Mathematical Journal of Okayama University

Volume 26, Issue 1

1984 January 1984

Article 14

A commutativity theorem for rings

Hiroaki Komatsu*

*Osaka City University

Copyright ©1984 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 26 (1984), 109-111

A COMMUTATIVITY THEOREM FOR RINGS

HIROAKI KOMATSU

Throughout the present paper, R will represent a ring with center C, N the set of all nilpotent elements of R, and D the commutator ideal of R. A ring R is called left (resp. right) *s*-unital if $x \in Rx$ (resp. $x \in xR$) for every $x \in R$; R is called *s*-unital if R is both left and right *s*-unital. As stated in [3] and [5], if R is *s*-unital (resp. left or right *s*-unital), for any finite subset F of R there exists an element e in R such that ex = xe = x (resp. ex = x or xe = x) for all $x \in F$. We shall use freely the following well known result: Let $r, s \in R$, and k a positive integer. If there exists an element e in R such that er = re = r, es = se = s and $r^k s = 0 = (r+e)^k s$ then s = 0.

Our objective is to prove the following

Theorem. Let m, n be fixed non-negative integers. Suppose that R satisfies the polynomial identity

(1)
$$x^{n}[x, y] - [x, y^{m}] = 0.$$

(a) If R is left s-unital, then R is commutative except the case m = 1 and n = 0.

(b) If R is right s-unital, then R is commutative except the cases m = 1 and n = 0; m = 0 and n > 0.

In preparation for proving our theorem, we state three lemmas.

Lemma 1. Let P be a ring-property which is inherited by every subring and every homomorphic image, and let $f(x_1, \dots, x_k)$ be an element of the free ring $\mathbf{Z}[x_1, \dots, x_k]$ generated by x_1, \dots, x_k . If every ring with 1 having the property P satisfies the polynomial identity $f(x_1, \dots, x_k) = 0$, then every left (resp. right) s-unital ring having the property P satisfies the polynomial identity $f(x_1, \dots, x_k)x_{k+1} = 0$ (resp. $x_{k+1}f(x_1, \dots, x_k) = 0$).

Proof. Let R be a left s-unital ring having the property P. Let r be an arbitrary element of R, and set $S(r) = |s \in R | l_R(r) \subseteq l_R(sr)|$. Obviously, S(r) is a subring of R, and $l_{s(r)}(r)$ is a (two-sided) ideal of S(r). Choose e such that er = r. Then, e is in S(r) and $\bar{e} = e + l_{S(r)}(r)$ is a right identity element of $\overline{S(r)} = S(r)/l_{S(r)}(r)$. In fact, e is the identity H. KOMATSU

element of $\overline{S(r)}$. To see this, let s be an arbitrary element of S(r), and choose e' such that e's = s and e'e = e (and hence e'r = r). Since $e \cdot e' \in l_R(r)$, we get (es-s)r = (e-e')sr = 0, namely $\overline{es} = \overline{s}$. Hence, by hypothesis, $\overline{S(r)}$ satisfies the polynomial identity $f(x_1, \dots, x_k) = 0$. Now, let r_1, \dots, r_{k+1} be arbitrary elements in R, and choose e^* such that $e^*r_i = r_i$ ($i = 1, \dots, k+1$). Obviously, every r_i is in $S(e^*)$, and therefore, as was claimed just above, $f(r_1, \dots, r_k)r_{k+1} = f(r_1, \dots, r_k)e^*r_{k+1} = 0$ (in $S(e^*)$).

Lemma 2. Let R be a ring with 1, and let m, n be fixed non-negative integers. Suppose that R satisfies (1). If $(m, n) \neq (1, 0)$, then R is commutative.

Proof. If m = 0, the assertion is immediate. If m = 1, then (1) becomes

(2)
$$[x, y] + x^{n}yx - x^{n-1}y = 0.$$

110

Hence, by [2, Theorem], R is commutative provided n > 0. (In case n = 0, (2) is superfluous.) We assume henceforth that m > 1. Let $a \in N$ with $a^{t} = 0$, and choose t such that $m^{t} > l$. Then, an easy induction shows that $x^{tn}[x,a] = [x,a^{m^{t}}] = 0$ for all $x \in R$. Hence, [x,a] = 0, namely $N \subseteq C$. Now, observe that D is a nil ideal of R by [1, Proposition 2], since $x = e_{11}$ and $y = e_{12}$ fail to satisfy (1). We obtain therefore $D \subseteq N \subseteq C$. Then, it is easy to see that

$$[x^{n+1}y - y^m x, x] = x^{n+1}[y, x] - [y^m, x]x = \{[x, y^m] - x^n[x, y]\} = 0$$

Hence, R is commutative, by [4, Theorem].

Lemma 3. Let R be a left s-unital ring, and let m, n be fixed non-negative integers. Suppose that R satisfies (1). If $(m,n) \neq (1,0)$, then $N \subseteq C$.

Proof. If m = 0, then it is easy to see that R is s-unital, and R is commutative. If m = 1 and n > 0, then the assertion is clear. Thus, we assume henceforth that m > 1. Let $a \in N$ with $a^{l} = 0$, and choose t such that $m^{l} > l$. Then, as was shown in the proof of Lemma 2, $r^{ln}[r,a] = 0$ for any $r \in R$. Choose e such that ea = a and er = r. Noting that $[e,a] = e^{ln}[e, a] = 0$, we obtain $(r+e)^{ln}[r, a] = (r+e)^{ln}[r+e, a] = 0$, and therefore $[r,a] = |e^{ln} - (r+e)^{ln}[r,a] = |e^{ln} - (r+e)^{ln}[r,a] = 0$.

We are now ready to complete the proof of Theorem.

A COMMUTATIVITY THEOREM FOR RINGS 111

Proof of Theorem. (a) Lemmas 1 and 2 show that DR = 0. Hence, by Lemma 3, D = RD = DR = 0. (Note that $D \subseteq N$ by [1, Proposition 2].)

(b) Again by Lemmas 1 and 2, we have RD = 0. If $m \neq 1$ and n = 0 then it is obvious that $N \subseteq C$. On the other hand, if m > 0 and n > 0 then $a \in Ra$ for any $a \in N$. In fact, let $a^{t} = 0$, and choose $e \in R$ such that ae = a. Then, we have $0 = a^{tn}[a, e] = [a, e^{m^{t}}] = a - e^{m^{t}}a$, which proves that $a \in Ra$. Hence, in either case, D = RD = 0. (Note that $D \subseteq N$ by [1, Proposition 2].)

Remark. Let K be a field. Then, the non-commutative ring $R = \begin{pmatrix} K & 0 \\ K & 0 \end{pmatrix}$ has a right identity element and satisfies the polynomial identity x[x,y] = 0 (cf. Theorem (b)).

The author wishes to express his indebtedness and gratitude to Professor H. Tominaga for his helpful suggestions and valuable comments.

References

- Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [2] T. P. KEZLAN: On identities which are equivalent with commutativity, Math. Japonica 29 (1984), 135-139.
- [3] I. MOGAMI and M. HONGAN: Note on commutativity of rings, Math. J. Okayama Univ. 20 (1978), 21-24.
- [4] E. PSOMOPOULOS: A commutativity theorem for rings, Math. Japonica, 29 (1984), 371-373.
- 5] H. TOMINAGA: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

DEPARTMENT OF MATHEMATICS Osaka City University

(Received February 4, 1984)