Mathematical Journal of Okayama **University**

Volume 26, *Issue* 1 1984 *Article* 14

JANUARY 1984

A commutativity theorem for rings

Hiroaki Komatsu[∗]

[∗]Osaka City University

Copyright ©1984 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 26 (1984), 109-111

A COMMUTATIVITY THEOREM FOR RINGS

HIROAKI KOMATSU

Throughout the present paper, R will represent a ring with center C, N the set of all nilpotent elements of R , and D the commutator ideal of R . A ring R is called left (resp. right) s-unital if $x \in Rx$ (resp. $x \in xR$) for every $x \in R$; R is called s-unital if R is both left and right s-unital. As stated in $\lceil 3 \rceil$ and $\lceil 5 \rceil$, if R is s-unital (resp. left or right s-unital), for any finite subset F of R there exists an element e in R such that $ex = xe = x$ (resp. $ex = x$ or $xe = x$) for all $x \in F$. We shall use freely the following well known result: Let r, $s \in R$, and k a positive integer. If there exists an element e in R such that $er = re = r$, $es = se = s$ and $r^k s = 0 = (r+e)^k s$ then $s = 0$.

Our objective is to prove the following

Theorem. Let m , n be fixed non-negative integers. Suppose that R satisfies the polynomial identity

(1)
$$
x^{n}[x, y] - [x, y^{m}] = 0.
$$

(a) If R is left s-unital, then R is commutative except the case $m = 1$ and $n = 0$.

(b) If R is right s-unital, then R is commutative except the cases $m =$ 1 and $n = 0$; $m = 0$ and $n > 0$.

In preparation for proving our theorem, we state three lemmas.

Lemma 1. Let P be a ring-property which is inherited by every subring and every homomorphic image, and let $f(x_1, \dots, x_k)$ be an element of the free ring $\mathbf{Z}[x_1, \dots, x_k]$ generated by x_1, \dots, x_k . If every ring with 1 having the property P satisfies the polynomial identity $f(x_1, ..., x_k) = 0$, then every left (resp. right) s-unital ring having the property P satisfies the polynomial identity $f(x_1,...,x_k)x_{k+1} = 0$ (resp. $x_{k+1}f(x_1,...,x_k) = 0$).

Proof. Let R be a left s-unital ring having the property P . Let r be an arbitrary element of R, and set $S(r) = |s \in R | l_{R}(r) \subseteq l_{R}(sr)|$. Obviously, $S(r)$ is a subring of R, and $l_{str}(r)$ is a (two-sided) ideal of $S(r)$. Choose e such that $er = r$. Then, e is in $S(r)$ and $\bar{e} = e + l_{S(r)}(r)$ is a right identity element of $S(r) = S(r)/l_{s,r}(r)$. In fact, e is the identity

H. KOMATSU

element of $S(r)$. To see this, let s be an arbitrary element of $S(r)$, and choose e' such that $e's = s$ and $e'e = e$ (and hence $e'r = r$). Since $e \cdot e' \in$ $l_R(r)$, we get $(es-s)r = (e-e')sr = 0$, namely $\bar{es} = \bar{s}$. Hence, by hypothesis, $\overline{S(r)}$ satisfies the polynomial identity $f(x_1,...,x_k) = 0$. Now, let $r_1,...,r_{k+1}$ be arbitrary elements in R, and choose e^* such that $e^*r_i = r_i$ ($i = 1, \dots,$ $k+1$). Obviously, every r_i is in $S(e^*)$, and therefore, as was claimed just above, $f(r_1, \dots, r_k)r_{k+1} = f(r_1, \dots, r_k)e^*r_{k+1} = 0$ (in $S(e^*)$).

Lemma 2. Let R be a ring with 1, and let m , n be fixed non-negative Suppose that R satisfies (1). If $(m, n) \neq (1, 0)$, then R is integers. commutative.

If $m = 0$, the assertion is immediate. If $m = 1$, then (1) Proof. becomes

(2)
$$
[x, y] + x^n y x - x^{n+1} y = 0.
$$

110

Hence, by [2, Theorem], R is commutative provided $n > 0$. (In case $n = 0$, (2) is superfluous.) We assume henceforth that $m > 1$. Let $a \in N$ with $a^i = 0$, and choose t such that $m^i > l$. Then, an easy induction shows that $x^{tn}[x,a] = [x,a^{m^t}] = 0$ for all $x \in R$. Hence, $[x,a] = 0$, namely $N \subseteq C$. Now, observe that D is a nil ideal of R by [1, Proposition 2], since $x = e_{11}$ and $y = e_{12}$ fail to satisfy (1). We obtain therefore $D \subseteq N \subseteq C$. Then. it is easy to see that

$$
[x^{n+1}y - y^mx, x] = x^{n+1}[y, x] - [y^m, x]x = |[x, y^m] - x^n[x, y]|x = 0.
$$

Hence, R is commutative, by $[4,$ Theorem].

Lemma 3. Let R be a left s-unital ring, and let m , n be fixed non-negative integers. Suppose that R satisfies (1). If $(m, n) \neq (1, 0)$, then $N \subseteq C$.

Proof. If $m = 0$, then it is easy to see that R is s-unital, and R is commutative. If $m = 1$ and $n > 0$, then the assertion is clear. Thus, we assume henceforth that $m > 1$. Let $a \in N$ with $a' = 0$, and choose t such that $m' > l$. Then, as was shown in the proof of Lemma 2, $r^{tn}[r, a] = 0$ for any $r \in R$. Choose e such that $ea = a$ and $er = r$. Noting that $[e, a] =$ $e^{tn}[e, a] = 0$, we obtain $(r+e)^{tn}[r, a] = (r+e)^{tn}[r+e, a] = 0$, and therefore $[r, a] = |e^{in} - (r + e)^{in}|[r, a] = |e^{in} - (r + e)^{in}|^{in} [r, a] = 0.$

We are now ready to complete the proof of Theorem.

A COMMUTATIVITY THEOREM FOR RINGS 111

Proof of Theorem. (a) Lemmas 1 and 2 show that $DR = 0$. Hence, by Lemma 3, $D = RD = DR = 0$. (Note that $D \subseteq N$ by [1, Proposition 2].)

(b) Again by Lemmas 1 and 2, we have $RD = 0$. If $m \ne 1$ and $n = 0$ then it is obvious that $N \subseteq C$. On the other hand, if $m > 0$ and $n > 0$ then $a \in Ra$ for any $a \in N$. In fact, let $a^i = 0$, and choose $e \in R$ such that ae $a = a$. Then, we have $0 = a^{n} [a, e] = [a, e^{m^{n}}] = a - e^{m^{n}} a$, which proves that $a \in Ra$. Hence, in either case, $D = RD = 0$. (Note that $D \subseteq N$ by [1, Proposition 2 .)

Remark. Let K be a field. Then, the non-commutative ring $R =$ $\begin{pmatrix} K & 0 \\ K & 0 \end{pmatrix}$ has a right identity element and satisfies the polynomial identity $x[x, y] = 0$ (cf. Theorem (b)).

The author wishes to express his indebtedness and gratitude to Professor H. Tominaga for his helpful suggestions and valuable comments.

REFERENCES

- [1] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), $7-13$.
- [2] T.P. KEZLAN: On identities which are equivalent with commutativity, Math. Japonica 29 $(1984), 135 - 139.$
- [3] I. MOGAMI and M. HONGAN: Note on commutativity of rings, Math. J. Okayama Univ. 20 $(1978), 21 - 24.$
- [4] E. PSOMOPOULOS: A commutativity theorem for rings, Math. Japonica, 29 (1984), 371 -373.
- [5] H. TOMINAGA: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

DEPARTMENT OF MATHEMATICS OSAKA CITY UNIVERSITY

(Received February 4, 1984)