the most efficient if it
is properly implemented.
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It appears that in order to reduce the similarity be-
tween the two groups one only needs to minimize the
cut, i.e., the sum of the weights of the edges that con-
nect the two groups. However, this would often result
in an unbalanced partitioning such as a single vertex
with a small degree forming one group. Eq. (23) is
obtained by normalizing the cut by the sum of the
similarities within each group, so that the similarities
within each group become large while the similarities
between the two groups become small.

Shi and Malik [21] showed that the normalized cut
can be minimized by the following procedure:

1. Define the N x N diagonal matrix

D= diag(dl,...,dN). (24)

2. Let W be the N x N matrix whose (o) element
is Wag.

3. Compute the N-dimensional generalized eigen-
vector y = (y1,...,yn)' of the generalized
eigenvalue problem

(D - W)y = ADy, (25)
for the second smallest generalized eigenvalue.

4. Let ymax and ymin be, respectively, the maximum
and the minimum of y;,---,yx. Divide the in-
terval [Ymin, Ymax) iNto an appropriate number of
subintervals of equal width. For each dividing
point y*, let z, = 1 if yo > y« and o, = —1 if
Yo < Yu, a = 1, ..., N, and compute the normal-
ized cut (23). Do this for all the dividing points
and find the value y, for which the normalized
cut is minimized.

5. Return the N-dimensional binary vector £ =
(x1,...,zN)" given by that y,.

Step 3 of the above procedure can be computed as
follows: Let

D™ Y2 = diag ), (26)

-

1
(\/E""’ o

and compute the N-dimensional eigenvector z of the
N x N symmetric matrix

A=DY¥D_-w)D'? (27)

for the second smallest eigenvalue. The vector y is
given by multiplying z by the N x N matrix

D'? = diag(\/di, ..., V). (28)

Namely, return
y= DYz (29)
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