Math. J. Okayama Univ. 54 (2012), 65-76

ON A GENERALIZATION OF CQF-3' MODULES AND COHEREDITARY TORSION THEORIES

YASUHIKO TAKEHANA

Throughout this paper we assume that R is a right perfect ring with identity and let $\operatorname{Mod-}R$ be the category of right R-modules. Let M be a right R-module. We denote by $0 \to K(M) \to P(M) \to M \to 0$ the projective cover of M. M is called a CQF-3' module, if P(M) is M-generated, that is, P(M) is isomorphic to a homomorphic image of a direct sum $\oplus M$ of some copies of M.

A subfunctor of the identity functor of Mod-R is called a preradical. For a preradical σ , $\mathcal{T}_{\sigma} := \{M \in \text{Mod-}R : \sigma(M) = M\}$ is called the class of σ -torsion right R-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R : \sigma(M) = 0\}$ is called the class of σ -torsionfree right R-modules. A right R-module M is called σ -projective if the functor $\text{Hom}_R(M,-)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $A \in \mathcal{F}_{\sigma}$. We put $P_{\sigma}(M) = P(M)/\sigma(K(M))$ for a module M. We call a right R-module M a σ -CQF-3' module if $P_{\sigma}(M)$ is M-generated.

In this paper, we characterize σ -CQF-3' modules and give some related facts.

1. CQF-3' modules relative to a cohereditary torsion theories

F. F. Mbuntum and K. Varadarajan defined a CQF-3' module as a dualization of a QF-3' module and characterized it in [10]. In this paper we generalize a CQF-3' module by using an idempotent radical. A preradical σ is idempotent [radical] if $\sigma(\sigma(M)) = \sigma(M)$ [$\sigma(M/\sigma(M)) = 0$] for a module M, respectively. It is well known that if σ is idempotent preradical, then \mathcal{F}_{σ} is closed under taking extensions. It is also well known that if σ is a radical, then \mathcal{T}_{σ} is closed under taking extensions. A preradical t is called epi-preserving if t(M/N) = (t(M) + N)/N holds for any submodule N of a module M. It holds that any epi-preserving preradical is a radical. For a preradical σ we say that t is σ -epi-preserving if t(M/N) = (t(M) + N)/N holds for any module M and any submodule N of M with $N \in \mathcal{F}_{\sigma}$. For modules M and N, $t_N(M)$ denote $\sum_{f \in \operatorname{Hom}_R(N,M)}$ It holds that t_N is an idempotent preferred and t_N is an idempotent preferred and t_N and t_N are idempotent preferred and t_N and t_N are idempotent preferred and t_N and t_N are idempotent preferred and t_N is an idempotent preferred and t_N are identity and t_N are identity and t_N are identity and t_N and t_N are identity and t_N a

radical for any module N and that $\mathcal{F}_{t_A} = \{M \in \text{Mod-}R : \text{Hom}_R(A, M) = 0\}$ and $\mathcal{T}_{t_A} = \{M \in \text{Mod-}R : \oplus A \to M \to 0\}$

A short exact sequence $0 \to K(M) \to P(M) \xrightarrow{f} M \to 0$ is called a projective cover of a module M if P(M) is projective and $K(M) := \ker f$ is

Key words and phrases. CQF-3', cohereditary.

small in P(M). For $X, Y \in \text{Mod-}R$ we call an epimorphism $g \in \text{Hom}_R(X, Y)$ a minimal epimorphism if $g(H) \subsetneq Y$ holds for any proper submodule H of X. It is well known that a minimal epimorphism is an epimorphism having a small kernel. A short exact sequence $0 \to X \to Y \to M \to 0$ is called σ -projective cover of a module M if Y is σ -projective, X is σ -torsionfree and X is small in Y. If σ is an idempotent preradical, then $P(M)/\sigma(K(M))$ is σ -projective for any module M by Lemma 1.4 in [11]. If σ is a radical, $K(M)/\sigma(K(M)) \in \mathcal{F}_{\sigma}$. We put $K_{\sigma}(M) = K(M)/\sigma(K(M))$ and $P_{\sigma}(M) = P(M)/\sigma(K(M))$ for a preradical σ . Then $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$. Thus if σ is an idempotent radical, then a module M has a σ -projective cover and it is given by $0 \to K_{\sigma}(M) \to P_{\sigma}(M) \to M \to 0$.

Let σ be a preradical and \mathcal{C} a class of R-modules. We say that \mathcal{C} is closed under taking \mathcal{F}_{σ} -extensions if the following condition holds: if $N, M/N \in \mathcal{C}$ and $N \in \mathcal{F}_{\sigma}$ then $M \in \mathcal{C}$. Next we say that \mathcal{C} is closed under taking \mathcal{F}_{σ} -factor modules if: if $M \in \mathcal{C}$ and N is a σ -torsionfree submodule of M then $M/N \in \mathcal{C}$. For a preradical σ we say that M is a σ -coessential extension of X if there exists a minimal epimorphism $h: M \twoheadrightarrow X$ with $\ker h \in \mathcal{F}_{\sigma}$. We say that \mathcal{C} is closed under taking σ -coessential extensions if: for any minimal epimorphism $f: M \twoheadrightarrow X$ with $\ker f \in \mathcal{F}_{\sigma}$ if $X \in \mathcal{C}$ then $M \in \mathcal{C}$.

For the sake of simplicity we say that M is a σ -coessential extension of M/N if N is a σ -torsionfree small submodule of M. We say that \mathcal{C} is closed under taking σ -coessential extensions if: if $M/N \in \mathcal{C}$ then $M \in \mathcal{C}$ for any σ -torsion free small submodule N of any module M.

Theorem 1. Let σ be a preradical. We consider the following conditions.

- (1) A is a σ -CQF-3' module.
- (2) $t_A(P_{\sigma}(A)) = P_{\sigma}(A)$
- (3) $t_A(M) = t_{P_{\sigma}(A)}(M)$ for any module M.
- (4) $t_A(-)$ is σ -epi-preserving.
- (5) (a) \mathcal{T}_{t_A} is closed under taking \mathcal{F}_{σ} -extensions.
 - (b) \mathcal{F}_{t_A} is closed under taking \mathcal{F}_{σ} -factor modules.
- (6) \mathcal{T}_{t_A} is closed under taking σ -projective covers.
- (7) \mathcal{T}_{t_A} is closed under taking σ -coessential extensions.
- (8) If $\operatorname{Hom}_R(A, f) = 0$, then $\operatorname{Hom}_R(A, M/N) = 0$ holds for any submodule $N \in \mathcal{F}_{\sigma}$ of a module M, where f is the canonical epimorphism $f: M \to M/N$

Then we have implications $(1) \rightarrow (3) \rightarrow (2) \rightarrow (1)$ and $(4) \rightarrow (5)$.

If σ is idempotent, then (3) \rightarrow (4), (1) \rightarrow (8) and (6) \rightarrow (5), (7) hold.

If σ is a radical, then (7) \rightarrow (6), (4) \rightarrow (2), (6) hold.

If σ is an epi-preserving radical and A is in \mathcal{F}_{σ} , then $(8) \rightarrow (5)$ holds, moreover if σ is idempotent then $(5) \rightarrow (2)$ hold.

Thus if σ is an epi-preserving idempotent radical and A is in \mathcal{F}_{σ} , all conditions are equivalent.

Proof. (1) \rightarrow (3): Let M be a module in Mod-R. By the assumption there exists an exact sequence $\oplus A \rightarrow P_{\sigma}(A) \rightarrow 0$, and hence $t_A(M)$ contains $t_{P_{\sigma}(A)}(M)$. Since $P_{\sigma}(A) \rightarrow A \rightarrow 0$ is exact, $t_A(M)$ is contained in $t_{P_{\sigma}(A)}(M)$. Thus it follows that $t_A(M) = t_{P_{\sigma}(A)}(M)$ for any module M.

- (3) \rightarrow (2): It is clear, for $t_A(P_{\sigma}(A)) = t_{P_{\sigma}(A)}(P_{\sigma}(A)) = P_{\sigma}(A)$.
- (2) \rightarrow (1): It is clear, for $P_{\sigma}(A) = t_A(P_{\sigma}(A))$ is a homomorphic image of direct sums of copies of A.
- (3) \rightarrow (4): Suppose that σ is an idempotent preradical. Then $P_{\sigma}(A)$ is σ -projective. Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module M. Consider the following diagram.

$$0 \longrightarrow N \longrightarrow M \xrightarrow{g} M/N \longrightarrow 0,$$

where g is the canonical epimorphism, f is any homomorphism from $P_{\sigma}(A)$ to M/N and $h \in \text{Hom}_{R}(P_{\sigma}(A), M)$ is induced by the σ -projectivity of $P_{\sigma}(A)$ such that f = gh.

Thus $t_{P_{\sigma}(A)}(M/N) \subseteq (t_{P_{\sigma}(A)}(M) + N)/N$. By the assumption, it holds that $t_A(M/N) \subseteq (t_A(M) + N)/N$. Since $t_A(-)$ is a preradical, $t_A(M/N) \supseteq (t_A(M) + N)/N$ holds, and so $t_A(-)$ is a σ -epi-preserving preradical.

 $(4)\rightarrow(2)$: Here we assume that σ is a radical.

Then it holds that $K_{\sigma}(A) = K(A)/\sigma(K(A)) \in \mathcal{F}_{\sigma}$. Thus it holds $(t_A(P_{\sigma}(A)) + K_{\sigma}(A))/K_{\sigma}(A) = t_A(P_{\sigma}(A)/K_{\sigma}(A))$. Since $t_A(A) = A$ and $A \simeq P_{\sigma}(A)/K_{\sigma}(A)$, it follows that $t_A(P_{\sigma}(A)/K_{\sigma}(A)) = P_{\sigma}(A)/K_{\sigma}(A)$. Thus $t_A(P_{\sigma}(A)) + K_{\sigma}(A) = P_{\sigma}(A)$ holds. Consequently $P_{\sigma}(A) = t_A(P_{\sigma}(A))$, for $K_{\sigma}(A)$ is small in $P_{\sigma}(A)$.

- $(4) \rightarrow (5)$ (a): Let N be a submodule of a module M such that $N \in \mathcal{F}_{\sigma} \cap \mathcal{T}_{t_A}$ and $M/N \in \mathcal{T}_{t_A}$, then $N = t_A(N) \subseteq t_A(M)$ and $t_A(M/N) = M/N$. By the assumption $t_A(M/N) = (t_A(M) + N)/N$, and so $M = t_A(M) + N = t_A(M)$, as desired.
- (b): Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module $M \in \mathcal{F}_{t_A}$, then we have the equation $t_A(M/N) = (t_A(M) + N)/N = N/N = 0$, as desired.
- (1) \rightarrow (8): Suppose that σ is idempotent. Then $P_{\sigma}(A)$ is σ -projective. Let N be a submodule of a module M such that $N \in \mathcal{F}_{\sigma}$. Since A is σ -CQF-3', there exists an epimorphism $\oplus A_i \stackrel{(\varphi_i)}{\twoheadrightarrow} P_{\sigma}(A)$, defined by $(\varphi_i)(a_i) = \sum_i \varphi_i(a_i)$ for $(a_i) \in \oplus A_i$, $\varphi_i \in \operatorname{Hom}_R(A_i, P_{\sigma}(A))$, where $A_i \cong A$.

We will show that if $\operatorname{Hom}_R(A, f) = 0$ then $\operatorname{Hom}_R(A, M/N) = 0$. Suppose that $\operatorname{Hom}_R(A, M/N) \neq 0$. Then there exists a nonzero element j in $\operatorname{Hom}_R(A, M/N)$.

Let $f: M \to M/N$ be the canonical epimorphism, $g: P_{\sigma}(A) \to A$ a homomorphism associated with the σ -projectivity of A and $h: P_{\sigma}(A) \to M$ a homomorphism induced by the σ -projectivity of $P_{\sigma}(A)$ such that jg = fh. Consider the following commutative diagram with exact rows.

There exists a nonzero element $x \in A$ such that $j(x) \neq 0$. Then there exists a nonzero element $y \in P_{\sigma}(A)$ such that $y = \sum_{i} \varphi_{i}(a_{i})$ and $x = g(y) = g(\sum_{i} \varphi_{i}(a_{i})) = \sum_{i} g(\varphi_{i}(a_{i}))$. Therefore it holds that $0 \neq j(x) = j(g(y)) = \sum_{i} j(g(\varphi_{i}(a_{i})))$, and so there exists some a_{i} in A and some φ_{i} in $\operatorname{Hom}_{R}(A, P_{\sigma}(A))$ such that $j(g(\varphi_{i}(a_{i}))) \neq 0$. Then it holds that $0 \neq j(g(\varphi_{i}(a_{i}))) = f(h(\varphi_{i}(a_{i})))$ for jg = fh. Since $h\varphi_{i} \in \operatorname{Hom}_{R}(A, M)$, it holds that $0 \neq fh\varphi_{i} = \operatorname{Hom}(A, f)(h\varphi_{i})$. This is a contradiction, and so $\operatorname{Hom}_{R}(A, M/N) = 0$, as desired.

- (8) \rightarrow (5): Here we assume that σ is an epi-preserving preradical and $A \in \mathcal{F}_{\sigma}$.
- (a): We show the stronger condition that \mathcal{T}_{t_A} is closed under taking extensions. Let N be a submodule of a module M such that $M/N \in \mathcal{T}_{t_A}$ and $N \in \mathcal{T}_{t_A}$. Since $t_A(M)$ is a homomorphic image of a direct sum of copies of $A \in \mathcal{F}_{\sigma}$, it follows that $t_A(M) \in \mathcal{F}_{\sigma}$. Consider the following sequence. $\mathcal{F}_{\sigma} \ni t_A(M) \hookrightarrow M \twoheadrightarrow M/t_A(M)$. By the definition of $t_A(M)$ it follows that $t_A(M) = 0$. Cosequently $t_A(M) = 0$ by the assumption, and so $t_A(M) \in \mathcal{F}_{t_A}$.

Since $N \in \mathcal{T}_{t_A}$, $N = t_A(N) \subseteq t_A(M)$. Thus $M/t_A(M)$ is a factor module of $M/N \in \mathcal{T}_{t_A}$, and so $M/t_A(M) \in \mathcal{T}_{t_A}$.

Consequently it follows that $M/t_A(M) = 0$, as desired.

- (b): Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module $M \in \mathcal{F}_{t_A}$. Consider the exact sequence $0 \to N \to M \xrightarrow{f} M/N \to 0$. Since $M \in \mathcal{F}_{t_A}$, $\operatorname{Hom}_R(A, f) = 0$. Thus by the assumption $\operatorname{Hom}_R(A, M/N) = 0$, and so $M/N \in \mathcal{F}_{t_A}$.
- (5) \rightarrow (2): Let σ be an epi-preserving idempotent radical and $A \in \mathcal{F}_{\sigma}$. Since \mathcal{F}_{σ} is closed under taking extensions and $K_{\sigma}(A) \in \mathcal{F}_{\sigma}$, it follows that $P_{\sigma}(A) \in \mathcal{F}_{\sigma}$ and so $t_A(P_{\sigma}(A)) \in \mathcal{F}_{\sigma}$ since \mathcal{F}_{σ} is closed under taking submodules. We put $K = t_A(P_{\sigma}(A))$. We will show that $K = P_{\sigma}(A)$.

Suppose $K \subsetneq P_{\sigma}(A)$. Since $K_{\sigma}(A)$ is small in $P_{\sigma}(A)$, $K + K_{\sigma}(A) \subsetneq P_{\sigma}(A)$. Since $A \simeq P_{\sigma}(A)/K_{\sigma}(A) \twoheadrightarrow P_{\sigma}(A)/(K_{\sigma}(A) + K) \neq 0$, it follows that $\operatorname{Hom}_R(A, P_{\sigma}(A)/(K_{\sigma}(A) + K)) \neq 0$, and so $P_{\sigma}(A)/(K_{\sigma}(A) + K)$ is an epimorphic image of $K_{\sigma}(A) \in \mathcal{F}_{\sigma}$, it follows that $(K_{\sigma}(A) + K)/K \in \mathcal{F}_{\sigma}$ since \mathcal{F}_{σ} is closed under taking factor modules. Consider the exact sequence $0 \to (K_{\sigma}(A) + K)/K \to P_{\sigma}(A)/K \to P_{\sigma}(A)/(K_{\sigma}(A) + K) \to 0$. By the assumption (b), it follows that $(P_{\sigma}(A)/K) \notin \mathcal{F}_{t_A}$. We put $X/K = t_A(P_{\sigma}(A)/K) \notin 0$. Consider the exact sequence $0 \to K \to X \to X/K \to 0$. As $K = t_A(P_{\sigma}(A)) \in \mathcal{F}_{\sigma}$, $K \in \mathcal{F}_{\sigma} \cap \mathcal{T}_{t_A}$. Since $X/K \in \mathcal{T}_{t_A}$, it follows that $X \in \mathcal{T}_{t_A}$ by the assumption (a). As $X \subseteq P_{\sigma}(A)$, $X = t_A(X) \subseteq t_A(P_{\sigma}(A)) = K$. Thus it follows that X = K. But this is a contradiction, for $X/K = t_A(P_{\sigma}(A)/K) \neq 0$. It concludes that $t_A(P_{\sigma}(A)) = K = P_{\sigma}(A)$, as desired.

 $(4) \rightarrow (6)$: We assume that σ is a radical. Then $K_{\sigma}(X) \in \mathcal{F}_{\sigma}$ for any module X. Let $M \in \mathcal{T}_{t_A}$. Consider the exact sequence $0 \rightarrow K_{\sigma}(M) \rightarrow P_{\sigma}(M) \rightarrow P_{\sigma}(M)/K_{\sigma}(M) \rightarrow 0$. Since $K_{\sigma}(M) \in \mathcal{F}_{\sigma}$ and $P_{\sigma}(M)/K_{\sigma}(M) \simeq M \in \mathcal{T}_{t_A}$, it follows that $P_{\sigma}(M)/K_{\sigma}(M) = t_A(P_{\sigma}(M)/K_{\sigma}(M)) = (t_A(P_{\sigma}(M)) + K_{\sigma}(M))/K_{\sigma}(M)$. Thus it follows that $P_{\sigma}(M) = t_A(P_{\sigma}(M)) + K_{\sigma}(M)$. As $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$, it follows that $P_{\sigma}(M) = t_A(P_{\sigma}(M)) \in \mathcal{T}_{t_A}$, as desired.

(6) \rightarrow (5): We assume that σ is idempotent. Then $P_{\sigma}(X)$ is σ -projective for any module X.

(a): Let $N \in \mathcal{F}_{\sigma} \cap \mathcal{T}_{t_A}$ be a submodule of a module M such that $M/N \in \mathcal{T}_{t_A}$. Consider the following diagram.

$$0 \longrightarrow N \longrightarrow M \xrightarrow{f \swarrow} M/N \longrightarrow 0,$$

where g is an epimorphism associated with the σ -projective cover of M/N, h is the canonical epimorphism and f is a homomorphism induced by the σ -projectivity of $P_{\sigma}(M/N)$. By the assumption it follows that $P_{\sigma}(M/N) \in \mathcal{T}_{t_A}$. Thus it follows that $f(P_{\sigma}(M/N)) = f(t_A(P_{\sigma}(M/N))) \subseteq t_A(M)$. Since $N \in \mathcal{T}_{t_A}$, $N = t_A(N) \subseteq t_A(M)$. Then the following equalities hold. $M/N = g(P_{\sigma}(M/N)) = h(f(P_{\sigma}(M/N))) = (f(P_{\sigma}(M/N)) + N)/N \subseteq (t_A(M) + N)/N = t_A(M)/N \subseteq t_A(M/N) = M/N$. Thus we conclude that $M = t_A(M)$, as desired.

(b): Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module $M \in \mathcal{F}_{t_A}$. Consider the following diagram.

where g is an epimorphim associated with the σ -projective cover of

 $t_A(M/N)$, i is the canonical monomorphism and f is a homomorphism induced by σ -projectivity of $P_{\sigma}(t_A(M/N))$.

By the assumption $P_{\sigma}(t_A(M/N)) \in \mathcal{T}_{t_A}$. Since $M \in \mathcal{F}_{t_A}$, it follows that f = 0, and so ig = 0. Hence i = 0, and so we conclude that $t_A(M/N) = 0$, as desired.

- (7) \rightarrow (6): We assume that σ is a radical, and then $K_{\sigma}(M) \in \mathcal{F}_{\sigma}$. Thus it is clear, for $P_{\sigma}(M)$ is a σ -coessential extension of M.
- (6) \rightarrow (7): We assume that σ is idempotent, and then $P_{\sigma}(X)$ is σ -projective for any module X. Let N be a small submodule of a module M such that $M/N \in \mathcal{T}_{t_A}$ and $N \in \mathcal{F}_{\sigma}$. Consider the following diagram.

$$0 \longrightarrow N \longrightarrow M \xrightarrow{g} M/N \longrightarrow 0,$$

where f is an epimorphism associated with the σ -projective cover of M/N, g is the canonical epimorphism and h is a homomorphism induced by the σ -projectivity of $P_{\sigma}(M/N)$. Since g is a minimal epimorphism and f is an epimorphism, it follows that h is also an epimorphism. By the assumption, $M/N \in \mathcal{T}_{t_A}$ implies $P_{\sigma}(M/N) \in \mathcal{T}_{t_A}$. Since h is an epimorphism, it follows that $M \in \mathcal{T}_{t_A}$.

If σ is zero functor, then σ is an epi-preserving idempotent radical and A is σ -torsionfree. Thus then σ -CQF-3' modules are CQF-3' modules.

Proposition 2. Let σ be an epi-preserving idempotent radical. Then the following conditions on a module A are equivalent.

- (1) \mathcal{F}_{t_A} is closed under taking \mathcal{F}_{σ} -factor modules.
- (2) $\mathcal{F}_{t_A} = \mathcal{F}_{t_{P_{\sigma}(A)}}$

Proof. (1) \rightarrow (2): Since $P_{\sigma}(A) \rightarrow A$ is surjective, it follows that $\mathcal{F}_{t_{P_{\sigma}(A)}} \subseteq \mathcal{F}_{t_{A}}$. Next we will show that $\mathcal{F}_{t_{P_{\sigma}(A)}} \supseteq \mathcal{F}_{t_{A}}$. Let M be in $\mathcal{F}_{t_{A}}$. We will show that $M \in \mathcal{F}_{t_{P_{\sigma}(A)}}$. Suppose that $M \notin \mathcal{F}_{t_{P_{\sigma}(A)}}$. Then it holds that $\operatorname{Hom}_{R}(P_{\sigma}(A), M) \neq 0$, and there exists $0 \neq f \in \operatorname{Hom}_{R}(P_{\sigma}(A), M)$. Since $\ker f \subsetneq P_{\sigma}(A)$ and $K_{\sigma}(A)$ is small in $P_{\sigma}(A)$, it follows that $\ker f + K_{\sigma}(A) \subsetneq P_{\sigma}(A)$. Since σ is an epi-preserving preradical, \mathcal{F}_{σ} is closed under taking factor modules. Thus it follows that $(K_{\sigma}(A) + \ker f)/\ker f \in \mathcal{F}_{\sigma}$. Since

 $P_{\sigma}(A)/\ker f \subseteq M \in \mathcal{F}_{t_A}, \ P_{\sigma}(A)/\ker f \in \mathcal{F}_{t_A}.$ Consider the exact sequence $0 \to (K_{\sigma}(A) + \ker f)/\ker f \to P_{\sigma}(A)/\ker f \to P_{\sigma}(A)/(K_{\sigma}(A) + \ker f) \to 0.$ By the assumption it follows that $P_{\sigma}(A)/(K_{\sigma}(A) + \ker f) \in \mathcal{F}_{t_A}.$ Since $A \in \mathcal{T}_{t_A}$ and $A \simeq P_{\sigma}(A)/K_{\sigma}(A) \twoheadrightarrow P_{\sigma}(A)/(K_{\sigma}(A) + \ker f), \ P_{\sigma}(A)/(K_{\sigma}(A) + \ker f) \in \mathcal{T}_{t_A} \cap \mathcal{F}_{t_A}.$ Thus $P_{\sigma}(A)/(K_{\sigma}(A) + \ker f) = 0$, this is a contradiction. Hence it follows that $M \in \mathcal{F}_{t_{P_{\sigma}(A)}}.$

(2) \rightarrow (1): By the assumption, it is sufficient to prove that $\mathcal{F}_{t_{P_{\sigma}(A)}}$ is closed under taking \mathcal{F}_{σ} -factor modules. Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module $M \in \mathcal{F}_{t_{P_{\sigma}(A)}}$. Suppose that $M/N \notin \mathcal{F}_{t_{P_{\sigma}(A)}}$, then there exists $0 \neq f \in \operatorname{Hom}_R(P_{\sigma}(A), M/N)$. Since $P_{\sigma}(A)$ is σ -projective, there exists an $h \in \operatorname{Hom}_R(P_{\sigma}(A), M)$ such that gh = f. Since $M \in \mathcal{F}_{t_{P_{\sigma}(A)}}$, it follows that h = 0, and then f = 0. This is a contradiction, and so $M/N \in \mathcal{F}_{t_{P_{\sigma}(A)}}$, as desired.

Lemma 3. Let σ be an idempotent radical. For a module M and its submodule N, consider the following diagram with exact rows.

$$0 \longrightarrow K_{\sigma}(M) \longrightarrow P_{\sigma}(M) \xrightarrow{f} M \longrightarrow 0$$

$$\downarrow j$$

$$0 \longrightarrow K_{\sigma}(M/N) \longrightarrow P_{\sigma}(M/N) \xrightarrow{g} M/N \longrightarrow 0,$$

where f and g are epimorphisms associated with the σ -projective covers and j is the canonical epimorphism. Then there exists a homomorphism h: $P_{\sigma}(M) \to P_{\sigma}(M/N)$ induced by the σ -projectivity of $P_{\sigma}(M)$ such that jf = gh.

Then the following conditions hold.

- (1) If M is a σ -coessential extension of M/N, then $h: P_{\sigma}(M) \to P_{\sigma}(M/N)$ is an isomorphism.
- (2) Moreover if σ is epi-preserving and $h: P_{\sigma}(M) \to P_{\sigma}(M/N)$ is an isomorphism, then M is a σ -coessential extension of M/N.
- Proof. (1): Let $N \in \mathcal{F}_{\sigma}$ be a small submodule of a module M. Since jf is an epimorphism and g is a minimal epimorphism, h is also an epimorphism. Since $j(f(\ker h)) = g(h(\ker h)) = g(0) = 0$, it follows that $f(\ker h) \subseteq \ker j = N \in \mathcal{F}_{\sigma}$, and so $f(\ker h) \in \mathcal{F}_{\sigma}$. Let $f|_{\ker h}$ be the restriction of f to $\ker h$. Then it follows that $\ker(f|_{\ker h}) = \ker h \cap \ker f = \ker h \cap K_{\sigma}(M) \subseteq K_{\sigma}(M) \in \mathcal{F}_{\sigma}$. Consider the exact sequence $0 \to \ker f|_{\ker h} \to \ker h \to f(\ker h) \to 0$. Since \mathcal{F}_{σ} is closed under taking extensions, it follows that $\ker h \in \mathcal{F}_{\sigma}$. As $P_{\sigma}(M/N)$ is σ -projective, the exact sequence $0 \to \ker h \to P_{\sigma}(M) \to P_{\sigma}(M/N) \to 0$ splits, and so there exists a submodule L of $L \to L \to L$ for $L \to L \to L$ ker $L \to L$. So it follows that $L \to L$ for $L \to L$ ker $L \to L$ so it follows that $L \to L$ for $L \to L$ so it small in $L \to L$ for $L \to L$

it follows that M = f(L). As f is a minimal epimorphism, it follows that $P_{\sigma}(M) = L$ and $\ker h = 0$, and so $h : P_{\sigma}(M) \simeq P_{\sigma}(M/N)$, as desired.

(2): Suppose that $h: P_{\sigma}(M) \simeq P_{\sigma}(M/N)$. By the commutativity of the above diagram and h, it follows that $h(f^{-1}(N)) \subseteq K_{\sigma}(M/N) \in \mathcal{F}_{\sigma}$. Since h is an isomorphism, $f^{-1}(N) \in \mathcal{F}_{\sigma}$. As $f|_{f^{-1}(N)}: f^{-1}(N) \to N \to 0$ and σ is an epi-preserving preradical, it follows that $N \in \mathcal{F}_{\sigma}$.

Next we will show that N is small in M. Let K be a submodule of M such that M = N + K. If $f^{-1}(K) \subsetneq P_{\sigma}(M)$, then $h(f^{-1}(K)) \subsetneq P_{\sigma}(M/N)$ as h is an isomorphism. Since $g(h(f^{-1}(K))) = j(f(f^{-1}(K))) = j(K) = (K + N)/N = M/N$ and g is a minimal epimorphism, this is a contradiction. Thus it holds that $f^{-1}(K) = P_{\sigma}(M)$, and so $K = f(f^{-1}(K)) = f(P_{\sigma}(M)) = M$. Thus it follows that N is small in M.

Proposition 4. Let σ be an idempotent radical. The class of σ -CQF-3' modules is closed under taking σ -coessntial extensions.

Proof. Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module M such that $P_{\sigma}(M/N)$ is (M/N)-generated. Then by Lemma 3 it follows that $\oplus M \twoheadrightarrow \oplus (M/N) \twoheadrightarrow P_{\sigma}(M/N) \simeq P_{\sigma}(M)$. Thus it follows that M is a σ -CQF-3' module. \square

2. σ -EPI-PRESERVING PRERADICAL AND σ -COHEREDITARY TORSION THEORIES

In this section we generalize epi-preserving preradicals by using torsion theories. If a module A is σ -CQF-3' and $t = t_A$, then t is a σ -epi-preserving idempotent preradical by Theorem 1.

Theorem 5. Let σ be an idempotent radical. Consider the following conditions on a preradical t.

- (1) t is a σ -epi-preserving preradical.
- (2) \mathcal{T}_t is closed under taking σ -coessential extensions.
- (3) \mathcal{T}_t is closed under taking σ -projective covers.
- (4) (i) \mathcal{F}_t is closed under taking \mathcal{F}_{σ} -factor modules.
 - (ii) \mathcal{T}_t is closed under taking \mathcal{F}_{σ} -extensions.

Then we have the implications $(4) \leftarrow (1) \rightarrow (2) \leftarrow (3)$.

If t is an idempotent preradical, then we have the implication $(3) \rightarrow (1)$.

If σ is an epi-preserving preradical and t is a radical, then (4) \rightarrow (1) holds.

Thus if σ is an epi-preserving idempotent radical and t is an idempotent radical, then all conditions are equivalent.

Proof. By the assumption every module has its σ -projective cover.

(1) \rightarrow (2): Let $N \in \mathcal{F}_{\sigma}$ be a small submodule of a module M such that $M/N \in \mathcal{T}_t$. By the assumption M/N = t(M/N) = (t(M) + N)/N. Thus it follows that M = t(M) + N, and so M = t(M), for N is small in M.

- $(2)\rightarrow(3)$: This is clear.
- (3) \rightarrow (2): Let $N \in \mathcal{F}_{\sigma}$ be a small submodule of a module M such that $M/N \in \mathcal{T}_t$. Consider the following commutative diagram.

$$0 \longrightarrow N \longrightarrow M \xrightarrow{g} M/N \longrightarrow 0,$$

where f is an epimorphism associated with the σ -projective cover of M/N, g is the canonical epimorphism and h is a homomorphism induced by the σ -projectivity of $P_{\sigma}(M/N)$.

Since f is an epimorphism and g is a minimal epimorphism, it follows that h is an epimorphism. By the assumption it holds that $P_{\sigma}(M/N) \in \mathcal{T}_t$, and so $M \in \mathcal{T}_t$, as desired.

- $(1)\rightarrow (4)$: This is almost the same as $(4)\rightarrow (5)$ in Theorem 1.
- (3) \rightarrow (1): Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module M and t an idempotent preradical. Consider the following diagram.

where i, j and u are the inclusions, f is an epimorphism associated with the σ -projective cover of t(M/N) and g is the canonical epimorphism from M to M/N. By the assumption $P_{\sigma}(t(M/N)) \in \mathcal{T}_t$. Since $N \in \mathcal{F}_{\sigma}$, there exists an $h \in \operatorname{Hom}_R(P_{\sigma}(t(M/N)), M)$ such that if = gh by the σ -projectivity of $P_{\sigma}(t(M/N))$. Since $h(P_{\sigma}(t(M/N))) = h(t(P_{\sigma}(t(M/N)))) \subseteq t(M)$, $h \in \operatorname{Hom}_R(P_{\sigma}(t(M/N)), t(M))$. Since $g(t(M)) \subseteq t(M/N)$, g induces $g' \in \operatorname{Hom}_R(t(M), t(M/N))$ such that f = g'h. As f is an epimorphism, g' is also an epimorphism. Thus (t(M) + N)/N = g'(t(M)) = t(M/N), as desired.

 $(4) \rightarrow (1)$: Let $N \in \mathcal{F}_{\sigma}$ be a submodule of a module M, t a radical and σ an epi-preserving preradical. Then $(N + t(M))/t(M) \simeq N/(N \cap t(M)) \leftarrow N \in \mathcal{F}_{\sigma}$. Consider the exact sequence $0 \rightarrow (N + t(M))/t(M) \rightarrow M/t(M) \rightarrow M/(N + t(M)) \rightarrow 0$. Since $M/t(M) \in \mathcal{F}_t$, it follows that $M/(N + t(M)) \in \mathcal{F}_t$ by the assumption (i). Hence $(M/N)/((N + t(M))/N) \in \mathcal{F}_t$, and so $t(M/N) \subseteq (N + t(M))/N$. Since t is a preradical, it follows that $t(M/N) \supseteq (N + t(M))/N$, and so t(M/N) = (N + t(M))/N holds. \square

Proposition 6. Let σ be an epi-preserving radical and t a preradical. Then the following conditions are equivalent.

- (1) Let N be a submodule of a module M such that $M \supseteq N \supseteq t(M)$. If $N/t(M) \in \mathcal{F}_{\sigma}$, then $M/N \in \mathcal{F}_{t}$.
 - (2) t is both a radical and a σ -epi-preserving preradical.

Proof. (1) \rightarrow (2): We use t(M) instead of N. Then it follows that $M/t(M) \in \mathcal{F}_t$, and so t is a radical.

Next we will show that if $N \in \mathcal{F}_{\sigma}$, then t(M/N) = (t(M) + N)/N. We use N + t(M) instead of N. Consider the sequence $0 \to (N + t(M))/t(M) \to M/t(M) \to M/(N + t(M)) \to 0$. Since $(N + t(M))/t(M) \simeq N/(N \cap t(M)) \leftarrow N \in \mathcal{F}_{\sigma}$, $(N + t(M))/t(M) \in \mathcal{F}_{\sigma}$. It holds that $(M/(N + t(M))) \in \mathcal{F}_{t}$, and so $(M/N)/((N + t(M))/N) \in \mathcal{F}_{t}$. Thus $t(M/N) \subseteq (N + t(M))/N$. Since t is a preradical, $t(M/N) \supseteq (N + t(M))/N$, and so it follows that t(M/N) = (N + t(M))/N.

(2) \rightarrow (1): Let N be a submodule of a module M such that $M \supseteq N \supseteq t(M)$ and $N/t(M) \in \mathcal{F}_{\sigma}$. Consider the sequence $0 \to N/t(M) \to M/t(M) \to M/N \to 0$. Since t is an σ -epi-preserving preradical and a radical,

 $\{t(M/t(M)) + N/t(M)\}/(N/t(M)) \simeq t(M/N)$, and so $0 \simeq t(M/N)$, as desired.

A torsion theory for Mod-R is a pair $(\mathcal{T}, \mathcal{F})$ of classes of objects of Mod-R such that

- (i) $\operatorname{Hom}_R(T, F) = 0$ for all $T \in \mathcal{T}, F \in \mathcal{F}$
- (ii) If $\operatorname{Hom}_R(M,F)=0$ for all $F\in\mathcal{F}$, then $M\in\mathcal{T}$
- (iii) If $\operatorname{Hom}_R(T, N) = 0$ for all $T \in \mathcal{T}$, then $N \in \mathcal{F}$

We put $t(M) = \sum_{T \ni N \subset M} (= \bigcap_{M/N \in \mathcal{F}} N)$, then $T = \mathcal{T}_t$ and $\mathcal{F} = \mathcal{F}_t$ hold.

We call a torsion theory $(\mathcal{T}, \mathcal{F})$ σ -cohereditary if \mathcal{F} is closed under taking \mathcal{F}_{σ} -factor modules for an idempotent radical σ .

Proposition 7. Let t be a radical and σ an idempotent preradical such that $\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{t}$. If \mathcal{T}_{t} is closed under taking σ -projective covers, then \mathcal{T}_{t} is closed under taking projective covers.

Proof. For $M \in \mathcal{T}_t$ it holds that $P_{\sigma}(M) \in \mathcal{T}_t$ by the assumption. It holds that $\sigma(K(M)) \in \mathcal{T}_{\sigma}$ since σ is idempotent. As $\mathcal{T}_{\sigma} \subseteq \mathcal{T}_t$, it follows that $\sigma(K(M)) \in \mathcal{T}_t$. Consider the exact sequence $0 \to \sigma(K(M)) \to P(M) \to P_{\sigma}(M) \to 0$. Since t is a radical, \mathcal{T}_t is closed under taking extensions. Therefore it follows that $P(M) \in \mathcal{T}_t$.

Theorem 8. Let σ be an epi-preserving idempotent radical. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory. Suppose that there exists $Q \in \mathcal{T}$ such that $\mathcal{F} = \{M_R : \operatorname{Hom}_R(Q, M) = 0\}$. Then $(\mathcal{T}, \mathcal{F})$ is σ -cohereditary if and only if $\mathcal{F} = \{M_R : \operatorname{Hom}_R(P_{\sigma}(Q), M) = 0\}$.

Proof. Let $\mathcal{F} = \{M_R : \operatorname{Hom}_R(P_{\sigma}(Q), M) = 0\}$. Since it is easily verified that \mathcal{F} is closed under taking submodules, direct sums, and extensions by

routine caluculations, \mathcal{F} is a torsion free part of some torsion theory. Thus it is sufficient to prove that \mathcal{F} is closed under taking \mathcal{F}_{σ} -factor modules.

Let M be a module in \mathcal{F} and N a σ -torsion free submodule of M. Suppose that $\operatorname{Hom}_R(P_{\sigma}(Q), M/N) \neq 0$. Consider the following diagram.

where f is a nonzero homomorphism from $P_{\sigma}(Q)$ to M/N and h is the canonical epimorphism from M to M/N.

Then there exists a homomorphism i from $P_{\sigma}(Q)$ to M induced by the σ -projectivity of $P_{\sigma}(Q)$ such that f = hi. Since $hi \neq 0$, $i \neq 0$ for h is an epimorphism. Since $P_{\sigma}(Q)$ is Q-generated by the assumption, there exists a homomorphism $k: Q \to P_{\sigma}(Q)$ such that $0 \neq ik \in \operatorname{Hom}_R(Q, M)$. Thus it follows that $\operatorname{Hom}_R(Q, M) \neq 0$. This is a contradiction to the fact that $M \in \mathcal{F}$. Thus $\operatorname{Hom}_R(Q, M/N) = 0$, and so $M/N \in \mathcal{F}$.

Conversely suppose that \mathcal{F} is closed under taking \mathcal{F}_{σ} -factor modules. Let t be a σ -epi-preserving idempotent radical associated with $(\mathcal{T}, \mathcal{F})$ such that $\mathcal{T} = \mathcal{T}_t$ and $\mathcal{F} = \mathcal{F}_t$. By Theorem 5, \mathcal{F} is closed under taking \mathcal{F}_{σ} -factor modules if and only if \mathcal{T} is closed under taking σ -projective covers. Since \mathcal{T} is closed under taking σ -projective covers, it follows that $P_{\sigma}(Q) \in \mathcal{T}$.

Next we show that $\mathcal{F} = \{M : \operatorname{Hom}_R(P_{\sigma}(Q), M) = 0\}.$

If $M \in \mathcal{F}$, then $\operatorname{Hom}_R(P_{\sigma}(Q), M) = 0$ since $P_{\sigma}(Q) \in \mathcal{T}$. Thus it follows that $\mathcal{F} \subseteq \{M : \operatorname{Hom}_R(P_{\sigma}(Q), M) = 0\}$.

Conversely suppose that $\operatorname{Hom}_R(P_{\sigma}(Q), M) = 0$. Since $P_{\sigma}(Q) \to Q \to 0$, it follows that $0 \to \operatorname{Hom}_R(Q, M) \to \operatorname{Hom}_R(P_{\sigma}(Q), M)$, and so $\operatorname{Hom}_R(Q, M) = 0$. Thus $\mathcal{F} \supseteq \{M : \operatorname{Hom}_R(Q, M) = 0\}$. Therefore it follows that $\mathcal{F} = \{M : \operatorname{Hom}_R(P_{\sigma}(Q), M) = 0\}$.

ACKNOWLEDGEMENT

The author would like to thank the referee for many valuable suggestions and advices of this paper, especially in Theorem 8.

References

- [1] L. Bican, QF-3' modules and rings, Commentationes Mathematicae, Universitatis Carolinae, 14 (1973), 295-301.
- [2] P. E. Bland, Perfect torsion theories, Proc. Amer. Math. Soc. 41 (1973), 349-355.
- [3] P. E. Bland, Divisible and codivisible modules, Math. Scand. 34 (1974), 153-161
- [4] R. R. Colby and E. A. Rutter Jr., Semi-primary QF-3' rings, Nagoya Math. J. 32 (1968), 253-258.
- [5] S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.

- [6] J. S. Golan, Localization of Noncommutative Rings, Marcel Dekker, New York, 1975.
- [7] J. P. Jans, H. Y. Mochizuki and L. E. T. Wu, A characterization of QF-3 rings, Nagoya Math. J. 27 (1966), 7-13.
- [8] J. P. Jans, H. Y. Mochizuki, Torsion associated with duality, Tohoku Math. J. 32 (1972), 449-452.
- [9] Y. Kurata and H. Katayama, On a generalization of QF-3' rings, Osaka Journal of Mathematics, 13 (1976), 407-418.
- [10] F. F. Mbuntum and K. Varadarajan, *Half exact preradicals*, Comm. in Algebra, 5 (1977), 555-590.
- [11] K. Ohtake, *Colocalization and Localization*, Journal of pure and applied algebra 11 (1977), 217-241.
- [12] K. Ohtake, Equivalence between colocalization and localization in abelian categories with applications to the theory of modules, Journal of Algebra 79 (1982), 169-205.
- [13] Bo Stenstrom, Rings and Modules of Quotients, Springer-Verlag, Berlin, 1975.
- [14] C. Vinsonhaler, A note on two generalizations of QF-3, Pac. J. Math. 40 (1972), 229-233.

YASUHIKO TAKEHANA GENERAL EDUCATION

Hakodate National College of Technology 14-1, Tokura-cho, Hakodate-shi, Hokkaido, 042-8501 Japan

 $e ext{-}mail\ address: takehana@hakodate-ct.ac.jp}$

(Received December 11, 2009) (Revised May 21, 2010)