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A multi-path ring-resonator (MPRR) was proposed to extend FSR of ring resonator.
However, it is complicated to analyze the MPRR by using well-known analysis techniques
such as scattering matrix or other numerical methods. This paper describes procedure for
deriving transfer matrix by means of signal flow-chart to analyze the MPRR. We do not
need complicated calculation for steady state analysis because transfer matrix elements are
formulated clearly. As a result, The calcultaion time in this method can be reduced 1/3 to
1/20 times compared with using scattering matirx method. Furthermore, a transmittance
characteristics of the MPRR at FSR extension-factor of 10 will also be shown. This suggests
that analysis of other types of the MPRR by using this method can be performed simply
and take a shorter time.

1 INTRODUCTION

Ring resonators have proven to be one of the most versatile elements for various applications,
as evidenced by their wide spread use in electronic and microwave circuits. Recently, on the
field of integrated optics, study on waveguide-type optical ring-resonator has also grown rapidly
because of compact and frequency tuning can be easily achieved by using a suitable guided-wave
control technique. Some authors have successfully fabricated micrometer order ring-resonators
[1], [2]. These results suggest that ring resonators should be expected as a potential device for
optical signal processing, such as DWDM communication system. This system requires a wide free
spectral range (FSR). Since FSR of ring resonator is inversely propotional to ring radius, a wider
FSR can be realized by reducing ring radius. However, it is well known that the bending loss of a
waveguide increases rapidly with decreasing the radius of curvature. Therefore, extending FSR in
ring resonator increases insertion loss. We proposed the MPRR as a candidate method to extend
FSR without decreasing ring radius [3]. We reported in [4] that the MPRR has advantages of size,
compared to conventional double-cavity ring-resonator [5], and crosstalk and extension factor of
FSR, compared to triple-coupler ring-resonator [6].

There are various methods to evaluate the characteristics of the MPRR. such as FDTD method
[7], or scattering matrix method [5]. The first has advantage of time- and space-variant result
but needs a large computer memory and much time to calculate. The second needs complicated
matrix operation, especially for the multi-path structure of ring resonator. This disadvantage can
be avoided by means of transfer matrix method. Transfer matrix method has been used widely
for the analysis of, for example, cascaded fiber-optic recirculating and nonrecirculating delay lines
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[8]. The aim of this paper is to provide a derivation of transfer function of MPRR using signal
flow-chart.

2 PRINCIPLE OF THE MPRR

The structure of the MPRR is schematically depicted in Fig.1. The MPRR consists of an
inner ring with radius r, an outer ring, two waveguides for input and output, and four directional
couplers. The input waveguide is coupled to the inner ring by means of directional coupler with
power coupling ratio of K. The inner and outer ring coupled each other by means of two directional
couplers with power coupling ratios of K3 and K4. The MPRR has two output ports. One is an
output port of directional coupler with power coupling ratio K; (Out-1), and the other one is an
output waveguide coupled to the inner ring by directional coupler with power coupling ratio K,
(Out-2). The resonance light will pass through the Out-2 port and the antiresonance light will pass
through the Out-1 port. We suppose that directional couplers have zero length. It means that
phase shift effect in directional couplers is neglected in this study. We also assume that there is no
frequency independence at power coupling ratio of directional couplers.

Figure 1: Basic structure of MPRR.

Although the light in MPRR propagate in various routes (this is the reason why we call Fig.1 as
a multi-path ring-resonator), there are only three basic closed loops in the MPRR if we set upper
part and lower part of the outer ring symmetrical to the directional couplers with power coupling
ratios K3 and K4. The first one is a closed loop of the inner ring with loop length of A;. The
second is a closed loop which consists of a half of the inner ring and a half of the outer ring with
loop length of A;. The last is a closed loop of the outer ring with loop length of A3. The FSR of
each loop, which is defined as the frequency spacing between two neighboring resonant frequencies,
can be written as follows:

c
Ay; = i=1,2,3 1
Yi neAz- ( )
where ¢ is the free-space velocity of light, n. is effective refractive index of waveguide. Equation
(1) shows that FSR Ay; is inversly propotional to the loop length A;. According to the vernier
principle, the FSR of MPRR Av can be represented as

Av=NAv; = MAvy = LAvs (2)

where L, M and N must be relatively prime numbers. The graphical cxplanation of eq.(2) is
illustrated in Fig.2. Figure 2{(a) shows a series of L, M and N which satisfy vernier condition.
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Figure 2(b) shows a case when a series of L, M and N has the common factor of 2. This implies
that FSR of the MPRR is not NAwv; but (N/2)Av;.
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Figure 2: Schematic explanation of vernier principle in the MPRR for two examples (a) L =6, M =
5 and N = 4 (the case of relatively prime numbers) and (b) L = 8 M =6 and N = 4 (the case of
common factor 2).

3 DERIVATION OF TRANSFER FUNCTION

3.1 TRANSFER MATRIX OF CASCADED BLOCKS

In order to derive the transfer function of the MPRR we devide the MPRR into several sections
as shown in Fig.3(a), where four-port networks are formed by two sections. There are two four-port
network components formed the MPRR, i.e. directional coupler component and double delay-line
component (Fig.3(b)). Subscripts u, v and w show the waveguide label. The label u is for straight
input-output waveguide, and the labels v and w are for outer and inner ring, respectively. The
section number from (1) to (12) denote the reference planes at input and output of four-port
network.

According to the notations in Fig.3(b), we can write the transfer matrix expression of each four-
port network in terms of complex amplitude of input pairs at p-th section and complex amplitude

1 (7)’ /,.' ‘\\(6) . N
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Figure 3: (a) Schematic diagram of MPRR for analysis by means of transfer matrix formulation
and (b) Schematic diagram of directional coupler and double delay-line.

Application of Transfer Matrix Method with Signal Flow-Chart to Analyze Optical Multi-Path Ring-Resonator

75



76 lip Syarif HIDAYAT et al. MEM.FAC.ENG.OKA.UNI. Vol.36, No.2

of output pairs at g-th section:

(i). Matrix notation for directional couplers with power coupling ratios K; and Ks:

'bu(q>} [ Gy )] :
= [H; P i=1,2. 3
[ bw(q) e [ Gw(p) ®)

(ii). Matrix notation for directional couplers with power coupling ratios K3 and Kj:

) | = 1 [ 2 -
.bwm] = el o Pma @
(iii). Matrix notation for double delay-line:
b, v .
[0 | =1l [ 2 i=123,4 ®)

In eqs.(3)-(5), [Hci) is transfer matrix of i-th directional coupler with power coupling ratio Kj
(¢ = 1,2,3,4) and [Hy;] is transfer matrix of j-th double delay-line (j = 1,2,3,4). The transfer
matrices of directional couplers and double delay-lines are defined as

- 1-K; —jvKi] _ [Axi Bki _
el = V77 | Vi ___IV_KiJ =09 el o130
6
e—i(B+ia)ly; 0 ' ( )
[Hd]] = [ 0 e"j(ﬂ'i'ja)leJ J= lv 29 374

where j=+/—1. Equation (6) is formulated under a hypothesis that directional couplers have uni-
directional power flow and that they have no backward reflection. We assume that directional
couplers have same fractional power loss v and that both rings have same propagation constant
B. To facilitate the derivation, we suppose that the inner ring and the outer ring have same at-
tenuation coefficient a. Using blocks represented in Fig.3(b), we can rewrite the MPRR as shown
in Fig.4. Since input port (In) of the MPRR corresponds to ay(;), and output ports of Out-1 and
Out-2 correspond to by(3) and by(12), respectively, we can express the MPRR in four-port network
notation as follows:

[bu(z) } _ [Hu Hm} [au(l)] (7)
by(12) Hyy Hp 0 |
QOur aim is to obtain above transfer matrix components Hyy, His, H2; and Has in terms of the
parameters of power coupling ratios and waveguide lengths.

The first step, we will derive equivalent transfer matrix for the cascade of three blocks from
section (3) to (6). It is clear that equivalent transfer matrix between section (3) and (6) can be

obtained only by multiplying in reverse order the transfer matrices of each component block [8].
Therefore, we can write

by (6) ] N [ Qv(3) }
= [Hyo|[He3||H. . 8
[bw(ﬁ) [Hao|[Hes|[Hai) G (8)

We can apply the same procedure to derive equivalent transfer matrix between section (7) and
(10). As a result, these equivalent matrices are as follows:
A B
(1] = [HallHallHal = | & D]

[Ha| = [Had][Hea][Has] = [212 gi]
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Figure 4: Block diagram of the MPRR which consists of the cascades of directional couplers and

double delay-lines.

where [H1] and [H?] are equivalent transfer matrices of cascade block between section (3) and (6)
and between section (7) and (10), respectively. Restructuring signal block with signal flow-chart
method will be described at the following section.

3.2 SIGNAL FLOW-CHART METHOD

Let us see Fig.4 again. Section (3) and section (10) have a common input-output port. The same
case is also founded in section (6) and section (7). Therefore, matrix components of [H1] and [Hy]
can be connected as shown in Fig.5. This connection will produce a new equivalent transfer matrix
[H3| again. In order to derive [Ha|, using signal flow-chart method is simpler compared with chain
matrix operation reported in [6]. Figure 6 illustrates signal flow connections between [H;] and [Hj).

Based on the Fig.6(b), we can derive ABCD matrix [H3} using simultaneous equations as follows:

(i). Formulate equation for by(g) in terms of ay(3) and-ay) :
bw(e) = Diaw) + C1av(3) . (10)
(ii). Formulate equation for a(3) in terms of ay(7) and ay(7) :

ay(3) = Baay(r) + Azay(r) - (11)
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Figure 5: Block diagram of the MPRR rewritten using [H] and [Ha].
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Figure 6: Signal flow-chart of connection between [Hi| and [H>).
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Figure 7: (a) Representation of eqs.(14) and (17), (b) Final signal flow-chart of [Hj].

(ili). Formulate equation for a,(7) in terms of a,,3) and ay) :
ay(7) = Biaw() + A1av) - (12)

(iv). Substitute eq.(12) into eq.(11), then rewrite ay(3) in terms of ay(3) and a(r) :

av(E) = T G + 2, ™ - (13)
VO T T A AT T T 44,
(v). Substitute eq.(13) into eq.(10), then rewrite by, () in terms of a3y and ay() :
Bi1C1 A, C1 B,
bw(ﬁ) = {Dl + 1— AlAz} BT 1= A1 A, Aw(7) - (14)
(vi). Formulate equation for by(1qy in terms of a7y and ayz) :
bw(lO) = Dgaw(7) + Cgav(7) . (15)
(vii). Substitute eq.(11) into eq.(12) :
By A1 B,
av(n) = 1— A1 A, Aw(3) + 1— A1A2 w(7) * (16)
(viii). Substitute eq.(16) into eq.(15), then rewrite by, (1) in terms of a3y and Ay (7)
e { A1 ByC, }
bw(lO) = 1_A1A2aw(3) + D2 + 1— A1A2 a ) (17)
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Equations (14) and (17) can be represented in signal flow-chart notation as shown in Fig.7(a).
Finally, the cascade between [H1] and [H3] can be represented as shown in Fig.7(b). Therefore, the
equivalent transfer matrix of Fig.7(b) can be written as follows:

[ bue) J [aw(a)] [Aa Bs} {aw(a)]
= [H = ) 18
L bw(10) L43] Cw(7) Ca D3| |awm (18)
where
( BiCiA
1o =0y B
_ C1B,
Bs = 1-A1A9
q B.C (19)
_ By
Cs=1T A Ay
A1 B, C:
| D3 = Dy + Ttlﬁ% .

The second step is derivation of equivalent transfer matrix as a result of connection between
[H3] and input directional-coupler with power coupling ratio K. This derivation is also solved by
signal flow-chart method as shown in Fig.8. The ABCD component of Fig.8 can be formulated by
using similar procedure described above:

( Bxk1Ck1Cs
As= At 7o Dk, C3

B, = _BxiDs
e
< (20)
Cxi14
Cu = K143
1 - Dk1Cs
Dx143D3
Dy =By + ——— .
S P e
The last step, the equivalent transfer matrix of the MPRR can be derived as a result of cascade
of output directional-coupler with power coupling ratio K3 and ABCD matrix in eq.(20). The
signal flow-chart of this cascade is shown in Fig.9. Finally, the transfer matrix of the MPRR can
be written as follows:

[bu(2) } _ {Hu Hu} {%(1) } (21)
bu(i2) Ha1  Hagp | |ayayy
where
_ B4CyDx2
Hyy = Ag + 1= DiDro
ByCx2
Hog=-—"7—7—
27 1 DyDxs
(22)
_ CO4Bxs
i = 1 - DyDx2
DyBkoCka2
=B ———
L Hayo K2+1—D4DK2
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Figure 8: Derivation of [Hy] based on signal flow-chart.
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Figure 9: Derivation of Hi;, Hyp, H2 and Hjg based on signal flow-chart.
The power transmittance equations of anti-resonance output 7} and resonance output T3 (they

correspond to Out-1 and Out-2 in Fig.1, respectively) can be obtained by substituting ay(;1)=0
into eq.(21):

b 2

L ] = |Hy|? (23)
Qu(1)
b 2

T, = |22 = g2 (24)
ay(1)

4 CALCULATION EXAMPLES
4.1 CALCULATION TIME

Previously, we have analyzed single ring-resonator using scattering matrix. By using 550MHz
CPU (K6-2) with 192MB memory, we tested to compare calculation time between scattering matrix
method and transfer matrix with signal flow-chart method. In the scattering matrix method,
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calculation time depends on the value of power coupling ratio, but not for transfer matrix with signal
flow-chart method. The comparing result shows that scattering matrix method needs calculation
time 3 seconds and 23 seconds for power coupling ratios K3 = Ky = 0.01 and K; = K3 = 0.001,
respectively. However, transfer matrix with signal flow-chart method needs only 1 second for both
values of power coupling ratio. This calculation time is time to produce 5000 points.

4.2 TRANSMITTANCE CHARACTERISTICS OF THE MPRR

In this section, we show a brief analysis example of the MPRR. Firstly, in order to obtain
transmittance characteristics of the MPRR, we need to find resonance condition of the MPRR. We
set lengths ly1 = lws = lws = lwa = lin = 77/2, and ly1 = lyg = ly3 = lyg = loy:. By taking K3 as a
reference, the length of the closed loops denoted by A1, Ay and Ag can be written as the following

equations:
Ay =4,
AZ = 2lin + 2lout (25)
A3 = 4lout

Therefore, resonance behaviour will occur if phase delays of each closed loop satisfy the following
equations:

B(4ln) = 27N - N,
B(2lin + 2lout) = 27M - N, (26)
6(4lout) = 27rL ) Nc

where N is the greatest common divisor of resonant number at each loop. According to the
vernier principle described in Fig.2 and eq.(2), the FSR of MPRR can be extended if L, M and N
are relatively prime numbers.

According to eq.(2), N, M and L also show multiplying numbers of FSR at each closed loop.
Since N corresponds to FSR multiplying in the inner ring, we can say N as extension factor of
FSR in the MPRR. Equation (26) will results

lowe = 21, (27)
out — N in

{ L+N=2M

Figure 10 shows a sample output from Out-2 (T?) for extension factor N = 10 (we set L = 12

and M = 14). Other parameters are K1 = Ky = 107%, K3 = K4 = 10™4. In this analysis we set
a =0, v =0. The FSR of inner ring is 200GHz.

0 -- N=10 y
30dB FSR;fincr;:{r ring
00
201 l ( 2 \ 4
B o

Transmission 7, [dB]

40 r}

[N

0 2
Relative Optical Frequency [THz]

Figure 10: Transmission characteristics of the MPRR at Out-2 port for N = 10, K; = Ko = 10°6
and K3 = Kg = 1074
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Figure 11: (a) The MPRR structure with directional coupler with power coupling ratio K; coupled
to outer ring, (b) Power transmittance for (a).

Using signal flow-chart, other structures of the MPRR also can be analyzed simply. Figure.11
shows calculation result for the MPRR structure showed in Fig.11(a). This flexibility is very
important to evaluate many types of ring-resonator structure.

5 CONCLUSION

The analysis method for evaluating chacateristics of the MPRR. by means of transfer matrix
method with signal flow-chart was described. Using this method, even though the structure of the
MPRR has various light-paths, matrix components of transfer function can be formulated clearly.
As a result, evaluation of the MPRR was performed simply and took a short time compared with

scattering matrix method. It is expected that other types of the MPRR can also be analyzed
simply.
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